ON STOCHASTIC PROGRAMMING IV

——A Note on a Generalized Stochastic Programming Model—

By SNyt KaTaoka

Assistant Professor of Mathematics

This paper extends the stochastic programming model proposed in my previous papers @
® to a more general one, and discusses a possible device for computation by the cutting
plane method.

I Assumptions and Formulation

Suppose x{x,, T, ...... , Zn) and p(py, Poy ... » Pn) be n-vectors, an+1(ay, nt1, @z nt1y-eeee. SBmyn+y)
an m-vector and A(a;;) be an mXn-matrix. Furthermore the components of the vectors
2P, an+; and the matrix A be random variables of known distributions.

Then we define the general stochastic programming as follows:

max f, 1D
subject to ‘
Prob (p'z—f=z0)=4,, (1.2)
and
Prob (JZ; @375+ iy n1 = 0)= B, (1.3)
z;20, 1.4

where p' is a transposed vector of p, and §, and §; are lowest values of probabilities of the
conditions being held.!

Assumption 1: The random variables pys, ai,nt;5 and a;s have multinormal® distri-
butions of which means, variances and covariances are

E;p=p;, E(pp—Dr)pr—P)=vu kI1=1,2,...... 1,
Eajj=ay;, Elag—ain)ay—an)=wi k1=1,2,...... ,n+1.

In order to transform the condition (1.3) into such a nonlinear constraint as used in
(3) and to prove its convexity, a dummy variable z,+,, identically equal to unity, is introduced

1 The physical meanings of these probabilistic conditions were discussed in the previous paper (3)
pp. 44—45.

2 In the references (4) and (5), Charnes and Cooper treated a normal distribution case.
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for a;, n+; (¢=1,2,...... , m).
Since a;ss are multinormal random variables, their linear combination
n
jgl 295 i o THRSE
is also a normal random variable, of which mean and variance are
n+1
DINAE
J=1
and
n+1
2 Wity (XZn+1=1).
k(=1
Using these values, we transform the condition (1.3) as follows:
n+1 n+1
121 (@j—a:)z; — X a7
= = J= >3,
Prob nt+l = N+l =Pi,
2 WinTeZi 2 WimThZy B
k,l=1 k,l=1
(-rn+1= 1). (1 5)

Because the left-hand side in the argument is a normalized random variable, we obtain
the following equivalent inequality,

n+1
— ,21 aiix;
= 10
= =GBy

2 WinZi
k,i=1

or

n+1 n+i

J_Z=:1 dl]’xj'*'G_l([ai)/\ / . LZ_I wlkz:cméO, (1. 6)
where

L ("%

Glyp)= N Sye dz.

As in the appendix of (3), the convexity of the function
'\/ IZ_} ViZely

is proved for the variance matrix V{wy), it is easily concluded that a function

n
/\/wiy 241 a1+ 2 'Z:l Wi, nt1, 765+
i=

is also convex, putting x,+;=1 in the convex function,

n+1
2 Wiy
k(=1

n
; Wik Ty

k=1
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Furthermore we assume a plausible assumption as follows:
Assumption 2:

ﬁO) ﬁzéo 5:
which provide us a negative value for G-%(6,),
G (B)=—q., q:>0.

From (1.6) and the Assumption 2, we have a convex domain of x for the probabilistic
condition (1. 3),

n n n
g,-(x)=jzl it a, n+1_Qi\/k ¢21 Wiy +2 Zl Wi, nt1, JTjF Wiy pty, 041200 (1.7)
= '. = J=

In the similar way, the constraint (1.2) is also transformed into a convex domain,

n

go(x)= jz=1 pix; —‘on/k tZ=l vzt —f 20, (1.8)
where

@o=—G"(3)>0.

For the sake of brevity, we combine (1.7) and (1.8) together in the following way:

n

n n
gx)= 'Z:O a;xj;+ai, n+1—¢h\/k ;0 WinTrt;+2 JZO Wy, nt1s 1T3 W, a1, n+1 20, (1.9)
i= (= =

1=0,1,...... ,m
where
Ay, ;=Djy Go,n1=0, Ze=f, Ap=-1,
{v“ if EI1=1,2,.... S M,
W= .
%10 otherwise,
and
_ 1=1,2,...... m
. ai0=0; Wiy by 0— Wa,y 0y1=0 for P P (1 10)

k1=0,1,2,...... ,n+1.

Consequently the stochastic programming (1.1), (1.2), (1.3) and (1.4) would be solved
as a maximization problem in a convex domain.

II Cutting Plane Method

The idea of the cutting plane method was originally conceived by Dantzig in his famous
“Traveling Salesman Problem” and promoted the later investigation on integer programming
by Gomory. The same idea was also applied to convex nonlinear programming by Kelley. ©

Before mentioning the computational procedure of the convex nonlinear programming,
let us take a note on some properties of a convex domain.

Property 1: If a function of a vector z,¢(x), is concave and differentiable then the domain
of x
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g(x)=0
is convex and is included in a half space
Z(xj—x) ,a 9(x%)=0 2.1)
K oxj
or simply
(z—2°) - =—0(z*)=0, (2.2)
ox .
where x° is an m-vector satisfying
9(x%)=0.

Proof. The convexity of the domain g(x)=0 was proved in (2). Since g(x) is concave, we

have

9(x°)+Ag(z)—9(x")) =¢(z"+ Mz — ). 2.3
Expanding the right-hand side of (2.3) for a sufficiently small 2, we obtein
o+ iz —a))=0(a)+ =) - —=g(a)-+OG). 2.4y
From (2.3) and (2.4), it follows that
0=e(D) (=2 - oz @.5)
in the limiting case, i—0. Q.E.D.

Geometrically, a point such that g(x)=0 is always found in the inner side of the tangential

plane at the point x°.
Let us return to the main problem. From (1.9) and (1.10), we have the following

nonlinear problem for our stochastic programming:

max Iz, ’ 2.6)

subject to

sz(x)=J§:0 i+ a,, n+1_QL\/k’lZ_:io WinIrli+2 jé:o Wy, n+1, JLIT Wi, w1, 120,
@.7
x;=0, =1, ... KR
i=0,1,...... ,n, (2.8)
where g;(z) is a concave function of x.

In order for the origin £=0 to be a feasible point of the convex domain (2.7), we
assume

9 .
3 ——g(z) means a gradient vector,

Jx
( dg(x)  _G9(x) 69(x) )
dx, > 0x :



1963] ON STOCHASTIC PROGRAMMING 1V 39

Assumption 3:

@iy nt1— Qi Wi, nt1; a1 0.

This assumption is plausible, since the standard deviation should be sufficiently small com-
paring with the mean value in the practical case.

Using Property 1 and (2.6), (2.7) and (2.8), the following computational procedure
would be conceived.
Step 1: Let C be a set of linear constraints,

8325+ sy n+1 20, z;=20, i=0,1, ...... , M. 2.9

~
it

Step 2: (i) Solve a linear problem
max Z°, (2.10)

subject to C.
(i) Rejecting slack variables, if any, from the bases, form a reduced set of con-
straints C' and a solution x.
Step 3: If z satisfies (2.7), x is a required solution and the computation is terminated. If
z does not satisfy (2.7), proceed to the next step.
Step 4: Let I be a set of constraints of (2.7),
(i) Compute g; such that

g(u:S)=0 for i¢l, (2.11)
where
x.f:#iSf)

and S; is the #-th direction cosine of the vector z.
(ii) Find minimum (positive) g,

Ho=min . (2.12)
i€l
(ili) Add a cutting plane
(z—2") - %g(xo)zo, (2.13)
where
'=p,S

to the set of constraints C' and form C.

(iv) Return to the Step 2.

III Discussions

Finally we give some explanations for this cutting plane method of the stochastic
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programming.

(1) The Step 2 (ii) keeps the number of constraints from increasing infinitely: the maximum
number never exceeds n4-1.

(2) Step 4 rejects an unsatisfactory solution by adding a tangential plane to the innermost
furface of the convex domain. Consequently the maximal value of z(=f) will be de-
creased, and continuing this process, we will attain the optimal solution at last.

(3) However, the sequence of the linear programming (2.10) is generally infinite. Therefore,
in practice, it should be truncated after a finite number of steps at a point when the
desired degree of approximation is attained.

(4) Another device for computation of convex programming is the gradient method which
was described in (2). A general discussion will be made later.
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