ON ELEMENTARY FUNCTIONS OF NATURAL NUMBERS

By Taxasur NacasHmma*

§ 0. In this paper, we shall deal with Kalmar’s elementary functions. A number-theoretic
function is called elementary, if it is explicitly definable by means of addition, subtraction and
the operations 2, (finite sum) and II (finite product). For the sake of completeness, some
fundamental theorems will be shown in §1. Most of the results in §1, excepting Theorems
5, 6 and 12 which are obtained by the author, are due to Kalmar, Bereczki and Kleene (cf.
Example 1, §57 of [4]). In §2, we shall consider Takahashi’s ‘bounded predicates’ [6] and
apply his result to the theory of elementary functions. In §3, we consider axiomatizability
of formal theories. Following Kalmar’s idea, an arithmetization (cf. Chapter X of [4]) of a
formal theory can be carried through by using elementary functions. Then it will be shown
that a semi-decidable theory is elementarily axiomatizable (this theorem is published also in
[5]). This is an, extension of Craig’s axiomatizability theorem [2]. In §4, we consider
Diophantine predicates (cf. Chapter 7 of [3]). We shall prove that Diophantine predicates of
a certain form (viz. a polynomial predicate with an existential quantifier prefixed to it) are
elementary. Moreover, we shall construct some functions and predicates concerning polynomial
representation of finite sequences. Instead of the well-known prime factor representation, the
polynomial representation may also be used for arithmetizations of formal systems. Finite
sequences can be represented by elementary functions whose representing predicates are
Diophantine.

§1. A function shall mean a number-theoretic function, i.e. a function from NX...XN
into N where N is the set of all non-negative integers. A predicate shall mean a number-
theoretic predicate, i.e. a function from NX...XN into the set {true, false}.

A function is called elementary (in ¢, ..., ¢1) if it can be expressed explicitly by means of
variables, the constant 1, the functions 4+ and = (and ¢, ..., ¢), and the operations Xiz<,
and ;... A predicate or a set is elementary if its representing function is elementary.

THEOREM 1. The constant functions C§ (cf. [4]), the identity functions U?, and the func-
tions a’, ab, sgla), sgla), max{a, b), min(a, &), |a—b|, [a/b], rm{a, b), at b (=a®) and a! are
elementary. The predicates a=b, a+b, a<b and a|b are elementary.

PROOF. The functions prove elementary successively by the following equalities.

n, [ 1-1 if q=0,
(1) Cita, .., a")_q_{l-i— o1 otherwise .
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(2) U:‘(dl, ...,(ln)z(li.
(3) a'=a+1.

(4) ab=%za .

(5) sgla)=1=a.

(6) sgla)=1-(1-+a).
(7) max{a, b)=(a=-b)+b.
(8) min(a, B)=a-(a=-b).
(9) la—bl=(a=b)+(b=a).
(10) [a/b]l= X z<asg(bla’ ~2'D)) .
11) rm(a, b)=a-bla/b] .
12) at b= ..a.

(13) al=1l .2 .

The representing functions of the predicates a=5, a+#b, a<b, a<b and a| b are sgla—b|,
sgla—b|, sgla=b), sg(b+a) and sg(rm(d, a)) respectively, which are elementary.

THEOREM 2. The predicate —Play, ..., an) is elementary in (the representing function
of) the predicate P. The predicates Play, ..., an) & Qlay, ..., ar), Pla, ..., an)VQay, ..., an),
Play, ..., an)—Qlay, ..., an) and Play, ..., an)=Qay, ..., an) are elementary in P and Q.

PROOF. Let the representing functions of Pay, ..., ax) and Qa,, ..., as) be ¢(ay, ..., an)
and ¢(ay, ..., an) respectively. Then the representing function of —P is 1-¢(ay, ..., ad),
which is elementary in ¢. The representing functions of P&Q, PVQ, P—Q and P=Q are
max(e(@s, ..., @n)y a1y ey an)), Wl ..., Ay, ..., @), oy, ooy an)=¢lay, ..., an) and |@lay, ...,
an)—(ay, ..., an)| respectively, which are elementary in ¢ and ¢.

THEOREM 3. The predicates (Nx)z<aPlay, ..., @n, ) and (Ax)z<aPlay, ..., an, x) and the
Sunction pxp< Play, ..., an, x) are elementary in the predicate P.

PROOF. Let ¢{ay, ..., as, b) be the representing function of P(ay, ..., as, #). Then the
representing functions of (Vx)y<.Pla,, ..., an, z) and (3x)z<.P(a;, .., @z, x) are sg(Xz<e@(ay, ...,
an, x)) and Il c.0(ay, ..., an, x) respectively, which are elementary in ¢. Now we have

12z<oPlay, ..., an, )= Tacdlycoclay, ..., an, ),

and this is elementary in ¢ since My<x is Tycqy;.

THEOREM 4. The function ¢ defined by
ola, ..., an) if Poay, ..., ax),

olay, ..., an)= .
v " (ﬁm(au “ees an) Zf Pm(“h eees an) s
Omi1(@y, ..., an) otherwise,
where Py, ..., Pn are mutually exclusive predicates is elementary in ¢y, ..., Omy ¢mr1, Piy «oes P
PROOF. Let ¢, ..., ¢n be the representing functions of Py, ..., Pn. Then ¢ is expressed
eXPhCItly in +) — * (,’:'1 seees ¢m, P1y eues Pmii-

THEOREM 5. If a set A is enumerated by a strictly increasing function ¢, then A is
elementary in o.
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PrROOF. (Vx)(x<Le(x)) by hypothesis, hence
YEA=(Ax)sy(y=0(2)) .

THEOREM 6. If a strictly increasing function ¢ enumerates a set A and if (Vx)(p(x) <n(x)),
then ¢ is elementary in A and 7).

PROOF. Let ¢ be the representing function of A. Then the set {y|y<z&yeA} has

Dy<x(1=d(y)) elements, therefore we have
o(@)= pxr <y (Dy<x(1=¢()) 2 a & ¢(x)=0),
hence ¢ is elementary in ¢, 7.

Now we introduce some predicates and functions concerning prime factor representation

of finite sequences.
Pria)=a>1 & (Vz)scolx|a—x=1),
pi=the i-+1-st prime number,
(a)1=/,z:1:,<a( " a),
Ih(@)=Zi<asg((@)) ,
m(a)=px:<a(Vi)ica((@)i>0—-i< ),
axb=a sg(b);co(Pm @+ T (0)3),
Sqn(a)=(Vi)ic i@ {((a)i>0) .

Pr(a), and hence the set of all prime numbers, are elementary. By Theorem 6, p: is an
elementary function of 7, since (Vx)(p,<21(271x)). Then (a); is an elementary function of
a and 7, thence follows that lh(a), m(a), a*b and Sgn(a) are elementary.

The course-of-values function for a function ¢ is the function ¢*(a; a,, ..., as) defined by

o¥a; as, ..., any=Iico(Pi 1 00, as, ..., an)) .

THEOREM 7. ¢* is elementary in o, and conversely, ¢ is elementary in ¢*.
A function defined by a primitive recursion ([4], Schema V) is not always elementary in
the given functions. However, we have the following

THEOREM 8. If a function ola, a., ..., an) is defined from y (from ¢, v) by Schema Va
(Schema Vb) of primitive recursion, and if
Vo)V z)...(Vxa ), Zoy ..., Za) <Y, Lo, ..., Za))
then ¢ is elementary in y, 7 (in ¢, 7, 7).

PrROOF, for the case n=1. ¢(a)=> if and only if there exists a finite sequence u,, ..., #q

such that
uy=q, Uy =2, 1) (0<ika), ue="0.
So we consider the prime factor representation of such a sequence. Let Fla, u, &) be
(w)o=q & (Vi)i<a((@)is1=x(2,(w)1)) & ()a=0 .
Then Fa, u, b) is elementary in 7. If p(a)=5, then Fla, u, b) is satisfied by u=¢*(a+1). Con-
versely, Fla, u, b) implies ¢{a)=b. Since
(Vx)(e*(x)<n*(x))
follows from the hypothesis, we have
¢(a)=bz(3u)u5>y* (a+1)F(as iU, b) .
Therefore
Eﬁ(a)zﬂ.}’ysmw (au)uS’r)* wn Fla,u, ),
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hence ¢ is elementary in y, 7. Proof for the case n>1 is similar.

THEOREM 9. If a function ¢(a, a,, ..., as) is defined from y by a course-of-values recursion
ola, a,, ..., an)=yla, o*a; as, ..., as), as, ..., as) ,
and if
(Vo) (Vzs)...(Vaa)olz, 22 5.0, Zn) S92, Zay ooey Zn)),
then ¢ is elementary in y, 7.

PrROOF, for the case #=1. The function ¢* satisfies the recursion equation
{@*(0)=1,
Hatl)=¢*a) pa 1 xla, ¢*(a),
and
(VxXo*(x)<n*(x)) ,
therefore ¢* is elementary in ¥, 7, by Theorem 8. Hence ¢ is elementary in y, ». Similarly
for the case n>1.

COROLLARY. If a bounded function is defined by either a primitive or a course-of-values
recursion, then it is elementary in the given functions.

Now we consider the functions and predicates for the arithmetization of the formalism of
recursive functions in Kleene [4], §56. The predicates N, V, FL, Tm, Eq, SE, Sb, Ct and
Cn are elementary. The function Nu™! satisfies the equation

NuHa)= {Nu_l((a)1)+1)58((a)1) if N(a) s
a otherwise ,
and since (V)N Yz)<zx), Nu™! is elementary by Theorems 4 and 9. Since Nu(a,bd) is
equivalent to N(a) & b=Nu"a), Nu is elementary. Hence Ss, T, and U are elementary.

THEOREM 10. If a predicate Play, ..., as) ts expressible in the form
Ax)R(ay, ..., an, x)
with a general recursive R, then P is expressible in the form
Ax)Qay, ..., as, x)

where Q is elementary.

ProoOF. This follows from the elementariness of 7% by Kleene’s Enumeration Theorem.

THEOREM 11. Every general recursive predicate Rlay, ..., as) is expressible in both of
the forms
(Vx)P(ay, ..., Gn, Z)
and
Ax)Qla, ..., an, )

where P and Q are elementary.

ProOOF. This follows immediately from Theorem 10. Another proof, however, will be
given in the next section.

THEOREM 12. A recursively enumerable set can be enumerated (allowing repetitions) by
an elementary function.

PROOF. Let A be a set enumerated by a recursive function ¢. By Theorem 10, there
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is an elementary predicate P such that
a€A=Ex)P(a, x) .
Define a function o by
o) = {K(a) if P(K(a), L{a),
&(0) otherwise ,
where K and L are the inverses of the pairing function

J(a, b)=—((a+b)+3a-+0).

Then ¢ enumerates A and since J, K and L are elementary, ¢ is elementary.

§2. In this section, we shall consider an application of set theory to the theory of ele-
mentary functions by use of Ackermann’s model [1]. Ackermann’s model of the general set
theory is a structure <N, €) where

acb=—2|[5/24].

By use of this model, Takahashi [6] has applied Lévy’s hierarchy theory to the recursive
function theory.

Now let E be a two-place predicate. Generalizing Takahashi’s notion of bounded predicates,
we define as follows. An E-bounded quantifier is a quantifier of the form (Vz)(E(z, a)—...)
or (3x)(Elx,a)&...). A predicate is E-bounded if it can be expressed explicitly by means
of variables, the predicate E, propositional connectives and E-bounded quantifiers. Then
Takahashi’s bounded predicate is an -bounded predicate.

THEOREM 13. If (Vx)(Vy)E(z, y)—x<y), then every E-bounded predicate is elementary
in E.

This follows immediately from Theorems 2 and 3. Since Ackermann’s predicate € is
elementary, we have:

COROLLARY. Every bounded predicate is elementary.
As an immediate consequence of Takahashi’s Main Theorem [6], we have:

THEOREM 14. There is an elementary predicate E such that for any recursive predicate
R there exist E-bounded predicates P and Q satisfying
Rlay, ..., a)=(¥x)Play, ..., an, )
and
Rlay, ..., an)=32)Qay, ..., an, x).
In fact, this Theorem is true for the case that E is Ackermann’s €, and hence this implies
Theorem 11.

§3. In [2], Craig has proved that recursively enumerable formal theories are primitive
recursively axiomatizable within the system. Modifying his method, we shall show the ele-
mentary axiomatizability of such theories.

Let R be a predicate of two variables. A set A is closed with respect to R if

Vo) (VyYxc A & R(z, y)—ysA). '
The R-closure [Alr of a given set A is the smallest set including A and which is closed with
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respect to R.

THEOREM 15. For any predicates P, Q, R and a set B satisfying

oy zEB=(I)P(z, y),
(2) Qlx, y)— R(x, y) & R(y, x)
and
(3) Plz, y)—»32)z2x& 22y & Qx, 2)),

there exists a set A such that [Alr=[Blr and A is elementary in P, Q.

PROOF. Define A by
2€A=(A1)r<.3yhy<:( Pz, ¥) & Az, 2)) ,
then A is elementary in P, Q. Suppose cE A, then there are a and & such that P(a, b) & Q(a, ¢),
therefore a=B & R(a, ¢) and hence c€[Blz. Conversely, suppose a=B. Then there are &
and ¢ such that a<c & 6<c & Q(a, ¢) by (1) and (3), therefore c€ A & R(c, a) and hence as[A]z.
Thus we have AC[Blg and B<[Alr, hence [A]lz=[Blz.

Now consider a formal theory which is semi-decidable, i.e. the set of (the Godel numbers
of) theorems is recursively enumerable. Let R be the number-theoretic predicate correspond-
ing to the deducibility relation and B the set of theorems. Then there is an elementary pre-
dicate satisfying (1). Similarly as in [2], an elementary predicate Q satisfying (2) and (3) can
be found, hence by Theorem 15, there exists an elementary set A which is an axiom system
of the given theory. Thus a semi-decidable theory is elementarily axiomatizable. It should
be remarked that such an axiom system (as given above) is not satisfactorily simple, cf. Foot-
note 6 in [2].

84. A polynomial (with natural number coefficients) is a function which is explicit in
the functions a-+b and ab. A predicate Play, ..., an) is called a polynomial predicate if it ex-
pressible in the form

@y, ..., an)=d(ay, ..., an)
where ¢ and ¢ are polynomials. P(ay, ..., an) is called a Diophantine predicate if it is expres-
sible in the form
Bz)...Qxn)Qay, ..., an, 1, ..., Tm)
where Q is a polynomial predicate. A function will be called a Diophantine function if its
representing predicate is Diophantine.

THEOREM 16. A Diophantine predicate is elemetary if it is expressible in the form
(ix)P(ay, ..., an, x)
with a polynomial predicate P.

PrOOF. It suffices to find an elementary function » such that
1)) (Ax)P(ay, ..., an, )=QxNx<y(a, ..., ar) & Play, ..., an, 1)) .
In fact, (1) will be satisfied by a polynomial 5. Since P is a polynomial predicate, there is a
polynomial ¢ with integral coefficients such that
Play, ..., an, b)=¢(a,, ..., an, b)=0.
Clearly ¢(ay, ..., ar, &) can be expressed in the form
Zogariay, o, an)b?
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where 7, ..., 7q are polynomials with integral coefficients. Let

Way, ..., an)=Dicerilay, ..., an)?,
then #» is a polynomial with natural number coefficients. Thus the proof is reduced to the
following

LEMMA. Let ¢(x)= Ti<mc:x® be a polynomial with integral coefficients c, ..., cm. Then
HO)#E0 and $la)=0 imply a< Y igmci®.
This Lemma is easily proved by induction on 7, because
| Zi<mciﬂi|£am_121<m| Cilgam_Ikaczz .
In the rest of this section, we shall introduce some functions and predicates concerning
the polynomial representation of finite sequences. Such functions and predicates might be
useful for arithmetizing the formal theory of Diophantine predicates. Now the pairing function

ﬂmb%r%«w+®”ﬁa+m

and its inverses K(a), L{a) are Diophantine. J is a 1-1 function from NXN onto N, and it
is strictly increasing with respect to each variable. We have a+b<J(a, b) (= only for
a=0& b<1), K(a)<a (= only for a=0) and L(a)<a (= only for a<1). J, K and L are
elementary because

K(a)= prrcaByy<aJ(x, y)=a)
and

L(a)zﬁlvaa(ax)ISa(J(x: y):a) .

Now we define J,(a)=a and
Jniias, ay; ..., an)=Ha,, Jalay, ..., an))

successively for n=1,2,3,.... Then for each »n, J; is a Diophantine, elementary, and 1-1
function from N™ onto N. L™a) is defined by the primitive recursion

{L"(a):a ,

LY a)=L(L™a)) .

Since L"a)<a, L*a) is elementary (as a function of # and a). For each fixed n, L*a) is a
Diophantine function of a. We define

{ags ..., an—p=Jnulay, ..., an_y, 0)
for n=0,1,2,.... Then for each n, {ay, ..., ar_,)> is elementary and also Diophantine. In fact,
it is a polynomial of ay, ..., an_, with nonnegative rational coefficients. Moreover, {ay, ..., An_1y

is a 1-1 function from N7 into N. We can represent the finite sequences aq, ..., a;_, of posi-
tive integers by the numbers a={a,, ..., as_y. Let [ali=K(L{a)), then [a); is an elementary
function of a and 7, and it is a Diophantine function of @ for each fixed 7. [a}, is the i+1-st
member of a sequence represented by a. We have
a; if 0<i<n,
Kap, .., an-k= 0 otherwise ,
and
[al:i>0-2'<a,
hence
a<i+1-[al;=0.
The function le defined by le(a)= X i<sg(lali) is elementary. If a represents a finite se-
quence of positive numbers, then le(a) is the length of that sequence. We define
Seq(@)=(V1)icte @ ([2di >0) & L'*@ (a)=0
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and
Seq(n, a)=Seq(a) & le(a)<n,
then Seq(a) and Seq(n, a) are elementary predicates. Seq(a) means that a represents a finite
sequence (the empty sequence 0=¢ ) inclusive) of positive integers, or a is a sequence number.
We have
Seq(0, a)=a=0,
Seq(n+1, a)=Seq(n, a)V(K{a)>0 & Seq(n, L(a)),
and since le(a)<a,
Seq(a)=(An)n<.Sealn, a) .
By induction on 7, we can prove that Seq(n, a) is a Diophantine predicate of a for each fixed n.
The functions jx(n, a, b) and a%b are defined as follows:
jx(0, a, b)=b,
{jx(n—i—l, a, by=J(K(a), jx(n, L(a), b)),
and
atb=jx(le(a), a, b) .
For each fixed n, jx(n, a, b) is a Diophantine function of 2 and 4. Now we show that
jx(n, a, b) and a#bd are elementary. We consider a function ¢ defined by
ola b)={b if K(a)=0,
T J(K(L(a)), o(J(K(a)~1, L¥Xa)), b)) otherwise .
Then we have
ola, b)<(max(I{a), b)+4) 1 (3 1 K(a))
because
Jarlz, ...\ .’E)S(.Z‘+4) 131 71) s
hence ¢ is elementary. Therefore jx is elementary since jx(n, @, b)=¢(J(n, a), b), and hence
a®b is elementary. Now we have
jx(n, a, b)=Jn.([ak, .., [ala_1, B),
hence we obtain the following proposition.
Let a={ay, ..., an-y) and b=<b,, ..., b,_,y where ay, ..., @m-1, b, ..., by_y are positive in-
tegers. Then
atb=_ay, ..., Am_y, boy ..., On_y) .
Thus the juztapositions of finite sequences can be represented by the function a$b.
Let le(n, @)=Y i<nsg({a)i), then le(n, a) is elementary. For each fixed #, it is a Diophantine
function of a. We have
a<n—le(n, a)=le(a) .
2(n, a, b) is defined by
£(n, a, bYy=jx(le(n, a), a, jx(n, b, 0)) .
Then %#(n, a, ) is elementary. For each n, it is a Diophantine function of @ and 4. We have
Seq(n, a) & Seq(n, b)—#(n, a, b)=a$b .
According to the above considerations, arithmetizations of formal systems can be carried
through by the polynomial representations of finite sequences. In such arithmetizations, the
number-theoretic predicates which correspond to metamathematical predicates will generally

have the following properties: Let P(a, ..., ax) be such a number-theoretic predicate. Then
P is elementary and there corresponds a predicate P'(n, ay, ..., ar) such that
¢)) P'(n,a, ..., ar) is elementary,

2 P(n, a,, ..., ax) is Diophantine for each fixed #,
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(3) n<m& P'(n,a, ...,ax)—P(m, ai, ..., a) ,
(4) @An)VYmYn<m—(P'(m, ay, ..., ar)=Pla,, ..., ar)))
and hence
(5) Play, ..., an)=@n)P'(n, ay, ..., ax) .
(1968. 1IV. 27.)
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