HYPERMATRIX AND ITS APPLICATION

By Kmn-icHr Yamapax

In this paper, the author will consider multidimensional matrices on a line different from
that of R. Gouarné and I. Samuell In the first half, a singular situation shall be pointed

out concerning multidimensional matrices and in the second half, an application of a specific
kind of them shall be proposed.

§0 Hypermatrices

A setout of numbers on the lattice points (7, 7, ...,%,7) of an N-dimensional space will be
called an N-dimensional matrix of order IXJX...XxKXL or an IXJX...XKXL hypermatrix,
where 7 ranges over 1, 2, ..., I, jover 1,2, ...,J, ..,k over 1,2, ..., Kand { over 1,2, ..., L.

The number a,;. » set out on the point (7,7, ..., %, ) will be called the ¢-j-...-2+{ element
of the hypermatrix, which as a whole will be denoted by A or by [ai; wl.

The elements shall be real numbers and the dimension be fixed hereafter.

Equality and inequality of two hypermatrices of the same order will be defined in the
same way as usual. Thus they enjoy the usual fundamental properties: reflexivity, symmetricity
or antisymmetricity and transitivity.

Addition of two hypermatrices of the same order will be defined also as usual, and it
enjoys commutativity and associativity. There exists the additive identity and every hyper-
matrix has its additive reciprocal.

Scalar multiplication of a hypermatrix by a real number will be defined too as usual.
And it enjoys commutativity, associativity and double distributivity.

Let A=[ai; ] be an IXJX..XxKXL hypermatrix and B=[b,; ] a PXQX...XRXS
hypermatrix with L=P. Then multiplication of A by B shall be defined by

AB =[L qZ Jais wtbig sl .

Thus it proves easily to be associative and doubly distributive over addition.

§1 Cubic Hypermatrices

An LXLX...XLxXL hypermatrix will be called cubic. The set of all cubic hypermatrices
with a specific L forms a ring with respect to addition and multiplication defined above, since
it is closed under these operations which possess the fundamental properties as was shown
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in the preceding section.
How about the multiplicative unit ?
It might be natural to introduce the extended Kronecker’s delta by
1 if i=j=..=k=]
Ois M_{O otherw]ise
Let the hypermatrix [0.; ] be denoted by E, then we have
¢))] AE=A
for every A. Because

2 azj kl5lq.r:=atj,..ks
Lq,..,7

holds for every N-ple (4, j, ..., %,s), where a,;. u being the general element of A.
Though (1) is an identity in hypermatrix algebra,
@) EA=A

is not. Because

Z 61}]’ kg rs
tLa, v

vanishes unless 1=j=...=k=/[.

It is a singular situation which does not occur in matrix algebra that (1) is an identity,
but (2) is not. Thus E might be called justly a right unit.

How about the uniqueness of right unit?

For the sake of simplicity, two definitions shall be introduced.

Definition I: A cubic hypermatrix U is called a right unit, if

AU=A

holds for every cubic hypermatrix A.

Definition II: Let A=[a.; u] be a given cubic hypermatrix. The square matrix

[ Z [22%3 ,.kl]
J, Lk

shall be called the contracted matrix of A and denoted by Ctr A.

Then we can prove

[Theorem 1] A cubic hypermatrix is a right unit if and only if its contracted matrix is
the unit matrix.

Proof: If U=[wu:; w] is a right unit, then the equality

(3) qu: 'ra” killg rs—aij, ks
ie.

@ Zt:(aij quzrulq‘..rs>=aij..ke
holds for every aij ks.

Therefore

(5) . Z Uig rs=6ls

q,..,7

ie.

6) Ctr U=E® |

where E'? is the unit matrix. Thus the condition is necessary.

Conversely, let (6) hold. Then we have elementwise (5), which implies (4) ie. (3) for
every aij. k. Thus the condition is sufhicient, and the proof is completed.

This theorem tells us that right unit is not at all unique. Because L? equations (5) have
L¥ unknowns.

And this is another singular situation concerning hypermatrices.
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A 2X2X2 hypermatrix

- Tz\
\azlz

a
a112 i

G111 Q221

/am|\

a1y

will be denoted by

[0111 a2y | Q112 4122:]

dz11 Q221 Q212 Aoz

for the sake of typographical simplicity.
Example 1 Two right units shall be given for instance.

3 4|-5 4 0.5 0.5 2 —2 1.3 4]|-5 4
[2 3] 9 —7}[—1 1 |-3 4 ]_[2 3| 9 —7]’
3 4|—-5 4 4 -3 1 -1 1.3 4|-5 4
[2 3] 9 —7}[—2 2 0.5 0.5]_[2 31 9 —7]'
Concerning contracted matrices, we have
[Lemma] The contracted matrix of the product of two cubic hypermatrices is the product
of their contracted matrices.

Proof : Let A=[ai; ] and B=[bp,. »s] be two given cubic hypermatrices.
Then by definition

Ctr (AB)=Ctr [l,q,z...,ra/ij kg .vs]
=[ Z R Z aij wabig..rs)]
_[Z( Z atj m)( Z RZRD)
—[ Z i kz][ Z blq rsl.

The last member is just the product of the contracted matrix of A and that of B. And
the lemma is proved.

How about the reciprocal ?

For the sake of this problem, let us introduce

Definition III: Let A be a given cubic hypermatrix and U a right unit. If there exists
a cubic hypermatrix B such that AB="U, then A is said to be nonsingular and B is called a
right reciprocal of A.

And we have

[Theorem 2] A cubic hypermatrix is nonsingular if and only if its contracted matrix is
nonsingular.

Proof: A cubic hypermatrix A is nonsingular if and only if there exists a cubic hyper-
matrix B such that

@ AB=U,
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where U is a right unit. On applying the lemma we have
Ctr A-Ctr B=Ctr U
which combines Theorem 1 to yield
€)) Ctr A-Ctr B=E® ,
Thus the nonsingularity of Ctr A is a necessary condition.
Conversely, let Ctr A be a nonsingular matrix. By definition there exists a matrix M
such that
(Ctr A)M=E® ,
Then we can construct easily a cubic hypermatrix B, whose contracted matrix is M. And
we have (8). Application of the lemma on the left member yields
Ctr(AB)=E® |
which combines Theorem 1 to yield (7).
Thus the condition is sufficient and the proof is completed.
(Corollary) If AB is a right unit, then so is BA.
Proof : (8) and commutativity of reciprocal matrices together imply
Ctr B-Ctr A=E®
which is equivalent with
BA=U

2 113 1
[—1 3|2 1]
is nonsingular because of
2 1|13 171 1 -1
e A e ] B ]
-1 10
7 7o Zaf [o e
1 2|—-3 -1 2 1|13 1 —~5 5
= 1][ 1 F o (R v

-3 4/—=5 5] [1 0
Ctr[ 7 —7| 10 —9]{0 1]

combine the first half to verify the lemma.

Theorem 2 and the corollary are very close to those of matrix algebra except the unique-
ness of reciprocal.

by Theorem 1.
Example 2

and

and

§2 Transition Hypermatrices

Let us consider a specific kind of hypermatrices in this section.
Definition IV : A cubic hypermatrix A=[a;; ] will be called a transition hypermatrix if
A=0 and
;aij.‘ =1 for all (i,4...,%),

where O is a cubic hypermatrix with zero elements exclusively.
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In order to apply this kind of hypermatrices in somewhat practical situation, the follow-

ing definition shall be introduced.
Definition V: Let A=[aj.u] and B=[bi;. u] be transition hypermatrices of order L.

Then the hypermatrix
[—I}—_z Z asj..xbig ..'rs:| ,

Lq,.,7

will be called the transition product of A and B and denoted by A*B.

{Theorem 3] The transition product of two transition hypermatrices is a transition
hypermatrix.

Proof: Let A and B be given transition hypermatrices of order L*.

Due to nonnegativity of the elements and Definition V, we have

¢)) Ax*Bz0,

;a/ij...kl':l for all (4,7,....,%)

and
Zblq. rs=1 for all (l,q, ...,7‘)

Z(F%:? Z [22%] ..klblq..,rs>

8 tLa, 7

=—I:-1%_—2 Z <Zaij . quzq “n>

L L

e, -
1
== ), 1
QT

together imply that

Since each of the N—2 numbers g, ..., ranges over 1,2,...,L,
S 1=L""2,

q,,T
Thus we have .
(2) Z(—I:‘qu Z .. 1big rs>=1 .
8 La,. 7
(1) and (2) combine to prove that A+*B is also a transition hypermatrix.
Again for the sake of application, let us introduce a specific kind of transition hyper-
matrices by a usual
Definition VI: A transition hypermatrix A will be said to be regular, if there exists a
natural number H such that .
4A>0,
where presuperscript denotes a transition power of a transition hypermatrix.
And we can prove the
[Principal Theorem 1] If A is a regular transition hypermatrix, then
"A-W as n—oo,
where W=[wsi,. ] is a transition hypermatrix with such elements as
Whyj k=W,
irrespective of (3, ..., &).
Proof : We can assume without loss of generality that A is positive. Because otherwise,
there exists a natural number H with ZA>0, and we can prove that
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"HAY-W as m—oo
ie.
"A—-W as n—oo,
Let ¢ be defined by

u= min aij kL,

1,4, .,k
then due to the assumption and Definition IV the inequalities
3 o< <l

hold.
s shall be specified hereafter and M, m; and a4 ;; defined by induction with respect to .
We will begin with

4) My= max a;. s
5,0k
5) ma:i"]?linkazj..‘ks )
m 1
6) Ay ks 172 Qiy  k1Alg. s,
La, .0
@ M= maz aP ks
and
® my= min al ;.
2,7, ,k
We have
) my=M, and 7, =M,

obviously by definitions.
On substituting M, for ay + in (6) and simplifying by ZL:ai,j =1, we obtain
aP =M,
which combines (7) to prove
(10) M,=M,.
Similarly, substitution of 72, for aiy.rs in (6) and simplification by [‘;au =1 yield

avg).ksémo

which is combined with (8) to have

(11) m=my.

Due to (9), (10) and (11), inequalities

(12) mos=m =M, =M,
hoid.

Now we will define al? ;, M, and m, by. induction

(13) aﬁ’..kﬁﬁ Z aij. waly ™y,

Lq, .7
(14) M= mazx ap i,
(15) mz=17jninka§j)'ks .

The inequalities (12) mean that inequalities
(16) M=y ... =y =M, = ... =M =M,
hold for z=2. )
By substituting M,—, for af-}) in (13) and simplifying by ZL:a”;,,kzZI, we have
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ap =M.,
which combines (14) to yield
an M, =M, .
Similarly, on substituting m,.; for aff"1 in (13) and applying Xai;.m=1, it is observed
that ‘
ag_:) ks =My -
And we have
(18) M=,y
by definition (15).
(16), (17) and (18) together imply that
(19) my=m= ... =m =M= ...
Thus (19) has proved to be true for all 2.
By definitions, two classes of inequalities
aij u—p=0 for all (, 4 ....% 0

IA
R
A
R

and
My—ayy =0 for all (,q,...,7)
hold. Therefore we have
(ai; m— ) (My—aig »5)Z0
ie.
aij mMy—pMy+pay sZaij udig s
for all (4,7, ...,%,0) and all (,q,...,7).
Summation over (,q,...,7) and division by L¥2 yield

M, 1
F,’S; ay.. kl—L}lMo'*"l%z— Z alq...néw Z Qij 11alg. s .

1,q,.,7 La,.,T LT

On applying LZaij.,,u=l and (6), we obtain

My—LoM-+—b— Z ag wza®,  forall (... %).
laq, .1

Thus by (7), the inequality
20) A—L)Mot—h=r Z @ =M,

lq,. .7
holds.
Similarly by definitions, we have two classes of inequalities
aij. u—p=0 for all (4,7, ..., %,1)
and
ayg rs—Mme=0 for all ({,q,...,7),
whence we infer that
(au‘ .kl—ﬂ)(alq...n_mo)-z—o s
ie.
oy, My — Myt g rs =Qij k1dig..vs for all (7,4 ....,%0) and all (,q,...,7).
We sum up these inequalities over (/, ¢, ...,7) and divide by LY~ to obtain

m 1
0 @j.. kl_L,L”no'*‘—‘f__ Qg r3=—w—g Qij. k.. 7s -
LN 2 Lh 2 LN 2
t

La, .7 h e T [

Application of ;aijmld:l and (6) yield
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o= Lymiot by Z trg.r=aP,  forall i,k
taq, v

Thus by (8) the inequality
@1n (l_Ll—!)"lo""L_f:.T Z Qug..rs=m,

[N R

holds.
Subtracting (21) from (20), we obtain
(1 —L.U)(Mo_mo) zM,—m,
which concludes

and that
(22) A—Lp)(My—m)zM,—m.,
is true for ¢=1.
Let us assume that (22) is true for t=u—1 ie.
23 (1_Lﬂ)u~1(Mo—'mo)§M -1 My -
By definitions, we have two classes of inequalities
. —p=0 for all (4 ....,40)
and
M, —af D=0 for all (,q,...,7),
whence we obtain
(aij. mw— (M, _l—af;:},))éo
ie.

g, iMoo —pMy s+ palt R Z gy waly R for all (7,4,...,4,0) and all (,q,...,7).

On summing up these inequalities over (/,q,...,7) and dividing by L¥~% we have

Mu- — 1 U~
LN—zl Z aij .kl—L,UAIu—l'{"—L%‘ Z aggrls)g LV Z aij klagq.r]s) s
Lq, .,7 iq,..,1 {q,. .7
which is combined with ZL:aij,kL':l, (13) and (14) to yield
24) A—Li)Mort—her )| afihZM,.
La,..,r

Similarly, we have two classes of inequalities
aiy —pz0 for all (G, ....4,0)
and
af R —m,_ =0 for all ({,q,...,7)
by definitions.
We combine them to obtain
(@ = p)afy R —mu-)Z0
1e.
Qs 1My — g1+ paf N Saiy wafd R for all (G,4,...,&,0) and all (/,q,...,7).
Summation over (J,q,...,7) and division by L¥"? yield
% Z @j kL—L,umu_l-i-——L—ﬁ_—z— Z ap-R= Ll}'“z Z @y walh
13

La,..,T 4 T La,. v

which we simplify into

41
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(25) A—Lamust—her ) RS,
La,. 1

by ;aij...u:l, (13) and (15).

Subtraction of (25) from (24) yields

(26) A—Lp)( My y—my_ )Z=M,—m, .

(23) and (26) together with (1—Lg)>0 imply that

(1—L)"(My—mo)=M,—m,

ie. (22) is true for t=u.

Thus the general validity of (22) is proved by induction.

From (1) and (22) we can infer that

27 M;—m,—0 as t—oo,
since 0=1—Lp<1.

(19) and (27) together conclude that af,, is the 7-j-...-k-I element of ‘A, and there
exists a number w, for each [ such that

a$ y—wi as #—o0,

independent of (,, ..., k).

And this is what is to be proved.

83 An Application

Let us assume that there are L states given and from every N—1 ple combination of L
states one of the L states may result. If the probability that the state / may result from a
state-combination (z, 7, ..., %) is ai; u with Ztlaij =1, then this situation might be realised

compactly by the L¥ transition hypermatrix [@.;. x].
Example 3 The following table gives the percentage of children with bright-coloured hair.

MOTHER
BRIGHT DARK
FATHER
BRIGHT 80 50
DARK 30 60

This is realised by 2° transition hypermatrix
0.8 0.5/0.2 0.5
[0.3 0.6/0.7 0.4:|'

The following theorem is very important in this connection.

[Theorem 4] The 7,4, ...,%,7 element of A gives the probability that the process which
has started in a state-combination (7,7, ..., k) will be in a state / after n steps provided that
every state-combination is equally likely.

Proof: The theorem is true for n=1 by the above-given interpretation of a transition
hypermatrix.

Assume that the theorem is true for z=m—1, and let "4 be denoted by [a}’ ;,].

The ¢-j-...-k-I element of ™A is
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&) A= ), A
p,q, ,7

Since by assumption {3} is the probability that the process starting in a state-combination
(Z,7,...,k) will be in a state p after m—1 steps, 1/L¥"% is that of » to be combined with
(g, ...,7) and apy i is that of (p,q,...,7) to be followed by a state [ on the m-th step, each
summand of (1) is the probability that the process which started in a state-combination (, j, ..., k)
will be in state / through a state-combination (p,q,...,7) after m steps. Such summands
being summed up over (p,q, ...,7r) give the probability that the process which has started in
a state-combination (z, 7, ..., %) will be in a state [/ after m steps. Thus the theorem is true
for n=m.

And the proof is completed by induction.

Example 4 (Continued)

210.8 0.5/0.2 0.5]_[0.61 0.55|0.39 0.45
[0.3 0.60.7 0.4}[0.51 0.5710.49 0.43}

tells that 55% of the grandchildren of bright-haired fathers and dark-haired mothers may be
bright-haired.

Implication of Principal Theorem 1 is now very important, since it tells that after a large
number of steps, the probability of the process to be in a specific state / will be nearly w,
no matter what the initial state-combination may be.

This situation shall be explained by
[0.572 0.56 [0.428 0.44 ] ‘

Example 5 {Continued)
_] 0.552 0.564 {0.448 0.436

3[0.8 0.5[0.2
4|i0.8 0.5/0.2 }_[0.5644 0.562 {0.4356 0.438 ]
0.4 ’

0.5
0.3 0.6/0.7 0.4
0.5
0.3 0.6/0.7 0.5604 0.5628{0.4396 0.4372
5710.8 0.5]0.2 0.5] [0.56288 0.5624|0.43712 0.4376
[0.3 0.6|0.7 0.4:]_[0.56208 0.56260. 43792 0.4374:]'
The next problem to be attacked is
how to get W in Principal Theorem 1.

Definition VII Let A be a given transition hypermatrix. A transition hypermatrix F for
which

FxA=F,
holds will be called a fixed transition hypermatrix of A.
Now we can prove
[Principal Theorem 2] W in Principal Theorem 1 is the unique fixed transition hyper-
matrix of A.
Proof : By Principal Theorem 1, we have
()] "A-W as m—oo,
Whence we obtain
3) PHASWxA as n—00,
(2) combined with (3) yields
W+A—W—0.
Since two hypermatrices in the left member are constant hypermatrices, we have
WxA=W,
which means that W is a fixed transition hypermatrix of A.
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Let F be a fixed transition hypermatrix, then we have

FxA=F,
By successive postmultiplication of A we obtain

Fs®"A=F,
which combines (2) to yield

F-F+W
Since both members are constant, we infer that

F=F+W

ie.

ﬁj...uzﬁ__z Z Fis kawog.m for all (g, k0.

9,47
On applying wp,.rn=1w,, it is observed that

1
'L‘ﬂ Z ﬁj...kp'wpq...rl:% Z ﬁj kp -

P,9,..,7 D.4,. ,7

Simplification by J] fij. xp=1 yields
»

wy _
TN Z Sijxp=mwr.
P.q,..,7

These three equalities combine to prove
figm=w, for all @, j,.... %)

which is equivalent with
F=wW.
Thus the uniqueness is proved to complete the proof.
By Principal Theorem 2, we can evaluate the ultimate distribution of states, as shown in
Example 6 (Continued)

[w, w, | w, wg:l*[O.S 0.5(0.2 0.5:l=|iw1 w, | w, wg]
w, w,|w, w, 0.3 0.610.7 0.4 W, W |w, W,
gives '
0.65w,+0. 45w, =w,
{0. 35w,+0. 55w, =w,
w,+ w,=1
And we have

w,=0.5625, w,=0.4375
which means that

"[0.8 0.5’0.2 0.5}_{0.5625 0.5625(0.4375 0.4375 oo
0.3 0.6/0.7 0.4] |0.5625 0.5625|0.4375 0.4375 as n :

§4 Concluding Remarks

Thus far, we have considered the concept “hypermatrix’” from applicative point of view on
Markov chain. And some relevant results have been reached as far as regular Markov chain
concerns. In §1, however, some singular situations were referred to concerning unit and
reciprocal hypermatrices. Therefore we are little ready for absorbing Markov chain. The
next problems are to elaborate definitions and to arrange theorems thereof.
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