
ON ELEMENTARY FUNCTIONS OF NATURAL NUMBERS 

By TAKASHI NAGASHIMA* 

S O. In this paper, we shall deal ~vith Kalm~r's elementary functions. A number-theoretic 

function is called elementary, if it is explicitly definable by means of addition, subtraction and 

the operations ~ (finite sum) and n (finite product). For the sake of completeness, some 

fundamental theorems will be shown in S l. Most of the results in S l, excepting Theorems 

5, 6 and 12 which are obtained by the author, are due to Kalm~r, Bereczki and Kleene (cf. 

Example 1, S 57 of [4]). In S 2, we shall consider Takahashi's 'bounded predicates' [6] and 

apply his result to the theory of elementary functions. In S 3, we consider axiomatizability 

of formal theories. Following Kalm~r's idea, an arithmetization (cf. Chapter X of [4]) of a 

formal theory can be carried through by using elementary functions. Then it will be shown 

that a semi-decidable theory is elementarily axiomatizable (this theorem is published also in 

[5]). This is an, extension of Craig's axiomatizability theorem [2]. In S 4, we consider 

Diophantine predicates (cf. Chapter 7 of [3]). We shall prove that Diophantine predicates of 

a certain form (viz. a polynomial predicate with an existential quantifier prefixed to it) are 

elementary. Moreover, we shall construct some functions and predicates concerning polynomial 

representation of finite sequences. Instead of the well-known prime factor representation, the 

polynomial representation may also be used for arithmetizations of formal systems. Finite 

sequences can be represented by elementary functions vvhose representing predicates are 

Diophantine. 

S 1. A function shall mean a number-theoretic function, i.e. a function from I~~X ... Xi¥r 

into N where N is the set of all non-negative integers. A p,-edicate shall mean a number-

theoretic predicate, i. e. a function from NX .,. XN into the set {true, false}. 

A function is called elemental~y (in pl' "" pt) if it can be expressed explicitly by means of 

variables, the constant 1, the functions + and ~ (and ~l' ""~l)' and the operations ~x<a 

and llJ;<a' A predicate or a set is ele7nentary if its representing function is elementary. 

THEOREh4 1. The constant functions Cq" (cf. [4]), the identityfunctions U~, a7id the func-

tions d, ab, ~~;(a), sg(a), max(a, b), min(a, b), I a-bl, [a/b], rm(a, b), a t b (=ab) alld a ! are 

elementary. The predicates a=b, a~b, a~b and a I b are ele'nenta7y. 

PRooF. The functions prove elementary successively by the following equalities. 

(1) Cq"(al' 'a~) q~ 1=1 if q=0, ... = 

 

~ + ... +1 otherwise . 
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representing functions 

sg(a=b), ~(b=a) and 

Ut(al' "" a~)=ai . 

d=a+1 . 
ab= ~x<ba . 

~:~(a)=1 =a . 

sg(a)=1 =(1 ~a) . 

max(a, b) = (a =b)+b . 

min(a, b)=a=(a=b) . 
I a-b I = (a=b)+(b =a) . 

[a/b] = ~*<*sg(b(a' = x!b)) . 

rm(a, b) = a = b[a/b] . 

a t b=llx<~a . 

a ! =ll.<~x' . 

of the predicates a=b, a~b, a~b, a<b and a I b 

sg(rm(b, a)) respectively, which are elementary. 

51 

are sgla-bl, 

THEOREM 2. The p,-edicate IP(al' "" an) is ele'nenta'y In (the rep,-esentrng fitnction 

orf) the predicate P. The predicates P(al' "" an) & Q(al' "" an)' P(al' "" an)VQ~al' -" an)' 

P(al' "" an)~~Q(al' "" an) a'id P(ai, ..., an)EQ(al' "" an) are ele'nentary in P a'id Q. 

PROOF. Let the representing functions of P(al' "" an) and Q(al' "" an) be ~)(al' "" an) 

an) respectively. Then the representing function of ~P is l=p(al' ""als)' and ~b(a 
l, ..., 

which is elementary in ~. The representing functions of P&Q, PVQ, P-~Q and P~~~Q are 
max(p(al' "" a7s)' 9'L(al' "" an))' ~(al' "" a)c(al' "" an)' ~)(al' "" an)=c(al' "" an) and lp(a 

1, ..., 

an)~~(al' "" an) I respectively, which are elementary in ~) and 9'r . 

THEOREM 3. The p,-edicates (Vx)x<aP(a an'x) and (3x)x<aP(a an'x) and the 1, ..., l, ..., 

function ;lx,r<aP(al' "" an' x) a"e ele'nenta'~y in the p,-qdicate P. 

PROOF. Let 9)(a alt' b) be the representing function of P(a an' b). Then the 
l, ..*, 1, ..., 

representing functions of (Vx)x<aP(a ..., an' x) and (~x)x<(}P(al' "" a?s' x) are sg(~x<a~)(al' "" 
l, 

an' x)) and Hx<a~)(a ..., an' x) respectively, which are elementary in p. Now 1;ive have 
1, 

;~xs<aP(al' "" an x)= ~x<aHy~x(;(a ..., a,~, y) , 

, , l, ' lv<x+1 and this is elementary in p since 113!~x rs 

THEOREM 4. The function p defined by 
pl(al' "" an) If Pl(al' "" al;) ' 

p(a , an)~ (om(al' " an) ' l, ... 
. l, ..., 

,* r^ . . . , an) othe'wise, 
ym+1¥"I' 

where Pl ' " " Pm al~e 1'1utually exclusive predicates is ele'nenta'-y in ~l' 

PROOF. Let ~'fl, ..., ~'fm be the representing functions of P1' "" Pln' 

explicitly in +, J-, 9'1 ' ' ~'In" pl' "" pn~+1' 

', ~1lrt' ~m+1' P1' "" P17L 

Then p is expressed 

THEOREM 
elementaly in 

5
.
 

p. 

If a set A is enu,ne,~ated by a strictly inc,-easing function 9), then A is 
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PRooF. (Vx)(x<p(x)) by hypothesrs hence 

y~~ A=(~x)*~er(y= p(x)) . 

THEOREk4 6. Ifa st,~ictly increasingfunction p enw?rerates a set A alid rf (Vx)(~(x)~~(x)). 

then p is ele'nentary in A a'id ~. 

PRooF. Let ~,r be the representing function of A. Then the set {yly<x&y~A} has 

~~!<*(1=~b(y)) elements, therefore we have 

~)(a)=pxx~ (~v<'(1=c(y))>a& 9'(x) O) v fa} 

hence ~) is elementary in ~'!, V' 

Now we introduce some predicates and functions concerning prime factor representation 

of finite sequences. 

Pr(a) ~ a> I & (Vx)x <a(xl a-x= 1) , 

pi=the i+1-st prime number, 
(a)t= ;lx. <a( Iptx+ I I a) , 

lh(a) = ~ i<*sg((a)i) , 

m(a) = px. <a(Vi)i < a((a)i > O-i ~ x) , 

a*b=a sg(b)ni<v(p* (", +i t (b)i) , 

Sqn(a) = (Vi)i< Ih (a] ((a)i > o) . 

Pr(a), and hence the set of all prime numbers, are elementary. By Theorem 6, pi is an 

elementary function of i, since (Vx)(px~2 t (2 t x)). Then (a)i is an elementary function of 

a and i, thence follows that lh(a), m(a), a*b and Sqn(a) are elementary. 

The course-ofvalues function for a function ~) is the function p*(a; a2' "" an) defined by 

p*(a; a2' "" an) ll,<a(pt t p(t, a2' a )) 

THEOREM 7, ~* is ele'nenta'y in lp, and conversely, ~ is elemental~y in ~)*. 

A function defined by a primitive recursion ([4], Schema V) is not always elementary in 

the given functions. However, we have the following 

THEOREhl 8. If a function p(a, a2' "" a*) is defined flloln 7 (f,-ol'l ~'f, y.) by Sche'na Va 

(Sche'na Vb) of primitive recursion , alid if 

(Vx)(Vx ) (Vx )(p(x, x2' x )<~(x, x2' -" x~)) , 

then 9 is ele'nentary in X, V (in ~, /, ~). 

PRooF, for the case n=1. 9(a)=b if and only if there exists a finite sequence uo' "" o u 
such that 

u0=q , u*+1=X(i, ui) (o~i<a) , ua=b . 
So we consider the prime factor representation of such a sequence. Let F(a, u, b) be 

(u)0=q & (Vi)i<a((u)i+1 =x(i,(u)i)) & (u)~=b . 

Then F(a, u, b) is elementary in 7. If p(a)=b, then F(a, u, b) is satisfied by u=~*(a+1). Con-

versely. F(a, u, b) implies p(a)=b. Since 

(Vx)(~'*(x) ~~*(x)) 

follows from the hypothesis, we have 

~(a)=bE(~u)u~~* (a+1]F(a, u, b) . 

Theref ore 
.(a) = !-!y~!~~ {a) (~u)~~~* ((~ ~1) F(a, u, y) , 
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hence p is elementary in X, ~' Proof for the case n>1 is similar. 

THEOREhl 9. If a function p(a, a2' _" an) is definedfrom x by a course-ofvalues recursion 

~p(a, a2' "" a~) X(a ~) (a, a2' a*), a2' ' a~) , 

alid lj 

(Vx)(Vx2)" '(Vxl$)(P(x, x2 "" ' x~)~~(x, x2' x )) 

then ~) is elementary in X, V' 

PROOF, for the case n=1. The function p* satisfies the recursion equation 

{p*(O)= I , 

p*(a+1)=Y'*(a)'p~ t X(a, ,'*(a)) , 

and 
(Vx)(,~~(x) ~ ~*(x)) , 

therefore ~'* is elementary in x, V, by Theorem 8. Hence ~ is elementary in 7, ~. Similarly 

for the case n>1. 

COROLLARY. If a bounded function is defined by either a primitive or a course-ofvalues 

1~ecursion, then it is elementary in the given functions. 

Now we consider the functions and predicates for the arithmetization of the formalism of 

recursive functions in Kleene [4], S 56. The predicates N, V, FL. Tm, ~, SE, Sb, Ct and 

Cn are elementary. The function Nu~1 satisfies the equation 

Nu~1(a)= ~1((a)1)+1)sg((a)1) if N(a) , {
 
Nu 
a otherwise , 

and since (Vx)(Nu~1(x)~x), Nu~1 is elementary by Theorems 4 and 9. Since Nu(a, b) is 

equivalent to N(a) & b=Nu~1(a), i¥ru is elementary. Hence Sn' Tn and U are elementary. 

THEOREM lO. If a predicate P(al' "" a~) is expressible in the form 

(~x)R(al' "" alt' x) 

with a genel~al recursive R, then P is expressible in the form 

(3x)Q(al' "" an, x) 

whe/~e Q is ele'nentary. 

PROOF. This follows from the elementariness of Tn by Kleene's Enumeration Theorem. 

THEOREM 11. Eve'y general recul'sive pl-edicate R(a an) is expressible in both of 
l, ..., 

the fol~'ns 

(Vx)P(al' "' . an' x) 

alid 

(~x)Q(al' "" an' x) 

whel~e P and Q are elementary. 

PRooF. This follows immediately from Theorem 10. Another proof, however, will be 

given in the next section. 

THEOREM 12. A recursively enulnel'able set can be enulnerated (allowing repetitions) by 

an ele'nentary function. 

PRooF. Let A be a set enumerated by a recursive function ip. By Theorem 10, there 
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is an elementary predicate P such that 

a e A E (3x)P(a, x) . 

Define a function (i) by 

K(a) if P(K(a) L(a)) {
 p(a) = ' ' c(O) otherwise , 

where K and L are the inverses of the pairing function 

J(a, b) =~({a+b)2+3a+b) . 

Then 9' enumerates A and since J, K and L are elementary, p is elementary. 

[Se ptember 

S 2. In this section, we shall consider an application of set theory to the theory of ele-

mentary functions by use of Ackermann's model [1]. Ackermann's model of the general set 

theory is a structure <N, e> where 

aeb~~ =9_] [b/2"] . 

By use of this model, Takahashi [6] has applied L6vy's hierarchy theory to the recursive 

function theory. 

Now let E be a two-place predicate. Generalizing Takahashi's notion of bounded predicates, 

we define as follows. An E-bounded quanttfier is a quantifier of the form (Vx)(E(x, a)-...) 

or (3x)(E(x, a) &.,,). A predicate is E-bou'ided if it can be expressed explicitly by means 

of variables, the predicate E, propositional connectives and E-bounded quantifiers. Then 

Takahashi's bounded predicate is an e~-bounded predicate. 

THEOREM 13. If (Vx)(Vy)(E(x, y)-x~y), then every E-bounded p,-edicate is ele'nentary 

in E. 

This follows immediately from Theorems 9- and 3. Since Ackermann's predicate e is 
elementary, we have: 

COROLLARY. Eve7~y bou'ided predicate is elementary. 

As an immediate consequence of Takahashi's Main Theorem [6], we have: 

THEOREM 14. There is an elementa,-y predicate E such that for any recursive p,-edicate 

R there exist E-bounded predicates P and Q satisfying 

R(al' ""a ) (Vx)P(al' ""a~, x) 

and 
R(al' "" a~) (Sx)Q(al' "" a~, x) . 

In fact, this Theorem is true for the case that E rs Ackermann's e , and hence this implies 

Theorem 11. 

S 3. In [2], Craig has proved that recursively enumerable formal theories 

recursively axiomatizable within the system. Modifying his method, we shall 

mentary axiomatizability of such theories. 

Let R be a predicate of two variables. A set A is closed with respect to 

(Vx)(Vy)(xeA & R(x, y)-yeA) . 
The R-closure [A]R of a given set A is the smallest set including A and which 

are primitive 

show the ele-

Rif 

is closed with 
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THEOREM 15. For any predicates P, Q, R and a set B satisfying 

(1) xeBE(~y)P(x, y) , 
(2-) Q(x, y)-R(x, y) & R(y, x) 

and 
(3) P(x, y)-(~z)(z~~x & z~:y & Q(x, z)) , 

there exists a set A such that [A]R=[B]R and A is ele'nentary in P, Q. 

PROOF. Define A by 
Z~ A = (~x).~=(~y)y~.(P(x, y) & Q(x, z)) , 

then A is elementary in P. Q. Suppose ce~A, then there are a and b such that P(a, b) & Q(a, c), 

therefore aeB&R(a, c) and hence ce[B]R. Conversely, suppose aeB. Then there are b 
and c such that a~c & b~c & Q(a, c) by (1) and (3), therefore c~A & R(c, a) and hence a~~[A]!~' 

Thus we have A~~[1~]R and B!~[A]R, hence [A]R=[B]R. 

Now consider a formal theory which is semi-decidable, i. e. the set of (the Godel numbers 

of) theorems is recursively enumerable. Let R be the number-theoretic predicate correspond-

ing to the deducibility relation and B the set of theorems. Then there is an elementary pre-

dicate satisfying (1). Similarly as in [~-], an elementary predicate Q satisfying (2) and (3) can 

be found, hence by Theorem 15, there exists an elementary set A which is an axiom system 

of the given theory. Thus a semi-decidable theory is elementarily axiomatizable. It should 

be remarked that such an axiom system (as given above) is not satisfactorily simple, cf. Foot-

note 6 in [2]. 

S 4. A polynomial 

the functions a+b and 

pressible in the form 

where p 
sible in 

and ~,/ are 

the form 

where Q is 

representing 

(with 

ab. A 
natural number 
predicate P(a 

l, . 

polynomials. 

a polynomial 

predicate is 

p(al ' 

P(al ' 
., 

l, 

coefficients) is a function which is explicit 

., a~) is called a polynomial p,-edicate if it 

an) = ~'1 (a 
l, ..*. 

an) 

an) is called a Diophantine p,-edicate 

(~xl)" '(~xln)Q(al' " 

predicate. A function 

Diophantine. 

. ,x,n) .,an'xl' " 
will be called a Diophantine 

if it is 

fll ,1 cti0,l 

m 
ex-

expres-

if its 

THEOREM 16. A Diophantine predicate is elelneta'y if it is exp,-essible in the fo'~'n 

(~x)P(al' " " an' x) 

with a polynomial predicate P. 

PROOF. It sufEces to find an elementary function v such that 

(1) (3x)P(al' "" an' x)~s(3x)(x<~(al' "" a~) & P(al' "" an' x)) . 

In fact, (1) will be satisfied by a polynomial ~' Since P is a polynomial predicate, there is a 

polynomial p with integral coefficients such that 

P(al' "" a~, b)~p(al' "" an' b)=0 . 

Clearly ~)(a ... als b) can be expressed m the form 
l, , 

~ " 'r_ , a^)bi '~71 t~-1' "' 
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where j'o' "" rq are polynomials with integral coefficients. Let 

~(al' - " a~) ~*~qrt(al' ' a~) 

then ~ is a polynomial with natural nulnber coefficients. Thus the proof is reduced to the 

f ollowing 

LEMMA. Let ~(x)=~i~~c*x be a polsnonaal wrth mtegral coeffictents co' ' Then ..., c~ 

c(O)~0 and c(a)=0 imply a< ~i~~ci2. 

Th s Lemma is easily proved by induction on m, because 
l ~ i<mcid I ~a~~1 ~ t<'nl ci I ~ a~~1 ~ i<~c$2 . 

In the rest of this section, we shall introduce some functions and predicates concerning 

the polynomial representation of finite sequences. Such functions and predicates might be 

useful for arithmetizing the formal theory of Diophantine predicates, Now the pairing function 

J(a, b) =~((a+b)2+3a+ b) 

and its inverses K(a), L(a) are Diophantine. J is a 1-1 function from NXN onto N, and it 

is strictly increasing with respect to each variable. We have a+b~J(a, b) (= only for 

a=0&b~1). K(a)~a (= only for a=0) and L(a)~a (= only for a~1). J, K and L are 
elernentary because 

K(a) = pxx~(h(~D")~!~ *( J(x, y) = a) 

and 
L(a) = pyy~~(~x)*~.( J(x, y) = a) . 

Now we define Jl(a)=a and 
n+1(ao' al' "" an)=J(a J (a , an)) J

 o' n i"" 
successively for n=1,2, 3, .... Then for each n, Jn is a Diophantine, elementary, and 1-1 

function from Nn onto N. Ln(a) is defined by the primitive recursion 

Lo(a) = a 

{
 
,
 

Ln+1(a) =L(L~(a)) . 

Since L"(a)~a, L"(a) is elementary (as a function of n and a). For each fixed n, Ln(a) is a 

Diophantine function of a. We define 

<ao' "' ' , a~_1' O) , an l>= T r^ 
_ n+1~"o' " 

for n=0,1, _2, .... Then for each n, <ao' "" a~_1> is elementary and also Diophantine. In fact, 

it is a polynomial of ao' "" an-1 with nonnegative rational coefficients. Moreover, <ao' "" an-1> 

is a 1-1 function from N" into N. We can represent the finite sequences ao' "" an-1 of posi-

tive integers by the numbers a=<ao' "" a~_1>. Let [a]i=K(Li(a)), then [a]i is an elementary 

function of a and i, and it is a Diophantine function of a for each fixed i. [a]t is the i+1-st 

"lelnbel' of a sequence represented by a. We have 

ai if O~i<n, 
... - 

 

[<ao' ' an 1>]*- O otherwise , 

and 
[a]i > o-2i < a , 

hence 

a < t+ l-[a]i=0 . 

The function le defined by le(a)=~i<aSg([a]i) is elementary. If a represents a finite se-

quence of positive numbers, then le(a) is the length of that sequence. We define 
Seq(a) = (Vi)*<1* (a] ([a]i > o) & Lle (~) (a) = O 
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and 

Seq(n, a) =Seq(a) & Ie(a) ~n , 

then Seq(a) and Seq(n, a) are elementary predicates. Seq(a) means that a represents a finite 

sequence (the empty sequence 0=< > inclusive) of positive integers, or a is a sequence number. 

¥~re have 

Seq(O, a)Ea=0 , 

Seq(n+ 1, a) ~ Seq(n, a) V (A-(a) > o & Seq(n, L(a)) , 

and since le(a)~a, 

Seq(a) ~(~n)~~~Seq(n, a) . 

By induction on n, we can prove that Seq(n, a) is a Diophantine predicate of a for each fixed n. 

The functions jx(n, a, b) and a# b are defined as follows: 

{ jx(O, a, b) =b , 

jx(n+1, a, b)=J(K(a), jx(n, L(a), b)) , 

and 
a#b= jx(1e(a), a, b) . 

For each fixed n, ix(n, a, b) is a Diophantine function of a and b. Now we show that 

jx(7~, a, b) and a#b are elementary. We consider a function p defined by 

{
 

~(a, b)- J(K(L(a)), ~)(J(K(a) ~1, L2(a)), b)) otherwise . 

Then we have 
~D(a, b)~(max(L(a), b)+4) t (3 t K(a)) 

because 
J~+1(x, ..., x)~(x+4) t (3 t n) , 

hence p is elementary. Therefore jx is elementary since jx(n,a, b)=p(J(n,a), b), and hence 

a#b is elementary. Now we have 
jx(n, a, b)=Jn+1([a]o' "" [a]~_1, b) , 

hence we obtain the following proposition. 

Let a=<ao' -" a~-1> and b=<bo' -" b~_1> where ao' "" a~_1, bo' "" bn-1 are positive in-

tegers. Then 
a~b-<ao' 'a~ l, o' - .. _ b ...,b~_1>. 

Thus the juxtapositions of finite sequences can be represented by the function a#b. 

Let le(n, a)=~i<~sg([a]i), then le(n, a) is elementary. For each fixed n, it is a Diophantine 

function of a. We have 
a ~n-Ie('1, a) =1e(a) . 

~(n, a, b) is defined by 

#(n, a, b)= jx(le(n, a), a, jx(n, b, O)) . 

Then ~tr(72, a, b) is elementary. For each n, it is a Diophantine function of a and b. We hale 

Seq(n, a) & Seq(n, b)- #(n, a, b)=a#b . 

According to the above considerations, arithmetizations of formal systems can be carried 

through by the polynomial representations of finite sequences. In such arithmetizations, the 

number-theoretic predicates which correspond to metamathematical predicates will generally 

have the following properties: Let P(a ah) be such a number-theoretic predicate. Then 
1, *,., 

P is elementary and there corresponds a predicate P'(n, al' "" ak) such that 

P'(n, al' "" ak) is elementary, (1) 

(_.) p!(n, al' "" ak) is Diophantine for each fixed n 



58 

and 

(3) 

( 4) 

hence 
(5) 

nITOTSUBASHI JOUR*NAL OF ARTS AND SCIENCES 

n ~In & pl(n, al' " " ak)-P!(In, al' "" ' ak) 

(3n)(Vln)(n ~m-~(Pl(In, al' " " ak) ~~ P(a ak))) 
1, ..., 

P(al, ak) (Sn)P (n, al, . . . , ak) . 

(1968. IV. ~27.) 
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