ON DIOPHANTINE EQUATION OF 1st DEGREE

Setsuo Onari*

Throughout this paper N and Z are the set of all natural numbers and rational integers respectively. We use the symbols of interval [,], [,) etc. as the symbols of intervals defined on linearly ordered set Z.

For $n \ (n \ge 2)$ elements $a_j \in N \ (1 \le j \le n)$ such that $(a_1, a_2, ..., a_n) = 1$ we consider the set

$$S(a_1, a_2, ..., a_n) = \{ \sum_{j=1}^n a_j x_j \in \mathbb{N}; x_j \in \mathbb{N}, (1 \le j \le n) \}.$$

Obviously $b \in S(a_1, a_2, ..., a_n)$ is equivalent to the fact that Diophantine equation of 1st degree $\sum_{j=1}^{n} a_j X_j = b$ has at least one solution in N, and it is obvious

$$\exists j \ (1 \le j \le n); \ a_j = 1 \Rightarrow S(a_1, a_2, ..., a_n) = [\sum_{j=1}^n a_j, \infty).$$

So throughout this paper we assume $a_j \ge 2$ for all j, $(1 \le j \le n)$.

1. We put

$$d_{1}=(a_{2}, a_{3}, ..., a_{n}) \qquad a_{j}=d_{1}a'_{j} \qquad 2 \leq j \leq n$$

$$d_{2}=(a'_{3}, a'_{4}, ..., a'_{n}) \qquad a'_{j}=d_{2}a''_{j} \qquad 3 \leq j \leq n$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$d_{r}=(a_{r+1}^{(r-1)}, a_{r+2}^{(r-1)}, ..., a_{n}^{(r-1)}) \qquad a_{j}^{(r-1)}=d_{r}a_{j}^{(r)} \qquad r+1 \leq j \leq n$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$d_{n-2}=(a_{n-1}^{(n-3)}, a_{n}^{(n-3)}) \qquad a_{j}^{(n-3)}=d_{n-2}a_{j}^{(n-2)} \qquad n-1 \leq j \leq n$$

$$d_{n-1}=(a_{n}^{(n-2)}) \qquad a_{n}^{(n-2)}=d_{n-1}a_{n}^{(n-1)}$$
It is obvious that $d_{n-1}=a_{n}^{(n-2)}, a_{n}^{(n-1)}=1$. Now we can prove

$$(\sum_{j=1}^{n-1} a_j d_j, \infty) \subseteq S(a_1, a_2, ..., a_n)$$

by induction on n.

If n=2, then $d_1=a_2$. Let us prove that the equation $a_1X_1 + a_2X_2 = b$

has at least one solution in N for all $b \in N$ such that $a_1 a_2 < b$. By the assumption $(a_1, a_2) = 1$ the equation has at least one rational integral solution, which we denote $X_1 = x_1^{(0)}$, $X_2 = x_2^{(0)}$. For all $t \in \mathbb{Z}$, $X_1 = x_1^{(0)} - a_2 t$, $X_2 = x_2^{(0)} + a_1 t$ are also rational integral solution of $a_1 X_1 + a_2 X_2 = b$. So the fact to be proved is

$$\{t \in \mathbb{Z}; \ x_1^{(0)} - a_2 t > 0, \ x_2^{(0)} + a_1 t > 0\} \neq \phi$$
 i.e. $\left(-\frac{x_2^{(0)}}{a_1}, \frac{x_1^{(0)}}{a_2}\right) \neq \phi$.

But this is obvious by the relation

$$\frac{x_1^{(0)}}{a_2} - \left(-\frac{x_1^{(0)}}{a_1}\right) = \frac{b}{a_1 a_2} > 1.$$

^{*} Lecturer (Kōshi) in Mathematics.

Next let us assume
$$b \in (\sum_{j=2}^{n-1} a_j d_j, \infty),$$

and let us adopt as the assumption of induction

$$\left(\sum_{j=2}^{n-1} a_j' d_j, \infty\right) \subseteq S(a_2', a_3', ..., a_n')$$

where a_j' $(2 \le j \le n)$ have been defined $a_j = d_1 a_j'$ $(2 \le j \le n)$. Thus the equation $\sum_{j=1}^n a_j' X_j = b_0$ has at least one solution in N for all $b_0 \in (\sum_{i=1}^{n-1} a_j' d_j, \infty)$.

If we can prove the fact that the equation $a_1X+d_1Y=b$ has at least one solution $X=x^{(0)}$, $Y=y^{(0)}$ such that $x^{(0)} \in N$, $y^{(0)} \in (\sum_{j=1}^{n-1} a_j' d_j, \infty)$, then we finish the proof. But it is equivalent to the fact that $a_1X_1+d_1(Y_1+\sum_{j=1}^{n-1}a_j'd_j)=b$, i.e. $a_1X_1+d_1Y_1=b-\sum_{j=1}^{n-1}a_jd_j$ has at least one solution $X_1 = x_1^{(0)} \in \mathbb{N}, \ Y_1 = y_1^{(0)} \in \mathbb{N}.$ But this is guaranteed by the assumption $b \in (\sum_{i=1}^{n-1} a_i d_i, \infty).$

We can improve on this result by changing the order of a_j $(1 \le j \le n)$ suitably. let us \mathfrak{S}_n be symmetric group of degree n. For any $\sigma \in \mathfrak{S}_n$ we put

It is obvious $d_{n-1}(\sigma) = a_{\sigma(n)}^{(n-2)}, a_{\sigma(n)}^{(n-1)} = 1$. We pu

Following the above proof, we have a result,
$$(\sum_{j=1}^{n-1} a_{\sigma_0(j)} d_j(\sigma_0) = \min_{\sigma \in \mathfrak{S}_n} \sum_{j=1}^{n-1} a_{\sigma(j)} d_j(\sigma)\}$$

$$(\sum_{j=1}^{n-1} a_{\sigma_0(j)} d_j(\sigma_0), \infty) \subseteq S(a_{\sigma_0(1)}, a_{\sigma_0(2)}, ..., a_{\sigma_0(n)})$$

$$(\sum_{j=1}^{n} a_{\sigma_0(j)} d_j(\sigma_0), \infty) \subseteq S(a_{\sigma_0(1)}, a_{\sigma_0(2)}, ..., a_{\sigma_0(n)})$$

for any $\sigma_0 \in M$, and this is better than the above result.

With respect to $\sigma \in \mathfrak{S}_n$, the fact

$$a_{\sigma(1)} \leq a_{\sigma(2)} \leq \dots \leq a_{\sigma(n)} \Rightarrow \sigma \in M$$

is not always correct and there are two cases where

$$\sum_{j=1}^{n-1} a_{\sigma_0(j)} d_j(\sigma_0) \in S(a_{\sigma_0(1)}, a_{\sigma_0(2)}, ..., a_{\sigma_0(n)})$$

holds and does not hold.

Example 1. $a_1=2$, $a_2=3$, $a_3=4$.

$$\sum_{j=1}^{2} a_{\sigma(j)} d_{j}(\sigma) = \begin{cases} 14 & \text{for } \sigma \in \{ \iota = \text{identity of } \mathfrak{S}_{3}, (23) \} \\ 10 & \text{for } \sigma \in \{ (12), (13), (123), (132) \} \end{cases}$$

So $M = \{(12), (13), (123), (132)\}$. But $10 \notin S(a_1, a_2, a_3)$, because if $10 \in S(a_1, a_2, a_3)$, the equation $a_1X_1 + a_2X_2 + a_3X_3 = 10$ has at least one solution $X_j = x_j^{(0)} \in N$ $(1 \le j \le 3)$ and $x_2^{(0)} \equiv 0 \pmod{2}$. Accordingly $3x_2^{(0)} \ge 6$, then $a_1x_1^{(0)} + a_2x_2^{(0)} + a_3x_3^{(0)} \ge 12$. This is a contradiction.

Example 2. $a_1=3$, $a_2=4$, $a_3=5$.

$$\sum_{j=1}^{2} a_{\sigma(j)} d_{j}(\sigma) = \begin{cases} 23 & \text{for } \sigma \in \{\epsilon = \text{identity of } \mathfrak{S}_{3}, (23)\} \\ 19 & \text{for } \sigma \in \{(12), (132)\} \\ 17 & \text{for } \sigma \in \{(123), (13)\} \end{cases}$$

So $M = \{(123), (13)\}$. But $17 \in S(a_1, a_2, a_3)$, because the equation $a_1X_1 + a_2X_2 + a_3X_3 = 17$ has a

solution $X_1 = 2, X_2 = X_3 = 1$.

2. It is obvious that

[1,
$$\sum_{j=1}^{n} a_j$$
) $\cap S(a_1, a_2, ..., a_n) = \phi$
 $\sum_{j=1}^{n} a_j \in S(a_1, a_2, ..., a_n)$.

So we are interested in the following finite set

$$\left[\sum_{j=1}^{n} a_{j}, \sum_{j=1}^{n-1} a_{j} d_{j}\right) \cap S(a_{1}, a_{2}, ..., a_{n}).$$

Let us assume

$$S(a'_2, a'_3, ..., a'_n) = \{c_1, c_2, ..., c_l\} \cup (b'_0, \infty)$$

where $c_1 < c_2 < \cdots < c_l$, $c_1 = \sum_{j=2}^{n} a'_j$, and

$$b_0' = \operatorname{Max}\{x \in N; \ x \in S(a_2', a_3', ..., a_n')\} \le \sum_{j=2}^{n-1} a_j' d_j,$$

and a_j $(2 \le j \le n)$ have been defined as $a_j = d_1 a_j'$ $(2 \le j \le n)$. By the relation

$$\sum_{j=1}^{n} a_{j} x_{j} = a_{1} x_{1} + d_{1} \sum_{j=2}^{n} a'_{j} x_{j}$$

we have

$$S(a_1, a_2, ..., a_n) = a_1 N + d_1 S(a'_2, a'_3, ..., a'_n)$$

$$= (a_1 N + \{d_1 c_1, d_1 c_2, ..., d_1 c_l\}) \cup (a_1 N + d_1 (b'_0 + N))$$

$$= (a_1 N + \{d_1 c_1, d_1 c_2, ..., d_1 c_l\}) \cup (d_1 b'_0 + S(a_1, d_1)).$$

Accordingly the problem is generally reduced to consider the set $S(a_1, a_2)$.

3. Let us consider the special case n=2. a_1 , a_2 are two elements of N such that $(a_1, a_2)=1$ and $a_1 < a_2$. (If $a_1=a_2$, then $a_1=a_2=1$ by the assumption $(a_1, a_2)=1$).

At first $a_1a_2 \notin S(a_1, a_2)$, because by $(a_1, a_2)=1$

$$\left\{ (x_1, x_2) \in N^2; \ x_2 = \frac{a_1}{a_2} x_1, \ (0 <) x_1 < a_2 \right\} = \phi,$$

$$\left\{ (x_1, x_2) \in N^2; \ \frac{x_1}{a_2} + \frac{x_2}{a_2} = 1 \right\} = \phi.$$

ther

Next $\varphi:(x_1^{(0)},x_2^{(0)})\to a_1x_1^{(0)}+a_2x_2^{(0)}$ is a bijection from $\{(x_1,x_2)\in N^2;\ a_1x_1+a_2x_2< a_1a_2\}$ onto $[a_1+a_2,a_1a_2)\cap S(a_1,a_2)$.—This result was suggested by Mr. T. Nagashima, who is a lecturer at Hitotsubashi University—. The reason is

$$b \in [a_1 + a_2, a_1 a_2) \cap S(a_1, a_2)$$

$$\Rightarrow \exists (x_1^{(0)}, x_2^{(0)}) \in N^2, \ b = a_1 x_1^{(0)} + a_2 x_2^{(0)} < a_1 a_2$$

$$\Rightarrow \varphi(x_1^{(0)}, x_2^{(0)}) = b,$$

$$\varphi(x_1^{(0)}, x_2^{(0)}) = \varphi(x_1^{(1)}, x_2^{(1)})$$

$$\Rightarrow a_1 x_1^{(0)} + a_2 x_2^{(0)} = a_1 x_1^{(1)} + a_2 x_2^{(1)}$$

$$\Rightarrow a_1 (x_1^{(0)} - x_2^{(1)}) = a_2 (x_2^{(1)} - x_2^{(0)})$$

$$\Rightarrow x_1^{(0)} \equiv x_1^{(1)} \pmod{a_2} \quad \text{(by } (a_1, a_2) = 1)$$

but $1 \le x_1^{(0)} \le a_2 - 1$, $1 \le x_1^{(1)} \le a_2 - 1$, then $x_1^{(0)} = x_1^{(1)}$, $x_2^{(0)} = x_2^{(1)}$.

Next we have

number of the elements in $\{(x_1, x_2) \in N^2; a_1x_1 + a_2x_2 < a_1a_2\}$ = $\frac{1}{2}$ (number of the elements in $\{(x_1, x_2) \in N^2; 0 < x_1 < a_2, 0 < x_2 < a_1\}$). So we have

number of the elements in
$$[a_1+a_2, a_1a_2) \cap S(a_1a_2)$$

= $\frac{1}{2}(a_1-1)(a_2-1)$
= $\frac{1}{2}$ (number of the elements in $[a_1+a_2, a_1a_2)$).

Let us consider $S(a_1, a_2)$ more precisely.

- i) When $a_1=2$, there exists c in N such that $a_2=2c+1$ by $(a_1, a_2)=1$.
- i)-1 When c=1 i.e. $a_2=3$, it is obvious that (number of the elements in $[a_1+a_2, a_1a_2) \cap S(a_1, a_2) = 1$, $S(a_1, a_2) = \{5\} \cup (6, \infty)$.
- i)-2 When $c \ge 2$ i.e. $a_2 \ge 5$, it is obvious that

number of the elements in $[a_1+a_2, a_1a_2) \cap S(a_1, a_2) = \frac{a_2-1}{2}$,

$$S(a_1, a_2) = \left\{ 2s + a_2; \ s = 1, 2, ..., \frac{a_2 - 1}{2} \right\} \cup (a_1 a_2, \infty).$$

ii) When $a_1 \ge 3$, we put

$$a_2 = a_1 q + r$$
, $0 \le r < a_1$.

Then $q \ge 1$ and $1 \le r < a_1$, and

$$a_1a_2-(a_1+a_2)=a_2(a_1-2)+(a_2-a_1)\geq 5$$

So

number of the elements in $[a_1+a_2, a_1a_2) \ge 5$.

Now we put for any k such that $1 \le k \le a_1 - 1$

$$V_k = \left\{ a_1 x_1 + a_2 x_2 \in N; \ (k-1) \left(q + \frac{r}{a_1} \right) < x_1 < k \left(q + \frac{r}{a_1} \right), \ 1 \le x_2 \le a_1 - k \right\}.$$

Then

$$[a_1+a_2, a_1a_2) \cap S(a_1, a_2) = \bigcup_{k=1}^{a_1-1} V_k.$$

This is obvious by the bijection $\varphi:(x_1^{(0)},x_2^{(0)})\rightarrow a_1x_1^{(0)}+a_2x_2^{(0)}$ from $\{(x_1,x_2)\in N^2;\ a_1x_1+a_2x_2< a_1a_2\}$ onto $[a_1+a_1,a_1a_2)\cap S(a_1,a_2)$.

Example 3. $a_1=5$, $a_2=6$, $a_3=8$.

As a preparation

$$S(2, 5) = \{2s+5; s=1, 2\} \cup (10, \infty)$$

= \{7, 9\}\cup(10, \infty),
$$S(3, 4) = \{7, 10, 11\} \cup (12, \infty),$$

because by $4=3\cdot1+1$,

$$V_1 = \left\{ 3x_1 + 4x_2; \ 0 < x_1 \le 1 + \frac{1}{3}, \ 1 \le x_2 \le 3 - 1 \right\}$$

$$V_2 = \left\{ 3x_1 + 4x_2; \ 1 + \frac{1}{3} < x_1 \le 2\left(1 + \frac{1}{3}\right), \ 1 \le x_2 \le 1 \right\}.$$

Now $d_1=2$, $d_2=4$, then

$$\sum_{j=1}^{2} a_{j} d_{j} = 34, \qquad \sum_{j=1}^{2} a_{j} = 19.$$

Accordingly

$$(34, \infty) \subseteq S(a_1, a_2, a_3), \qquad (0, 19) \cap S(a_1, a_2, a_3) = \phi.$$

By $5x_1+6x_2+8x_3=5x_1+2(3x_2+4x_3)$

we have $[19, 34] \cap S(a_1, a_2, a_3)$ = $[19, 34] \cap (5N+2S(3, 4))$

$$= [19, 34] \cap ((5N + \{14, 20, 22\}) \cup (24 + S(2, 5))) \\ = \{19, 24, 25, 27, 29, 30, 32, 34\} \cup \{31, 33\} \\ = \{19, 24, 25, 27, 29, 30, 31, 32, 33, 34\}.$$
 Then
$$S(a_1, a_2, a_3) = \{19, 24, 25, 27\} \cup (28, \infty)$$
 and
$$Max\{x \in N; \ x \notin S(a_1, a_2, a_3)\} = 28.$$

- **4.** Finally I state formulae which give us general solution of Diophantine equation of 1st degree.
- i) For two rational integers a_1 , a_2 such that $(a_1, a_2)=1$ and $a_1 < a_2$, let us put

$$r_{j-2} = r_{j-1}q_j + r_j$$
 $(1 \le j \le m)$
 $r_{m-1} = r_m q_{m+1}$

where $a_1=r_0$, $a_2=r_{-1}$. Then we have

$$r_0 > r_1 > r_2 > \cdots > r_{m-1} > r_m > 0$$

and

$$r_m = (a_1, a_2) = 1.$$

For arbitrary rational integer b, let us put

rational integer
$$b$$
, let us put
$$S_{j} = \left\{ \begin{pmatrix} x_{1}^{(f)} \\ x_{2}^{(f)} \end{pmatrix} \in \mathbb{Z}^{2}; \ r_{j} x_{1}^{(f)} + r_{j-1} x_{2}^{(f)} = b \right\} \qquad (0 \le j \le m),$$

then we have

$$\begin{split} S_0 &= \left\{ \begin{pmatrix} x_1^{(0)} \\ x_2^{(0)} \end{pmatrix} \in Z^2; \ a_1 x_2^{(0)} + a_2 x_2^{(0)} = b \right\}, \\ S_m &= \left\{ \begin{pmatrix} b & -r_{m-1} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ t \end{pmatrix} \in Z^2; \ t \in Z \right\}, \\ \begin{pmatrix} x_1^{(j)} \\ x_2^{(j)} \end{pmatrix} &\to Q_j \begin{pmatrix} x_1^{(j)} \\ x_2^{(j)} \end{pmatrix}, \ Q_j &= \begin{pmatrix} -q_j & 1 \\ 1 & 0 \end{pmatrix}, \qquad (1 \leq j \leq m) \end{split}$$

and

are the bijection from S_j onto S_{j-1} $(1 \le j \le m)$. Accordingly the general solution $X_1 = x_1^{(0)}$, $X_2 = x_2^{(0)}$ of the equation $a_1 X_1 + a_2 X_2 = b$ are given by the following formula.

ii) Now let us consider n dimensional case. For $n \ (n \ge 2)$ rational integers $a_j \ (1 \le j \le n)$ such that $(a_1, a_2, ..., a_n) = 1$ and all of them are not negative, we put

$$\mathfrak{a}=\left\langle \begin{array}{c} a_1\\ a_2\\ \vdots\\ a_n \end{array} \right\rangle,$$
 $a_{m(\mathfrak{a})}=\operatorname{Min}\left\{a_j\in Z;\ 1\leq j\leq n,\ a_j>0\right\}$

and

$$\alpha' = \begin{pmatrix} a'_{1} \\ a'_{2} \\ \vdots \\ a'_{n} \end{pmatrix}, \text{ where } a'_{j} = a_{j} - (1 - \delta_{j, m(\alpha)}) a_{m(\alpha)} \left[\frac{a_{j}}{a_{m(\alpha)}} \right]$$

$$\alpha^{(k+1)} = \alpha^{(k)} \qquad k = 1, 2, 3, \dots$$

Then we have the following result which is easily proved by induction on n,

$$\exists k_0 \in N; \ \mathfrak{a}^{(k_0)} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} m(\mathfrak{a}^{(k_0)})$$

Now we put for any fixed $b \in \mathbb{Z}$

$$S_{k} = \left\{ \begin{pmatrix} x_{1,k} \\ x_{2,k} \\ \vdots \\ x_{n,k} \end{pmatrix} \in \mathbb{Z}^{n}; \sum_{j=1}^{n} a_{j}^{(k)} x_{j,k} = b \right\} \qquad (0 \le k \le k_{0})$$

Then
$$S_0$$
 = the set of all solutions in Z of $\sum_{j=1}^{n} a_j X_j = b$

$$S_{k_0} = \{ \left\langle \begin{array}{c} t_1 \\ \vdots \\ t_{\nu-1} \\ b \\ t_{\nu+1} \\ \vdots \\ t_{\nu} \end{array} \right\rangle \in Z^n; \ \nu = m(\mathfrak{a}^{(k_0)}),$$

$$t_l = \text{arbitrary element in } Z \text{ for } 1 \leq l \leq n, \ l \neq m(\mathfrak{a}^{(k_0)}) \}$$

and

$$\begin{pmatrix} x_{1,k} \\ x_{2,k} \\ \vdots \\ x_{n,k} \end{pmatrix} \xrightarrow{Q_k} \begin{pmatrix} x_{1,k} \\ x_{2,k} \\ \vdots \\ x_{n,k} \end{pmatrix}, \ Q_k = \begin{pmatrix} 1 \\ 1 \\ \ddots \\ -q_1^{(k-1)} - q_2^{(k-1)} \dots - q_{\nu-1}^{(k-1)} & 1 & -q_{\nu+1}^{(k-1)} \dots - q_n^{(k-1)} \\ & \ddots & 1 \\ & & \ddots & 1 \end{pmatrix}$$
 where $\nu = m(\mathfrak{a}^{(k-1)}), \ q_j^{(k-1)} = \left[\frac{a_j^{(k-1)}}{a_{m(\mathfrak{a}^{(k-1)})}}\right], \ 1 \le j \le n, \ j \ne m(\mathfrak{a}^{(k-1)}), \ \text{is a bijection from } S_k \ \text{onto} \ S_{k-1}.$

Accordingly the general solution $X_j = x_{j,0}$ $(1 \le j \le n)$ of equation $\sum_{j=1}^n a_j X_j = b$ is given by the following formula,

$$\begin{pmatrix} x_{1,0} \\ x_{2,0} \\ \vdots \\ x_{n,0} \end{pmatrix} = Q_1 \cdot Q_2 \cdot \dots Q_{k_0} \begin{pmatrix} t_1 \\ \vdots \\ t_{\nu-1} \\ b \\ t_{\nu+1} \\ \vdots \\ t_n \end{pmatrix} \quad \begin{array}{l} \nu = m(\mathfrak{a}^{(k_0)}) \\ t_l \in \mathbb{Z}, \ 1 \leq l \leq n, \ l \neq m(\mathfrak{a}^{(k_0)}). \\ (\nu \\ t_{\nu+1} \\ \vdots \\ t_n \end{pmatrix}$$