
A NOTE ON STATISTICAL SYSTEM DYNAMICS 

By SHlNJI KATAOKA* 

In the previous paper[1], we pointed out that there are two aspects of an optimization 

principle in its application to the economic phenomena: one for a leading principle of a 

behavioral subject, and another for that of a system including a number of behavioral 

subjects which interact to each other. 

It is well known that the former provides us a fundamental method for the theory of 

consumers behavior (utility maximization) and production planning (sales maximization). 

However the latter would not be so familiar to the readers as the former. In this paper we 

shall discuss a method of finding macroscopic properties of a system consisted of many 

behavioral subjects which possess and exchange resources, goods and money to each other 

under a rule of transaction. Here it is assumed that when a system has several attainable 

states, the most probable one is realized. As well known in physics, the above-mentioned 

assumption is a basic hypothesis for constructing statistical mechanics, which is proved true 

in the natural phenomena. Although we are not convinced that it holds in the real economic 

system, it would be worthwhile for us to study what the nature of an abstractive system is 

and how parallel discussions both on the natural and the economic systems might be possible 

through a way similar to statistical mechanics.t21,[31 

I. Definitions and Assumptions 

Let us begin with defining an abstractive system in the following way. 

D11 : A subject which behaves under a rule of behavior is called a " unit ". 

D2: A set of units is called a " system ". 

D3: Each unit possesses " assets " measured by a common scale (here we use the term 

" ssets " in an abstractive sense: for example, they mean energy of a moving particle in a 

material system, and goods and money of a person in an economic system). 
D4 : Units in a system exchange their assets to each other under some rules of payoff 

structure of the system. We call the above-mentioned behavior of the units " interaction " 

(in this paper, the rules of the payoff are not necessary expressed by an explicit formula). 

D5: Suppose there exist two systems A and A! and units of both systems interact to each 

other. Then A and A/ are said " open "; especially, if A/ is comparatively greater than A, Al 

is called an " envrronmental system " of A 

* Professor (Kyo~'ju) of Mathematics. 
* The notation D stands for Definition, and A for Assumption. 
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D6: If a system is not open, it is called " closed " or " isolated ". 

For an isolated system two fundamental assumptions are needed for extending our 
statistical system dynamics as the following A] and A2. 

Al : If a system is isolated, total amount of assets of the system is always kept constant. 

This assumption Al means that when two or more units exchange their assets under a 

rule of their behavior, even though shares of their assets may change after the interaction. 

the total amount is kept invariant if the system is isolated. 

In order to describe the properties of a system, we introduce a concept of a " microscopic 

state " of the system which rs represented by a set of f rmcroscoprc vanables ql' q2, ･ ' ' 

qf･ For instance, if the system is consisted of n persons, we consider one system variable 
is assigned to every economic status of each person (amount of assets, annual income, number 

of members of his family, Ievel of education, etc.). Thus one can represent one microscopic 

state by a point P(ql' q2, ' ' ' , qf) in an f dimentional space Rf. 

Suppose the total amount of assets E of an isolated system A, described variables ql' q2-

, q/, is given by 

qf )-

E=E(ql' q2･ ･ ･ ･ , (1) 
From the assumption Al, we see that all microscopic states of the isolated system A 

have equal values of E, and their corresponding points are placed on an f-1 dimensional 

surface E=const. in Rf. Hereafter we call the total amount of assets of a microscopic 

state a " Ievel ". 

II. Statistical Description of System 

As mentioned above, since the system which we are concerned with is composed of 
many units, it would be impossible to describe the behavior of the system completely by any 

sophisticated mathematics. However it seems that the complexity of the system or the 

greatness of the number of the units may afford us a way to solve this problem conversely, 

just as physics has done it in the analysis of material. 

Let us consider an isloated system A composed of n units, of which total amount of 
assets is denoted by E. Then we see that, in the lapse oftime, the units in the system exchanges 

their assets to each other many times, and the system passes microscopic states from one to 

another successively. 

For the sake of computational conveniency, we consider an interval [E, E+~E], 
instead of the single value of E, where ~E, is a sufficiently small value comparing with E. 

but stillcontains many levels of microscopic states. Now denote a set of microscopic states 

of which levels lie in [E, E+ ~E] with R(E), and their number with J2(E). 

In order to proceed to the statistical description of the system, we have to define a pro-

bability concept for the system. Let us introduce a probability Pj of finding the system in a 

microscopic state jER(E). In general the probability Pj may differ from Pk for k~j. How-

ever we could assume the system would pass these microscopic states with an equal proba-
bility, if we observe the system in a sufficiently long time. 

A2: An isolated system is found in every microscopic state with an equal probability in the 

long run. 
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D7 : If a system satisfies the assumption A2, it is said that it attained to an " equilibrium 

state ". 

Of course an inequilibrium state is much more interesting to us than the equilibrium, 

since it does represent the real system in our world, and our final goal of this statistical system 

dynamics should be the study of the inequilibrium one. In this paper, accordingly, we study 

and discuss the properties of the equilibrium state as a preliminary step to the goal. 

In equilibrium it is seen that the system is characterized by the function ~(E), which is 

calculated by a rule of interaction between units. Since, however, it is quite difficult to get 

the function P(E), in an explicit form, Iet us assume the following qualitative property for 

the function !_)(E). 

A3 : p(E) is a monotone increasing and differentiable function of E. 

Let us now proceed to explore the interaction between systems. Suppose there are 
two isolated systems A and A!, which are separated initially with total assets Eo and Eo/, and 

the number of microscopic states P(Eo), and P/(E/o) respectively. Contacting these two 

systems, we allow them to interact and compose a new isolated system A* with total assets 

E*=E0+Eo/. Let us compute the number of microscopic states 12*(E) of the compound 

system A* in [E*, E*+~E], giving E to the partial system A. Then we have 

P*(E)= p(E)_Q/(E/)= P(E) P/(E* -E). (2) 

As was already discussed at the beginning of this paper, assuming the maximum principle 

to this system, Iet us express it in the following way. 

A4: If two systems are allowed to contact and interact to each other, the most probable 

state of the compound system is realized in a sufficiently long time. 

Using the above assumption A4 and-(2), we can obtain the most probable state at the 

maximum point of P*(E). Differentiating log 9*(E) with respect to E, we have 

a log Q(E) a log~2/(E/) (_1) O ~3] aE + aE/ 
Defining P(E) and p!(E/) in the following, 

p(E/)= a log 12(E) , p/(E/)- a log 9!(El) 

aE ~ aE/ ' 
(4) 

we have 

p(E)=P/(E/) or P(E)=P/(E*-E) (5) 
for solving an optimal value of E in the equilibrium state. Thus we have the following 

property. 
P21 : If one system is in contact with another and attains an equilibrium state, the functions 

p's of the both systems are equal to each other. ' 
Later we call p(E) " system temperature ", which is analogous to the thermal tempera-

ture in physics. 

s p stands for Property. 



l 972] A NOTE ON STATISTICAL SYSTEM DYNAMICS 33 

III. Distribution Function and Entropy 

The next step we are going to proceed to is to obtain a distribution function of the total 

amount of assets E for the partial system A defined in the preceding section. From the 
discussion made above, it is seen that the number of microscopic states of the compound 

system A* is given by 9!(E*-Ei) for fixed va]ues ofE, L~ (i-th level of E). Suppose now El 

is much greater than Ei, i.e., the system A/ is an environmental one to A. Then we have 

a log Q Ei 

_ _ ( l) log Q!(E* E)=10g Q/(E*) ' 
aE! E'=E. 

Subsequently, = Iog Q!(E *) - pEi, (6) 

.Q/(E * -Ei ) = Q!(E *)e~pEi (7) 
where P=fi!(E*)=(a logP/(E/)/aE/)E/=E' and E*>L~ are assumed, where P is a system 

temperature of the environmental system A/. 
Now since the fundamental requirement for our statistical analysis asserts that every 

microscopic state of the isolated system A* is attained with an equal probability in the equi-

librium state, the probability Pi that the partial system A in A* has a fixed amount of L) 

is expressed by 

PiocP/(E*-Ei) or P ce pE (8) 
where c is a constant independent of Ei and given by 

c= /~i e~pEi . (9) 
Then we have 

e~ PE* 
Pi - ~e~pEi ' (lO) 

Defining a function of ~, 

Z =~e~pE (1 l) 
we call it a " state sum function ". Using it, for the average value of Ei, we have 

- 

 

E=~EiPi = - (log Z). (12) , dp Suppose now the state of the partial system A is also described by k macroscopic para-

meters ~1' 12 ' ' ' , 2k besides p. Taking total differentials for logZ and E with respect 

to P and lj (j=1, 2, . . . , k), we have 

a log Z a log Z 

d log Z = d p + ~] j (1 3) dl 
afi j alj 

- E aE dE= d ~ +~~ dlj . (14) a
 
p
 

j alj 
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Using (12), from (13), (14) we have 

p dE~+ ; ~] alogZ dlj =P d~+p~ dAj+dlogZ+Edp )
 

(
 
J
 aAj ap j alj , 
a( pE) ~~I~E) d ~j +d log Z 

= d p +~ a~ j a~j 
= d( pE+ Iog Z). ( 1 5) 

Let us consider the meaning of the second term in the left hand side : 

a logZ I aZ aEi p
 a~j ~ Z alj (~]e~PEi) alj ' (16) 7j 

Since the term aE;lalj means the increment of i-th level of the assets for the unit increment 

of the parameter lj, the term 

aE-1 a logZ (17) dlj =~)~] ' e~pEidljjZ 
- 

 

j i a~j p j alj 
is considered as an average increase in the total amount of assets for the differential incre-

. . . , ;,k. Therefore the left hand side of (15) except p, ment of the parameters ',1' )'2, 

aE-dE~-~~] ' e~fiEilZdlj (18) j i a~j 

means the difference between the total differential increment of the average total assets due 

to the small changes dp, d21' ' ' " dAk and the average increment of total assets due to 

d).1' ' ' " d~k. Let us denote the term (18) dQ and call it " indirect increment of assets ". 

Then from (15), it is seen that ~dQ is a total differential of the function PE+10gZ. We call 

this function " entropy " S of the system A : 

S = PE+10g Z, (1 9) 
and we have 

dS = ~ d Q. (20) 
Suppose the state of a partial system A is changed from M1 (p(1), R1(1), ~2(1) . . . , Ik(1)) 

to M2 (p(2), Rl(2), 12(2) . . . , ;,k(2)) very slowly, integrating (20) from Ml to M2 We have 

M M2 ' = dS=S2-S1 p d Q 

M* * where S1 and S2 are entropies computed at the states M1 and M2 respectively. Let us state 

the above-mentioned results in the following way. 
P2 : If a partial system, surrounded by an environmental system, changes its state from 

M1 to M2, the integrated indirect increment of assets multiplied by the system temperature 

at each differential stage is equal to the difference between the entropies of two states Ml 

and M2, irrespectively of the path from Ml to M2' 
Finally we discuss the relationship between the entropy defined by (19) and the func-

tion P(E). Since the summation in (ll) which defines the state sum function is taken over 
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all possible microscopic states of the partial system A, instead of (11) we use 

J
~
 

Z = rfiEdep(E), (22) 
where the function ep(E) means the number of levels of assets less than E (cumulative dis-

tribution function). Assuming ep(E) is differentiable, dep(E)=G(E)dE, we have 

S
~
 

Z = rPE G(E)dE, (23) 
where the function G(E), the density distribution function, is found to be almost equal to 

'P(E)jaEfrom the definition of 9(E). We have already assumed that P(E) is a monotone 
increasing function of E (A3). Furthermore let us make an additional assumption. 

A5 : P(E) (or G(E)) is such a rapid increasing function that the following relation approxi-

mately holds, 

. P(E)e~pE E ~E ~ E + 6E {
 

P(E)e~pE= O otherwise. (24) 
Then for the intergation in (23) we have 

J
1
 

Z = e~ PE G(E)dE = ~2(E)er pE . (25) 

Substituting (25) into (19), we obtain approximately 

S= ~E +10g S~(E)- pE =10g !2(E). (26) 
Therefore we have the following property of the partial system A. 

P3 : If P(E) of a partial system satisfies the assumption A5, the entropy of the system, derived 

from (19), is equal to natural logarithm of the number of microscopic states in the interval 

[E, E+aE], 9(E). 
Let us show an example of this statistical system dynamics. Suppose a partial system 

A is composed of n units, and surrounded by an environmental system A/ of which system 

temperature is P･ Farther consider that each unit has a same structure of the microscopic 
states ~'(E) (the number of microscopic states less than E) and is independent to the others. 

Then we have, using a technique of convolution, 
J
,
 

Z = e~PEd~)(E)=z", (27) 
where 

S
~
 

= ~PEd~(E), ep(E)={q)(E)}(~). 

Furthermore if we assume 

q)(E)=cE, (29) 
where c is a constant, we obtain from (27) and (28) 

Z-~T' p ' 
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and from (19) 

S n+10g ~" ' (31) 
On the other hand, from (28) and (29) we can get 

c(E)= c" E" (32) n! 

dep c" E"-1 ~ E (33) JQ(E)= dE ~E= (n-1)! 

Subsequently, we have 

log p(E)= Iog n"~1 ~" I +10g ~E 
('~f-1)! ~ -

~: "-1 +(n-1){ Iog n-log (n+ l)+1} +10g ~E, (34) log 

where Stirling's approximation of the first order for (n-1)! is used. Seeing (31) and (34), 

we could find that, for a sufficiently large n, S is equal to log g2(E), excepting a trivial 

constant log ~ E. 

IV. Conclusions 

Introducing an abstractive system which satisfies several assumptions, we have con-

structed a framework for studying fundamental properties of a complex real system. It 
seems that the most essential assumptions are the existence of something, called " assets " 

here, which is invariant for an isolated system, and that of the equilibrium state. Both of 

them are not satisfied by the real economic system which is growing dynamically, producing 

and consuming materials. However after clarifying the properties of the equilibrium states, 

it would be possible to develop a theory of an inequilibrium or dynamic system on the basis 

of the equi]ibrium theory of the system, although, of course, it would not be so easy as that 

done in this paper. 
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