ON A CERTAIN CLASS OF RECURSIVE FUNCTIONS

By TAKASHI NAGASHIMA*

The main purpose of this paper is to prove that, in Kleene’s normal form theorem
and enumeration theorem, the primitive recursive predicates 7, and the primitive recursive
function U can be replaced by ones which are defined explicitly from the following number-
theoretic functions: S, Axy(x—=y), xy(xy), and ix{+/x]. This improves my previous result
[11] that the predicates 7, and the function U can be replaced by ones defined explicitly
from the functions Axy(x+ ), Axp(x=y), 2xp(xy), Axy[x/y] and Ax{A/x]. The latter was
obtained by applying Matijasevié’s theorem to the present author’s theorem on diophantine
predicates. The present construction of substitutes for the predicates 7, is likewise carried
out by applying Matijasevi¢’s theorem. As mentioned above, the function Axy[x{y] is
dispensable in constructing the substitutes for 7, and U. On the contrary, the function
2x[+/x] can not be dispensed with, as shown later. Theorem 4 below can be interpreted
as follows. Consider a computer capable of handling any natural number as a unit.
Suppose the machine has the addition, the subtraction, the multiplication and the extrac-
tion of square root as its basic operations. Then, for each n, there is a universal pro-
gram, which can compute every computable function of n arguments, with a single loop.

As to notations and terminologies, we refer mainly to [6]. Let N denote the set of
natural numbers. Thus N/={x/|xEN} is the set of positive integers. For any set 2°of
functions, let .27 denote the set of n-argument functions in 22 (cf. [4], § 1). For any set
& of functions, an 2*predicate is defined to be a predicate which can be expressed as
Axp Xl f(X1, ooy Xa)=g(xy, ..., Xn)) where f, g€.2° For a function f and a one-
argument function g, let gf denote the composition Ax;...x.(g(f(x;, ..., xn)). For a
one-argument function £, the functions f* are defined thus: fO=U}, f**'=ff". Sometimes
we spare parentheses and write fx in place of f{x). If 27is a set of number-theoretic
functions, the set of functions explicit (cf. [6], §44) in 2° and the constants 0, 1, 2, ...
is denoted as expl(:2°). If 2°C 2/, then expl(2°)Cexpl(%/). For any 2%, .2°C
expl(:2”) and expl(expl(2*))=expl(.2°). If fEexpl(Z°U{g}) and g<expl( Z/), then
f€expl(&2°U Z7). Furthermore, (exp(@Nn={Uf|1<i<n}U{C}HKEN}. A set 2 of
functions is closed under the operations of substitutions (cf. [4], § 1) if exp(®)=2= If
&2 is closed under the operations of substitutions, then 2xy(x=y) is an 2*-predicate.
If f belongs to a set 2 which is closed under the operations of substitutions, the
predicate

%1 XY (fX s ..y Xn)=D),
namely the graph of f, is an Z%predicate. Under the assumptions that .2* contains the
function Axysg|x—y| and that .2~ is closed with respect to the operations of substitutions,
a predicate is an 2%predicate if and only if its representing function belongs to .22
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In [4], Grzegorczyk defined the subsets & " of the set of recursive functions. The
sequence &0 &1, &2 . is strictly increasing, and the sum of all the sets &” is equal
to the set of primitive recursive functions. The set & = &3 is the set of Kalmar’s elemen-
tary functions (cf. [5], § 1 or [6], §46). We define the sets &, &, F, Fas follows:

&7 =expl({2xy(x+ ), Axp(x=y), 2xp(xy), axy[x[y], Ax[+/x]}),

Z =expl({S, axy(x=y), 2xy(xy), 2xy[x[y]}),

F=expl({S, 2xy(x=), 2(x), /2],

F =expl({Axy(x+y), Axy(xy)}).
Thus &7 is the set of polynomials with coefficients in N. A ZP-predicate is a polynomial
predicate (cf. [1], p. 103). Since a+b=a’b’-=(ab), the sets <& and & contain the function
Axy(x+y), and

o7 =expl({S, 2xp(x-=3), 2xp(xp), AxAx[¥], AV X]}).
The inclusions ' C ¥2, P CP C. ¥ and P C F C 7 are evident. Because Ax(1-x)
& P, neither && nor & is equal to &P, &+ F and & +.¥ will be shown later.

Prior to Matijasevi¢’s negative solution of Hilbert’s tenth problem, Kurata and Hiraj
[7] proved that whether a function in %] is surjective or not is undecidable and they
further proposed a conjecture that for any fixed strictly monotone primitive recursive func-
tion g, whether the range of a function f&. %, equals the range of g or not is undecidable.
The undecidability result of Kurata-Hirai was deduced from the author’s theorem ([10],
Theorem 5) that every nonempty diophantine set is enumerable by a function in &;.
The latter follows from the author’s theorem ([10], Theorem 3) that every diophantine
predicate can be expressed in the form of an .o-predicate with a single existential quanti-
fier prefixed to it. This theorem implies, according to Matijasevi€’s theorem, that every
recursively enumerable predicate is expressible in the above-mentioned form. In [11], the
construction of the predicates corresponding to 7, was based upon the latter expressibility
theorem. The present construction of the predicates F,, which correspond to 7, is parallel
to that in [11]. On the other hand, a function corresponding to U is obtained by a similar
argument as in Markov’s theorem on primitive recursive functions of large oscillation.

For any function f: N — N, the function f/ is defined as f/(@)=3x<a5g|f(x)— f(@)|
The operation which corresponds /7 to f is due to Markov (cf. [8], pp. 136-137). The re-
mainder function rm, usually regarded as a function of natural numbers, is extended to
rm: QXZ — Q as follows: Let rm(a, 8)=a if =0, otherwise let rm(a, B) be the rational
number p such that (37 €Q)(a=87+p A0<p<|§]). The signum function sg is extended
to sg: Q — Z in a self-explanatory manner. For any ¢€Q, let ¢*=max(a, 0) and a~=
max(—a, 0). Thus a=a+—a~ and |@|=a*+a~. Now consider a polynomial ¢(x, y,
W)= iy, Xy, with rational coefficients. Then we define the polynomials ¢+ and
o~ as follows:

ot (X, ¥, W )=0, ey, XL,

o™X, ¥, =200 ey, XYL
The polynomial ¢*+(x, y, ...) should not be confused with (¢(x, y, ...))*; the latter is not
necessarily a polynomial. If ¢ is a polynomial with integer coefficients, then ¢+€5” and
¢~ €. A number-theoretic predicate is diophantine (cf. [1], p. 103) if it is expressible
in the form of

le...xnayl...aym((p(xla cees Xny }’1, cees ym):())
where ¢ is a polynomial with integer coefficients. Hence, a predicate is diophantine if
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and only if it is expressible in the form of a ZP-predicate with some (possibly none)
existential quantifiers prefixed to it. As above, we use lower-case Greek letters (except 2,
p and ¢, which are reserved for the specific meanings) to denote either rationals, integers
or functions of rationals and/or integers.

LemMa 1. sg, sg, ixy|x—y|, max, minE€ & .

Proof. sg(a)=1-a, sgla)=1-(1=a), |a=b|=(a-=b)+(b=a),
max{a, b)=(a=b)+b, min(a, b)=a-=(a-=-b).

COROLLARY. A4 predicate is an F-predicate if and only if its representing function
belongs to .

LemMA 2. The set of F -predicates is closed under the logical operations —, A and \/ .

Proof. sg, max, minE &,

Lemma 3. If a function f is defined as

g(ay, ..., an) ifR(ay, ..., an),
S@y ..y a"):{h(all, vees On) othervtise,
from functions g, h& F and an F-predicate R, then fE€ .

Proof. Let r be the representing function of R. Then r is in % and f can be ex-
pressed explicitly by means of g, 4 and r, hence f& &~

LeMMA 4. Every F-predicate is diophantine.

Proof. It suffices to show that any function in &% has a diophantine predicate as
its graph. If functions f and g have diophantine graphs, then the graph of gfis diophantine
since

gfla)y=b=3x(fla)=x A g(x)=b),
and similarly for functions of two or more arguments. The graphs of the initial functions
of & are diophantine. Hence, by induction, any function in % has a diophantine graph.

The functions P and Q are defined as follows:

a+b® if a<b,
Pa, b)_{a2+a+b otherwise,
Q@)= yI*(P(x, y)=a).
P is a bijection from N2 to N. Save for the order of arguments, P defined here equals
Godel’s pairing function P (cf. [2], 7.9) restricted to the set of natural numbers. For
any a, the functions AxP(x, a) and AxP(a, x) are strictly monotone. Hence Q is totally
defined, Q//=Q and
Q’P(a, b)y=a,
QP(a, b)=b,
P(Q’a, Qa)=a.
LEmMMA 5. P, Q/, Q& .
Proof. PE.Z since Axy(x<y) is an F -predicate.
max(a, b2 <P(a, b)y<(max(a, b)+1)2,
hence [+/P(a, b)l=max(a, b). We set c=P(a, b). If a<b then
[Vel=bAc=[vcP=q,
and if a>b then
[vel=aAc=[+/cf=a+b.

Hence

Q/c=a=min((+/c], c=[+/c]),
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Db {[«/c] if [ye>c=[v/ePs
(c=[+/cP)=[+/c] otherwise,
therefore @/, Q€. #.
LEMMA 6. A predicate D is diophantine if and only if there exists an F -predicate R
such that
D(ay, ..., an)=TxR(a;, ..., an, X).
Proof. If D is a diophantine predicate, then there exist functions g, g,&€.&” such that
D@y, ..., a)=T%1... 3%m(81(01s oo Any X1 evs Xm)=82(A15 <5 n> X151 Xm)).
Without any loss of generality, we can assume that m>0. Let
g(al, eees Any bl’ ey bm):Sglgl(al, wees Any bl’ ceus bm)‘—gg(al, vees Qny bl’ cers bm)l
and let
fay, ..., an BY=g(ay, ..., an, Q'b, Q' Qb, ..., Q'Q"'b),
then f&€ & and
D(al, eees an)EHX(f(al, vess Qny X)—_—O)
The converse follows immediately from Lemma 4.
TuroreM 1. A predicate E is recursively enumerable if and only if there exists an
F -predicate R such that
E(ay, ..., an)=3xR(ay, ..., an, X).
Proof. By Matijasevit’s theorem, every recursively enumerable predicate is diophantine.
COROLLARY. A predicate C is recursive if and only if there exist F-predicates R, and
R, such that
Clay, ..., a)=TxR(ay, ..., an, X)=YxRy(a; ..., an, X).
For each n, let V¥ be an & -predicate such that
TAc, iy ..., an, Y=AXV3E(c, ay, ..., an b, x)
and let V, be the F-predicate 2zx;...xipV¥(z, X1, ... Xa, Q'Y 0y).
LeMMA 7. AyTu(c, aqs .ovr @ny Y)=AYValC, ay, ..os an, ¥)-
Proof. AyTu(c, ay, ..., Gn, Y)=TyI2V(C, @15 ..0s Any 2, ¥)
=3yV¥c, ag, ..o @n O'y, Q)
EE]yV,,(c, a19 vees Qny y)'
THEOREM 2. A predicate E is recursively enumerable if and only if there exists a number
e such that
E(al, vess an)EHyVn(e, Ay, oous ny y)
Proof. By Lemma 7, this follows immediately from Kleene’s enumeration theorem.
THEOREM 3. A nonempty set is recursively enumerable if and only if it can be enumerated
by a funcation in .
Proof. Let A be a nonempty recursively enumerable set and let k be an element of
A. By Theorem 1, there is an & -predicate R such that A={x|3yR(x, »)}. Let
_[Qa if R(Q'a, Qa),
J (a)_{k otherwise,
then f€.% and f enumerates 4. The converse is evident.
For each n, the F-predicate F, is defined as 2zxy . Xy Vasr(Z, X1 oovs Xy 0y, Oy).
LeMMA 8. JyFuc, ayy ..., dn, Y)=AXAYVari(c, ays ..oy On, X, »).
THEOREM 4. For any recursive function f, there exists a number e such that
Vxl...VanlyFn(e, X1y eees Xns J’),
f(al, vees an)=Q/(,uyFn(€, Ay vees Qn, y))
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and
Fde, ay, ..., an, b) > Q'b=flay, ..., a).
Proof. This is a special case of the next Theorem.
THEOREM 5. For any partial recursive function f, there exists a number e such that
(@i, ..., apedomf=TyFue, ay, ..., an y),

f(al’ aeey a"):Q/(ﬂyFﬂ(e3 ala vees Qny ,V))
and

Fn(e’ ay, ..., An b)'—’ Q/b:f(ab vens an)-

Proof. Let f be a partial recursive function and e, be the Godel number of /. The

predicate Ax;...x.y(f(x, ..., x»)=¥) is recursively enumerable since

f(als ey a,,):bEE]y(Tn(eO, al, LEXS ) aﬂ: y)/\U(y):b)'
By Theorem 2, there is a number e such that

f(al’ cess aﬂ):bEHyV"+l(e: ays eeey Any ba y)

Hence
(@, ..., a€domf=3x(fla,, ..., a)=x)
EHxHyVn+1(e, al’ wess dny X, y)
=3yF.e, aj, ..., an, Y).
Now we assume Fu(e, ay, ..., @, b). Then Vuii(e, ay, ..., an, Q’b, Qb), hence
3yV,,+1(e, al’ wees ny Q/b’ y)‘
The last formula is equivalent to f{ay, ..., a,)=~Q’b, therefore

Fie, ay, ..., an, b) > Q'b=f(a,, ..., an).
Thence it follows that
flass ..., a)=Q(uyFue, ay, ..., an, y)).

THEOREM 6. A predicate E is recursively enumerable if and only if there exists a number

e such that
Ea,, ..., ap=3yFe, a, ..., an, »).

Proof. If E is recursively enumerable then there exists a partial recursive function
S whose domain is the set {(x,, ..., X)|E(x;, ..., X»)}. By Theorem 5, there is a number
e such that

(@, ..., anedomf=3yF.e, a,, ..., an, ¥).
THEOREM 7. For any recursive function f, there exists an F-predicate R such that
VX1 VX dYR(Xy, ooy Xn ¥)
and
R(a,y, ..., an, b) > f(a,, ..., a)=<<b.

Proof. Let f be a recursive function. By Theorem 4, there is a number e such that
Sy ..., a)=Q/(uyFue, ay, ..., an, )) and Yx,...¥x,JyFule, x;, ..., Xn, ¥). We define
R as ixy...xnpFi(e, Xy, ..., X, ¥). Since Yx(Q'x<x), R(ay, ..., as, b) implies fla,, ..., a)<b.

A set A of natural numbers is an . -set if and only if the predicate Ax(xE4) is
an & -predicate. If 4 and B are # -sets then ANB, AUB and N—A are F<sets. Every
finite set is an _# -set.

THEOREM 8. There is a strictly monotone function f& .F whose range is an F -set.

Proof. Let fib be the Fibonacci sequence: fib(0)=0, fib(1)=1, fib(a4-2)=fib(a)+fib(a+
1). Then

a?=ab+b*+ 1 =gx(a=1ib(2x-- 1) A b=£ib(2x)).
Let f=axP(fib(2x+1), fib(2x)). Then f is strictly monotone and f{a)>49, hence f& &,
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The range of f is an 7 -set since
Jx(a=f(x))=TFx(a=P(fib(2x-1), fib(2x)))
=3x(Q’a=1ib2x+ 1) A Qa=1ib(2x))
=(Q'a)=(Q'a)(Qa)+(Qa)*+1.

Now we will prove that there is an & -predicate which is not a polynomial predicate.

LeMMA 9. Let o(x) be a polynomial with integer coefficients. Then either a<o*(1)+
o~(1) for any natural number a such that p(a)=0 or else o(a)=0 for all a.

Proof. Let ¢ be AxYicnaix’ (@y, ..., an€Z). If ¢ is not the constant zero, we can
assume @,#0. Case n=0: @(a)=0— a<et(l)+¢~(1) is vacuously true. Case n>0:
Let a=¢+(1)+¢—(1). Then

a=>>ien|ai] > Dicn| il =0,
hence

|@na"|=|anl@"=a">a"""Y icn| i| = Dicn| | @ = | Dicnaidl],
hence

lp@)| =|ana"| —| Licnaia'| >0

LemMma 10. For any “P-predicate R(ay, ..., an, b), there exists a g€ F” such that for

any ay, ..., ax either

R(ay, ..., an, b) > b<g(ay, ..., an)
or

VyR(al’ «evs Ony y)

Proof. By the assumption, a given predicate R can be expressed as f(ay, ..., an, b)

=fsay, ..., an, b) where f, f,€F”. Let

oy vy @ny DY=f1(ay, ..., an, b)—foay, ..., an, b).
Then ¢ can be expressed as > iemci(@y, ..., an)b’ where ¢y, ..., ¢m are polynomials with
integer coefficients. We define g as

glay, ..., a)=2li=mlpit(ay, ..., a)+¢i(ay, ..., an))-

Then for any fixed a,, ..., a,, either
v¥(e(@y, ..., an, )=0)

or else o(ay, ..., an, b)=0 implies
b<2i5ml¢i(a1, vees an)ISg(al, vens an)

The above proof is due to Goodstein [3]. He pointed out and corrected an error in
the author’s proof of a theorem (cf. [9], Theorem 16) stating that a predicate expressible
in a form of a single existential quantifier prefixed to a polynomial predicate is an
elementary predicate.

LemMa 11. For any SP-predicate R(a,, ..., an, b), there exists a g€ such that

HyR(al’ cees Gny y)E(3y<g(a1’ eees an))R(ala wees Qns y)

Proof. Immediate consequence of Lemma 10.

COROLLARY. For any SP-predicate R, the predicate AXy...xn3YR(x{, ..., Xn, y) is an
& 2-predicate.

Proof. By Theorem 4.6 of [4].

THEOREM 9. The set of SP-predicates is a proper subset of the set of . -predicates.

Proof. Since FPC &, the set of FP-predicates is a subset of the set of & -predicates.
By Theorem 7, there is an .#-predicate R such that

Yx3YR(x, AVXYY(R(x, y) > 2*=< ).
By Lemma 11, R is not a SP-predicate.
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Now we will prove that the functions in <& are insufficient to obtain a proposition
corresponding to Theorem 4. Let Z; be the set {p|p(x)EZ[x]}, ie. the set of polyno-
mials of one variable with integer coefficients. Let Q, be the set {p|p(x)EQ[x]}. Let
& be the set of functions ¢: N — Q such that for some functions ¢, ..., @p-1€Q,
(r>0),

Ju(Yx=u)(¥i< p)(x=i(mod p) - o(x)=gi(x)).
It will be shown that &#,C«?. From this fact it follows that no function corresponding
to Kleene’s U belongs to 7.

Lemma 12. If o€Q,; then x[p(x)|E &2.

Proof. Let 0€Q;. Then Ix(pe(x))EZ, for some p€N’. For each i (0<i<p), let
of)=p(x)—rm(pe(), p)/p. If 0<i<p and x=i (modp) then

Po(x)— ple()]=rm(pe(x), p)=rm(pe(i), p)
since po(x)=pe(i) (modp), hence o(x)=pi(x).

LemMa 13. If ¢, ¢€Q, then Ixo(x)/p(x)]E &Z.

Proof. Let § be Ax{p(x)/¢(x)]. If ¢ is constant then §EQ;C &7 is evident. Now
suppose ¢y is not constant. Let & and p be respectively the quotient and the remainder
of the division of ¢ by ¢. Then

o) =g(DE@)+ p(x).
Let p be a positive integer such that ix(p&(x))€Z,. Let u be a natural number such
that Axsgg(x) and Axsgp(x) are constant on the set {x|x>u} and that |¢(x)|>|po(x)|
for any x>u. For any x>u, since ¢(x)+0,

—Po®)[PX)< pé(x)—pO(x)< p—pp(x)/¢(x).
Case 1. 0<pp(u)/p(m)<1. For each i<p, let i(x)=&(x)—rm(p&(i), p)/p. Ifi<p and
x=>u and x=i (modp) then

PE(x)—pO(x)=rm(p&(x), p)=rm(p£&(i), p),
hence @(x)=06x).
Case 2. —1<ppW)/¢p)<0. For each i<p, let fi(x)=&X)+rm(—p&(), p)/p—1. If
i<p and x>u and x=i (mod p) then

pIx)—pE(X)=rm(—p&(x), p)—p=rm(—p&(@), p)—p,
hence #(x)=8i(x).

Lemma 14, If ¢, g€ &, then ix(p(x)+¢(x)), 1x(p(x)p(x)), Ax(()= (%)), Ax[e(x)]
e
Proof. By the assumption, there exist ¢y, ..., ©p—1, Jgs +.vr Pg—1EQ; and u, vEN such that

. (Yx=u)(Vi< p)x=i (mod p) — o(x)=¢i(x))
an
(Yx=v)(Vi <g)(x=i (mod ) — ¢(x)=¢i(x)).
Let 7 be the least common multiple of p and g. Let y be one of the functions mentioned
in the conclusion.
Case 1. y=ax(p(x)+¢(x)). Let w=max(u, v). For any k (k<r), define as
1 &= Ax(@rmk, py(X)+ Prmek, g(X)).
Then ¥(X)=%emx, n(x) for any x>w.
Case 2. y=2x(p(x)¢(x)). Similar as Case 1.
Case 3. y=2x(p(x)~¢(x)). For a sufficiently large w, the function Axsg(rm, n(x)—
¢rm(k, g(X)) is constant on the set {x|x>w} for every k (k<r). We may suppose that
w=max(u, v). For each k (k<r), if gm, n(W)=dm, o(w) then define as
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XK= AX@rmik, p)(X)
and otherwise define as
1= 2x(0).
Then y(x)=%rm(, r(x) for any x=>w.
Case 4. y=2x[¢(x)/¢(x)]. Suppose that a number k (k<r) is fixed. Consider the
functions AX@mk, p(rx+k) and 2xXfmi, o(rx+k). By Lemma 13, there exist Hum<EQ,
(O<h<1ty) and zxEN such that
(Yx=zWh(m(x, 1)=h —> [t n(rx~+k)]Gemu, o(rx+K)]=0x1(x)).
Let z=max(zy, ..., zr—1). Let ¢ be the least common multiple of ¢, ..., &—1. For each
h such that #<h<t (if any), define @x» as @u where /=rm(h, tr). Then
(Yx=2)(Yk<r)Vh(m(x, H)=h— [@m, p(rX+k)| @, a(rx+k)]=0ka(x))-
Let s=rt. For each i (i<s), define as
2i=2Axin((x—k)|r)
where i=k-+rh, k<rand h<t. Let w=max(u, v, rz+r). Then 3(x)=ym, s(x) for any
X=>w.

LemMa 15. Z,C&.

Proof. Since CLE& for every k and UiE&?, this follows immediately from
Lemma 14.

A function f: N — N is called extensive (umfangreich) or a function of large oscillation
(bol’Sogo razmaha) if for every y there exist infinitely many x such that fix)=y. If g,
and g, satisfy

g1(fla, b))=aAg,(fla, b))=b
for an injection f: N2 — N then g, and g, are extensive. Conversely, if g is an extensive
function then g’ is also extensive and the function

2xypz(g’(2)=xA\g@2)=1y)
is an injection from N2 to N. Under the supposition that g is primitive recursive, for
every recursive function f there exists a primitive recursive predicate R such that

flay, ... an):g(#yR(ala ves ns YD)
if and only if g is extensive (Markov’s theorem, cf. [8], pp. 136-137).

LeMMA 16. No function in <& is extensive.

Proof. Let fE<#. By Lemma 15, there exist gy, ..., pp,-1€Q; and #EN such that
(Yx=w)f(X)=prmex, p(x)). For a sufficiently large v, each ¢; is either strictly increasing
or else constant on the set {x|x>v}. We may suppose v>u. Let C be the set of i (i <p)
such that ¢;is constant. Let m be the maximal element of the union of the sets {f(x)|x<v}
and {p(0)[i€C}. Then flx)=m+1 for at most p values of x.

TueoreM 10. ix[+/x]& 7.

Proof. Suppose Ax{4/x]JEZ. It follows that 2x(x=[+/xF)E£Z, which contradicts
Lemma 16.

COROLLARY. FZB+F, FB+Y.

THEOREM 11. <& is closed under none of the following operations: the bounded p-
operator, the operation Y, and Grzegorczyk’s limited recursion.

Proof. <7 is not closed under bounded p-operator since

[Val=(ux<a)(a-(x2+2x)=0).
The bounded p-operator is expressible in terms of 3} and 5g as

(ux<a)(f(x)=0)= Y x<aSB(y=SEF M)
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hence &7 is not closed under 3. <Z is not closed under the limited recursion because
S=2x{~+/x] can be defined thus:

J0)=0,

S@)= fla)+5g((fla)*+2f(a))~a),

fl@)=<a.

THEOREM 12. Given any fixed g€ &, not every recursive function is expressible in
the form of Ax...xng(pyR(X(, ..., Xu, ¥)) With a <& -predicate R.

Proof. By Markov’s theorem, if every recursive function is expressible in the above-
mentioned form then g would be extensive.

THEOREM 13. There exists a recursively enumerable set which can not be enumerated by
any function in <#.

Proof. Let f€.<Z. By Lemma 15, there exist ¢, ..., ¢p—1€Q; and uEN such that
(Vx=u)(f(x)=rm(x, p(x)). Hence the range of the values of f can not be the recursively
enumerable (indeed elementary) set {2*|x&N}.

We conclude with a remark on Grzegorczyk’s &79. The functions sgmax=
Axysg(max(x, )), @ and Q/ belong to 0. Suppose that R is a recursive predicate. Let
f be the representing function of R. By theorem 5.1 of [4], there exist functions g, h& &0
such that

VXx1...¥xn3 !y(g(xl, vees Xn, Y)=0)

f(al’ saes an):h(ly(g(alﬂ cess Qn, y)=0)),

and

hence
R(@y ..., a))=3y(sgmax(g(a;; ..., as, ), h(»))=0).
Thus it is proved that for any recursive predicate R there is a function r& €0 such that
R(al’ sees an)EHy(r(ap ooy n, y):O)
For each n, let 7, be a function in &9 such that
Tic, ay, ..., an, D)=AY(talc, ay, ..., an, b, y)=0)
and let E, be 2zx;...xy(ta(z, Xy, ..., xn, Q'y, Q/Qyp, Q?y)=0). By arguments similar to
proofs of Theorems 5 and 6, the following propositions can be shown.
(1) For every partial recursive function f there exists a number e such that
@y ..., a€domf=TJyEe, ay, ..., an, ¥),
fay, ..., a)=Q/(uyEde, ay, ..., an, »)),
Eﬂ(e5 Ayy ouus An, b) _*f(al, vees an)’:Q/b.
(2) A predicate R is recursively enumerable if and only if there is a number e such that
R(ay, ..., ay=3yE.e, a,, ..., an, ¥).
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