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ON FlNANCIAL TIME SERIES DECOMPOSITIONS WITH 
APPLICATIONS TO VOLATILITY 

KJELL DOKSUM*, RYOZO MIURA**, AND HIROAKI YAMAUCHI*** 

Abstract 

We consider decompositions of financial time series that identify important modes of 

variation in the series. The first term in the decomposition measures long-term trends and 

focuses on large-scale features of variability. The second term measures short-term trends and 

local features of variability remaining after the long-term trend has been removed. The third 

term measures the irregularity left in the series after the long- and short-term trends have been 

subtracted out. This term is further broken down by regressing it on its own lagged values. One 

goal of this decomposition is to transform a "raw" time series into three interpretable terms 

plus a term that is approximately noise. In this paper, the methodology is applied to the 

exchange rates of Japanese Yen (JY), German Marks (GM), Swiss Francs (SF), and British 

Pounds (BP) in the unit of U.S. dollars. Similarities and differences in the trends between these 

currencies as well as their volatilities are discussed. 

Keywords: Autoregressive fit, Iocally linear regression, decomposition, exchange rates, financial 

time series, LOWESS, volatility 

JEL classlfication: CIO, C14 

I . IntroductiOn 

In this paper we decompose financial time series by using and extending the ideas of 

Shibata and Miura (1997) who introduced a two-step smoothing technique. We consider the 

properties of such decompositions and apply them to currency exchange rate time series. 

The initial decomposition of the time series Y(t), t= l, ..., T, is of the from 

Y(t) =L (t) +S(t) +1 (t) 

where L(t) represents "long-term trend", S(t) stands for "short-term trend", and I(t) = Y(t) 

- [L (t) +S(t)] is the "residual" or "irregular" part of the series. More precisely, we assume 

that Y(t) is a random variable with population mean !1(t), t= I T and define L(t) the 
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theoretical long-term trend, as a weighted average of!l(t) over a long time interval such as a 

quarter of a year. After subtracting out the long-term trend, the short-term trend S(t) is 

defined as a short-term weighted average of /1(t) -L(t). The residual can now be measured by 

the series I(t) = Y(t) - [L (t) +S(t)] , which we call the theoretical residual or irregular series. 

The empirical decomposition Y(t) is defined as 

Y(t) =L (t) +S(t) +1 (t) 

where L(t) and S(t) are the empirical weighted average obtained by replacing !l(t) by Y(t) in 

the definitions of L (t) and S(t), and I(t) = Y(t) - [L (t) +S(t)] . 

Our decomposition is similar to the analysis of variance decomposition, which decompose 

a variance into a sum of variability due to signal plus variability due to noise except we have 

decomposed the signal into two parts, Iarge time-scale and short time-scale variability. 

Moreover, because of the dependence over time in the series, we will further decompose the 

noise term I(t) when necessary into terms related to lagged values plus "pure" noise using 

parametric autoregressive techniques. 

Our approach uses nonparametric regression techniques, on one hand, to model long- and 

short-term trends; and it uses classical parametric time-series techniques, on the other hand, to 

model the residual I(t) of the fit L(t) +S(t). 

We apply the decompositions to the analysis of exchange rate data; in particular, to the 

exchange rates of a U.S. dollar in units of JY, GM, SF, and BP for the 1 196 days from January 

5, 1992, until April 14, 1995. The exchange rates are converted to the percentage value of the 

initial value (January 5, 1992) before applying the decomposition (See Figure 1.1.). We find 

that the GM and SF series are very similar in that not only do they have close long-term trends, 

but their short-term trends and residual series are also very close. We use our decomposition 

to give graphical representation of the relationship between GM and SF exchange rates. We 

conjecture that the similarity between the movements of GM and SF is related to the 
macro-economic relations with the U.S. economy and also related to the attitude of currency 

traders who simultaneously trade the SF in the same direction as the GM. There could be a 

perception by dealers that when one of these two currencies moves, the other will move in the 

same direction; so if one of them falls behind, it will quickly catch up to the other one as 

dealers try to take advantage of the gap. 

Starting about 600 days into the time period, the long-term trend of JY becomes very 

similar to that of GM and SF. After 720 days into the period, the dollar shows a steady 

long-term decline against JY, GM, and SF; but the decline is not linear. It switches between 

concave and convex. This represents a macro-level economic relationship to the U.S. dollar. 

We consider two types of decompositions. The first type is a decomposition as in Shibata 

and Miura (1997) and is based on an ex-post analysis of the data in the time series. Its 

decomposition is symmetric in the sense that it gives equal weight to values before and after 

each time point t. It gives a description based on all of the global and local tendencies of the 

time series. The second type of smoothing, which is often used for the prediction of a time 

series, is called herepredictive since it is based on values of the time series up to the time t. In 

Sections 11 and 111 we explain the details of the decomposition methodologies with symmetric 

and predictive smoothing respectively and display the results of its applications to the four 

currency exchange rates. In Section IV we discuss the implications of our decomposition 

results for risk measurements and derivative pricing based on VaR (Value at Risk). 
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FIGURE 1.1. 

Indexed Exchange Rates: JY, GM, SF, and BP 
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January 5, 1992, to April 14,1995. 

In Section V we give an application of the predictive decomposition to the assessment of 

weekday volatility in the exchange rates. Our approach is based on introducing V(t) = [X(t) -

m (t)]', where X(t) = Iog[Y(t)/Y(t - I )] are returns and m (t) is the conditional mean of X(t) 

given the previous values X(t-r), r~: 1. An estimate of heterogeneous volatility based on 

previous values V(t -r), r;Z 1, of V(t) can then be obtained from the estimated sum Lp.(t) + 

S..(t) of the predictive long- and short-term trends of V(t). We find that the volatilities of GM 

and SF are close, while the JY follows a more independent path. For the Japanese series we 

compare our method to J. P. Morgan's RiskMetricsT~ (1994). 

In Section VI we derive asymptotic approximations to the long- and short-term trends and 

show how they are aifected by sudden changes in the mean of the time series. We also show 

that the locally linear predictive methods introduced in Section 111 tend to represent the "true" 

trend better than kernel methods such as J. P. Morgan's RiskMetrics"'" whenever the methods 

are applied to series where trends are present. 

This paper is a shortened version of Doksum, Miura, and Yamauchi (1998). 

II . Symmetric Decomposition of Time Series 

(i) Long'Term Trend 

We define L(t) as a weighted average of means over a long time span. That is 

*~M 

L(t)= ~ wk(t)/1(k) (2.1) 
k=,-M 
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for appropriate weights that nearly sum to one; examples of such weights are the kernel 

weights 

w (t) I K k-t fort-M~k~t+M k = ( , )
 M M 

(2.2) 

where the kernel K(u) is a symmetric density on the interval [ - 1, I]. 

A very simple and easily understood set of weights are the "uniform moving average 

weights", which equal (2M)~* for k in the interval [t -M, t +M] and equal O elsewhere. In this 
case L(t) is the uniform moving average L(t) = (2M)~' ~~'=r M /1(t). 

Another interesting set of weights wk(t) is given by the set of "exponential weights" 

wk(t) = Ai'~kl , O < ~ < l. These weights are symmetric versions, standardized to sum 

~~=_M~"~kl 

to one, of the weights used by J. P. Morgan's RiskMetricsT~ (1994), who recommends A = 

0.94. The related weights ( I -~)A('~k) are from the Integrated Moving Average process 

ARIMA (O, l, 1). See Box and Jenkins (1976), page 105. 
We also consider locally linear or locally polynomial weights wk(t). These are defined as 

follows: Let wt (t) be a preliminary set of nonnegative weights such as (2.2), and let a (t), b](t) , 

., d , J, ..., pd that minimize the local weighted sum of squares b (t) be the values of a p 

~ [!l(k)-Jla+~~,(k-t)j}J wt(t). (2.3) ,+M 

k=*-M !=1 
Then ~ (s) =a(t) + ~,d=1 b, (t) (s -t) J is called the locally polynomial fit, and the locally polyno-

mial long-term trend at time t is L(t) =1/(t) =a (t). It can be shown that L(t) can be written 

in the form 

,+M 

L(t) a(t)= ~ w.(t),1(k). (2.4) 
k=*-M 

where wk (t) are constants; e.g., Fan and Gijbels (1996), page 20. 

Locally polynomial smoothers of 11(t) have many desirable properties that have been 

demonstrated by Cleveland ( 1979), Cleveland and Devlin (1988), Fan (1993), Fan and 

Gijbels (1996), and Ruppert and Wand (1994), among others. The regression smoother 
LOWESS in S-PLUS ( 1993) is a locally linear smoother adjusted for outliers (extreme values) 

among the {//(t)}. LOESS, which also is in S-PLUS, includes locally polynomial smoothers. 

The locally polynomial long-term trend function L(t) has the importantpolynomial reproduc-

tion property. That is, if the true mean ,1(t) is a polynomial of degree p, then the degree d =p 

locally polynomial long-term trend function L(t) equals ll(t) for all t = 1, 2, . . ., T. See, e.g., 

Fan and Gijbels (1996), page 61. 

The set of weights should be chosen to balance between stability, familiarity, and 

interpretability. For instance, a 91-day uniform moving average L(t) can be interpreted as 

focusing on quarterly trends. Moreover, such moving averages of exchange rates are of 
particular interest because they are used in place of daily rates in many financial instruments. 

On the other hand, moving averages are unstable in periods of sudden changes at the beginning 

and end of a series (the boundary curse). A much more stable measure of long-term trend is 
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obtained by using the locally linear L(t) defined by (2.3) and (2.4) with d = 1. 

The long-term trend can be used to analyze the development of a series without the 

distractions of local time changes, and it is especially useful for comparing similar time series. 

To illustrate, we introduce the natural unbiased estimator of L (t), which is 

,+TL 
L(t)= ~ wk(t) Y(k). 

*='--.' 

Figure 2.1 gives the estimated long-term trends as represented by the 91- and 181-day 

locally linear LOWESS smoothers for the exchange rates of JY, GM, SF, and BP in U.S. 

dollars for the time period January 5, 1992, until April 14, 1995. There are 1 196 days 

(including weekends) in this time period during which there were, respectively, 36, 34, 51, and 

40 missing values (holidays) among the JY, GM, SF, and BP. The missing values are replaced 

by the linear interpolate between the nearest two actual values in the series. This has very little 

effect on the regression decomposition since L(t) is a "smoother", which smoothes out the 

eifect of individual points. The four exchange rates series all have been rescaled to have initial 

value 100. That is, the graphs show the percentage value of a U.S. dollar in the four currencies 

when compared to the value on January 5, 1992. The four exchange rate values were all 

recorded at the same instance, 10 p.m., GMT. 

The graphs show that SF and GM have very similar long-term trends while the long-term 

trends in JY and BP follow their own low and high paths, respectively. The "spike" in the BP 

shortly after day 200 corresponds to the time when it was "cut loose" from other European 

FIGURE 2. l. 
Long Term Trends: Symmetric (91 days): JY, GM, SF, and BP 
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Long-term trends of the JY , GM -------- , SF- --- , and BP- - - for the time period January 5, 1992, to 

Apri] 14,1995. The first and second figures give the 91- and 181-day LOWESS regression smoothers, respectively. 
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currencies. Also note that starting near day 600, the path of the JY is very similar to that of 

the GM and SF. The 91- and 181-day long-term trends are very similar except for the BP 

shortly after day 200 when it was "cut loose" from other European currencies. 

The correlations between the long-term trends of the four currencies are given in Table 

2. I . It gives a concise summary of the trends shown in the graphs. It also provides one surprise: 

The correlations of the long-term trend between JY and SF is much higher than that between 

JY and GM, indicating a surprisingly strong macro-economic relationship between the 
Japanese and Swiss currencies. 

TABLE 2.1. 

(a) 9ldays (b) 18ldays 
JY GM SF JY GM SF BP BP 

JY I .OO O. 1 1 O. 52 - I .OO 0.09 O. 53 - 0.66 0.59 

GM O. 1 1 1 .OO O. 85 0.09 1 .OO 0.85 O. 5 l 0.52 

SF O. 52 O. 85 1 .OO O. 53 O.85 1 .OO O. 1 8 0.24 

BP - o. 59 O. 52 0.24 - 0.66 0.5 1 o. 1 8 1 .oo l .OO 

correlations between tong-term trends in the rour currencies. Tables (a) and (b) give, respectively, 

the correlations for LOWESS 91-day and 181-day long-term trends, 

(ii) Short-Term Trend 

We define the short-term trend S(t) as a weighted average over a short time span of 

deviations of the long-term trend from the mean. That is 

' ~TS 

S(t)= ~ vk (t)[!l(k)-L(k)] 
k='-Ts 

where the weights vk(t) are nonzero over a short time span. The trend function S(t) focuses 

on changes over short time periods, such as one or two weeks, and gives short term "micro" 

fiuctuations that are not measured by the long term "macro" trend function L (t) In the case 

of exchange rates where there are strong "day of the week" effects (currencies are traded seven 

days a week, but Saturday and Sunday trades are subject to conditions different from the other 

days of the week), the seven-day uniform moving average is without the day-of-the-week 
eff ect . 

The natural unbiased estimator of S(t) is 

,+Js 
~(t)= ~ vk(t)[ Y(k)-L(t)]. 

k=,-7:s 

Figure 2.2 gives the estimated short-term trends S(t) based on locally linear LOWESS 

smoothers for the four currencies we consider. We see that the GM and SF have very similar 

short-term trends, while the JY and BP do not. The correlations are given in Table 2.2. 

The relatively small correlations between JY and the other currencies is an indication that 

its short-term movements are more infiuenced by national economic developments than the 

other currencies. Moreover, a strong local relationship between SF and GM is evident in the 

correlation tables. 
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TABLE 2.2. 

(a) (91,7) days (b) ( 181 ,15) days 

JY GM SF BP JY GM SF BP 
JY I .OO O.4 1 0.43 O. 10 1 .OO 0.42 0.46 O. 1 5 
GM 0.4 1 1 .OO 0.93 0.64 0.42 1 .OO 0.95 0.7 l 
SF 0.43 0.93 1 .OO 0.63 0.46 0.95 1 .OO 0.70 
BP O. 10 0.64 0.63 1 .OO O. 1 5 0.7 1 O. 70 1 .OO 

Correlations between short-term trends in the four currencies. (a) uses a 7-day short-term trend based on a 91-day 

long-term trend whi]e (b) uses a 15-day short-term trend based on a 181-day long-term trend. 

Short Term Trends: 
FIGURE 2.2. 
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The first two graphs give the short-terrn trends of GM and SF------
short-term trends based, respectively, on 91- and 181-day long-term trends. 

short-term trends of JY and BP - ----

1000 1200 
using, respectively, 7- and 15-day 

The next two graphs similarly give 
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(iii) The Residual Series 

We define the residual or irregular series I(t) as the residual of the original series Y(t) 

after subtracting the sum L(t) +S(t) of the long- and short-term trends. That is 

I (t) = Y(t) - [L (t) +S(t)] . 

Our empirical residual series is 

I (t) = Y(t) - [L (t) +S(t)] . 

Figure 2.3 gives the empirical residual series of the four currencies when the long- and 

short-term trends are based on 181- and 15-day spans, respectively. The (91,7) day empirical 

residuals were very similar (not shown here). The same story as in Section II(i) and II(ii) 

emerges: The GM and SF are closely correlated while the JY and BP show less of a 
relationship to the other currencies. The BP still shows a spike after it was cut loose from other 

European currencies. The correlations are given in Table 2.3. 

Residuals: Symmetric 
FIGURE 2.3. 
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trends The next graph srmilarly glves the resrdual senes for the JY and BP 

TABLE 2.3. 

(a) (91,7) days (b) (181, 15) days 
JY GM SF BP JY GM SF BP 

JY I .OO 0.47 O. 46 O. 33 1 .OO O. 50 0.48 O. 38 
GM 0.47 1 .OO 0.9 1 O. 72 O. 50 1 .OO 0.92 0.75 
SF 0.46 0.9 1 1 .OO O. 68 0.4g 0.92 1 .OO 0.69 
BP 0.33 O. 72 0.68 1 .OO 0.38 0.75 0.69 1 .OO 

Correlations between residuals of the four currencies. (a) uses a 7-day short-term trend based on a 91-day 

long-term trend while (b) uses a 15-day short-term trend based on a 181-day long-term trend. 
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（iv）　T11e1）ecompositions

　　　　Our　theoretical　and　empidcal　decompositions　of　the　time　seriesγ（f）are

　　　　　　　　　　　　＝r（工）＝L（f）十∫（τ）十1（工），and＝r（f）＝L（ご）十∫（f）十1’（工）．

　　　　An　interesting　question　is　whether　the　three　series　f（τ），3（f），and1（f）are　nearly

011＝hogonal　or　uncorrelated，The　correlation　between　them　measures　the　extent　to　which　each

series　provides“orthogonal　information”．For　instance，we　hope　that　the　short－term　trend∫（f）

is　nearly　orthogonal　to　the　long－tem　trend工（f）．Moreover，the　correlation　between工（f）十

∫（エ）and1（f）measure　to　what　extent　the　decomposition

　　　　　　　　　　　　　　　　　　　　　γ（τ）一r＝［L（f）十∫（f）一r］十∫（f）

have　been　successful　in　sp1itting　the　variabi1ity　in　the　series　into　a　signa1and　a　noise　part．The

corre1ations　are　given　in　Table2．4．

　　　　The　correlations　between工（1）and∫（τ）in　Table2．4show　that　JY　is　decomposed　better

than　the　other　cumencies，since　for　JY　this　corre1ation　is　close　to　zero．For　the　time　spans

TABLE2．4、

Correlation　for JAPANESE　YEN GERMAN　MARKS
（91，7）day　trends ’工（1） 卯）

’　　　　　　　　　　　　　　　＾

1二（f）十∫（f）
I1（f） ＾L（‘） ∫（1） z（f）十3（1） ＾1（1）

＾L（f）

1．00 O．08 1．00 0．00 1．OO 0．23 O．98 一〇．02

3（1） O．08 1．00 0．15 一〇．04 O．23 1，00 O．39 O．11
＾　　　　　　　　　　　　　　　＾

1二（f）十∫（1〕 1．00 O．15 1．00 O．00 O．98 O．39 1．00 0．00
＾∫（1）

o．oo 一〇．04 0．OO 1．00 一〇．02 O．11 0．00 1．00

Correlatlon　for SWISS　FRANCS BRITISH　POUNDS
（91，7）day　trends

’1二（1） 5（f）
＾　　　　　　　　　　　　　　’

工（f）十∫（f）
’∫（‘） ＾工（τ）

卯） 尤（f）十3（1）

’五（一）

1．OO O．19 0．99 一〇．03 1．00 O．29 O．99 一0．06

3（1） O．19 1．00 0．34 O．07 O．29 1．OO 0．43 一0．04

＾　　　　　　　　　　　　　　　＾

1二（丘）十∫（1） O．99 O．34 1．00 一〇．02 O．99 O．43 1．00 一0．07

’∫（丘）

一〇．03 O．07 一〇．02 1．00 一〇．06 一〇．04 一0．07 1．00

Corre1副tion　for JAPANESE　YEN GERMAN　MARKS
（181，15）day　tr㎝ds

＾1二（丘） 5（1） ’ ’

工（1）十∫（一）
＾∫（‘） ’几（1） 卯） z（1）十帥） ’∫（丘）

’工（1）

1．OO 0．09 O．99 O．04 1，OO O．23 0．96 O．00
5（1） O．09 1．00 O．22 O．11 0．23 1．00 0．49 O．13

z（f）十的） O．99 0．22 1．00 O．05 O．96 O．49 1．OO O．04
＾

1（f） O．04 0．11 0．05 1．00 O．OO O．13 O．04 1．00

Correlation　for SWISS　FRANCS BRITISH　POUNDS
（181，15）day　tr㎝ds

＾

靴）
I ＾ ＾ ’

1二（’）十∫（f） 5（f） ＾ ’

L（f） ∫（‘） 1二（f） 工（f〕十∫（‘）
’∫（‘）

’

工（1） 1．OO 0．19 0．97 0．O1 1．OO O．29 O．96 一0．05

帥） O．19 1．OO O．44 O．13 O．29 1．OO 0．53 O．04

ヱ（1）十帥） O．97 0．44 1．00 O．05 O．96 O．53 1．oo 一〇．03

＾1（1）

O．01 O．13 O．05 1．OO 一〇．05 O．04 一〇．03 1．00

Coπe1ations　between　the　terms　in　the　decompositions　of　four　exchange　rate　series．
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considered, GM, SF, and BP have a more complicated structure and may require different time 

spans to achieve orthogonality between L (t) and S(t) . On the other hand, the decompositions 

have achieved near orthogonality between L(t) +S(t) and the residuals I(t) for all the four 

currencies. 

Finally, we compared (not shown here) the variability of the original time series with that 

of the terms in the decomposition by giving the box plots of Y(t) - Y(t - I ), L(t) -L (t - 1), 

S(t) -S(t- 1), I(t) -1(t- 1), I(t), and the residuals of a vector autoregressive fit to I(t). 

These box plots indicate the frequency distribution of daily movements of the terms in the 

decomposition. They show that a very large part of the daily increments Y(t) - Y(t - 1) of 

Y( ･ ) come from the irregulars, and the daily increments ofL (t) and S(t) are very small. This 

means that the increment or change of L( ' ) and S( ･ ) are not so important in the prediction 
of Y( ' ), but the change of I( ' ) is the main action. Thus, the main part of prediction will 

depend on the (possibly stationary) behavior of I(t). 

Remark 2.1. Comments on the types of decompositions. Shibata and Miura (1997) discuss 

differences and similarities between the decomposition Y(t) =L(t) +S(t)+1(t) and the de-

composition "SABL" proposed by Cleveland et al. (1981) and implemented by Becker et al. 

( 1988). Other decompositions of time series have been proposed by Beveridge and Nelson 

( 1981). The application of regression smoothing techniques to time series data is treated in 

monographs by Milller ( 1988) and Gydrfi, Hardle, Sarda, and Vieu ( 1989). 

The issue of how long the long time span in L(t) and the short time span in S(t) should 

be chosen can often be decided by practical considerations. For instance, Iong time spans of 

one quarter or one year are natural and short time spans of one or two weeks are reasonable 

choices. The time spans could also be chosen to minimize the correlations between the terms 

in the decompositions. Cleveland et al. (1981) proposed using a power transformation of the 

original series Y(t) to minimize the correlation between the terms in their SABL decomposi-

tion. This could also be done with the LAST (10ng- and short-term) decomposition, in 
particular, using the nonparametric correlation coefficient of Doksum and Samarov ( 1995). 

However, this was not done in our exchange rate analysis since the squared correlations from 

Table 2.4 are very low (bounded from above by 0.09) and because the original scale (exchange 

rate) is easier to interpret than a power transformation 

(v) Autoregressive Analysis of Residuals 

We investigate the dependence of I(t) on its lagged values by using a multivariate 

autoregressive fit program ("ar" in S-PLUS). We find that the Akaike Information Criteria 

selects an order 4 autoregressive model. To check the success of the autoregressive fit we 

applied the BDS test. (See Brock, Dechert and Scheinkman ( 1987); Brock, Hsieh, and 

LeBaron (1991).) The results (not shown here) suggest that properties of the residuals are 

very much like that of an independent and identically distributed sequence of random 

variables. 

The four-variate autoregression model (MAR(4)) is 

I(t) =C* ･ I(t- l) + C, ･ I(t-2) +C3 ' I(t -3) +C. ･ I(t-4) +e(t), (2.5) 

where 

I(t)=(1'"(t), Io~(t), I*'(t), I"'(t))r 
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e(t)=(~FJ*(t), eGM(t), (Fs*(t), 

0.793 - 0.076 0.000 
_ -0.035 0.590 0.098 C*- _0.044 0.014 0.755 

-0.022 -0.224 0.063 

- 0.04 1 0.029 0.000 
_ -0.001 0.085 -0.079 C2 - 0.0 10 - 0.022 - 0.079 

- 0.020 0.024 - 0.0 1 6 

0.003 0.08 1 - 0.058 
_ 0.091 0.113 -0.163 C3- 0.046 0.099 -0.099 

0.075 O. 302 - O. 269 

- 0.038 - 0.089 0.08 1 
_ -0.043 -0.248 0.220 C+ - 0.008 - O. 1 96 O. 1 42 

-0.019 -0.305 0.282 

APPLICATIONS TO 

~F "'(t) ) T
 

- 0.00 1 

0.047 

0.013 ' 

0.856 

0.026 

0,030 

0.072 ' 

0.066 ;
 
J
 

Ot037 

0'044 

Ot051 ' 

Otll6 

- 0'002 

OI023 

OI016 ' 

-0'014 
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Table 2.5 give error variances and AIC values for this fit. 

In the MAR(4) model (2.5) , each exchange rate has been decomposed and the irregulars 

of the four currencies have been fitted with a Vector Autoregressive model. The autoregressive 

model explains the relationship between the present irregulars and the past irregulars. Next we 

check the mutual contemporary relationship between the four final residuals of the vector 

autoregressive fit using principal component analysis. The results are shown in Table 2.6. 

We see that while all the four currencies have a common factor (first principal compo-

nent), the JY residual is rather isolated (by the second principal component) from the three 

European currencies; and among the three European currencies the BP residual is rather 

distant (by the third and the fourth principal components) from GM and SF. The residuals of 

SF and GM have mostly common factors; except the fourth principal component whose 

TABLE 2.5. 

ErrorVari固皿ces

JY GM SF BP
JY O．198 O．130 O．143 O．l17

GM O，130 0．298 O．298 0．255

SF O．I43 0．298 0．372 0．266

BP O．117 O．255 O．266 O．381

Order 

AIC 
Order 

AIC 

o
 

3636.35 

6
 

1 1 .84 

7.97 

6.61 

2
 

2.52 

6.26 

3
 

5.98 

9
 

31.93 

4
 

0.00 

lO 

25.88 

5
 

3,06 

11 

28.33 

Prediction error variances and AIC for the order 4 autoregressive fit to the residuals I(t) of the (91,7) symmetric 

decomposition. The AIC has been adjusted by subtracting its minimum value. 
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TABLE 2.6. 

AND MANAGEMENT 

PrincipalComp㎝㎝t 1 2 3 4
Eig㎝value 2．956 O．629 O．315 O．100

Contrib1』tion 73．89％ 15．73％ 7．87％ 2．51％

Cumulative　Contribution 73．89％ 89I62％ 97．49％ 100．00％

JY O．404 0．901 O，160 O．O12

GM O．549 一〇．179 一〇．319 一0．752
Eigenvectors

SF O．539 一〇．159 一〇．512 0．649

BF O．495 ■O．362 O．781 O．117

[October 

Principal components analysis for the residuai e(t) of the order 4 vector autoregressive fit to the residuats I(t) 

of the (91,7) symmetric decompositron. 

explanatory power is, however, very small (2.5%). 

The coefficient matrices in (2.5) suggest an univariate autoregressive fit of order one for 

JY. Using S-PLUS, this leads to the fitted model 

I (t) = 0.724 1 (t - I ) + ~l (t) 

with prediction error variance 0.200 as compared to 0.198 for the MAR(4) model fit. This 

suggests that a good fit to the JY series is the parsimonious model 

Y(t) =L (t) +S(t) + 0.7241 (t - I ) + el (t) 

= 0.724Y(t - I ) + [L(t) - 0.724L (t - I )] + [S(t) -0.724S(t I )] +e (t) 

III . Decomposition of Time Series Using Lagged Values 

(i) Methodology of Predictive Smoothing 

The methods in the preceding section provide an ex-post analysis of a complete time 

series. That is, it provides a description in terms of a decomposition of how the series 

developed over time by using at time t both values prior and posterior to t. However, we may 

also want to decompose the time series today, at time t, using all the data available up to time 

t. This leads to a decomposition of the time series Y(t) into what we call predictive long- and 

short-term trends as well as an irregular term. They are defined as 

Lp(t)= ~ wk(t)l/(k), 
k=,-TL 

Sp(t)= ~ vk(t)[/1(k)-Lp(k)], (3.1) 
k='-Ts 

lp(t) = Y(t) - [Lp(t) +Sp(t)] 

where wk(t) and vk(t) are weights. For instance, we might use 

A,~k ~~~k 0<A <1, k=1, .., w (t)= ~[=1A'[ k ' 0<A[< I and vk(t)= ~~=[A~ k ' . t 
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with ~* close to one, such as O 94･ and ~2 closer to zero, such as 0.5 or smaller. These are the ,
 

ARIMA (O, l, 1) weights used by J. P. Morgan's RiskMetrics"~ ( 1994), except for the 

standardization constant in the denominator. 

The empirical versions Lp(t), Sp(t), and lp(t) of (3.1) are obtained by replacing 14(k) by 

Y(k) in the formula (3.1). 

In the case that only lagged values can be used in the modeling of the series, uniform 

moving averages have serious biases over time periods with monotone trends and the locally 

linear method described in Section 11 is superior in this case. See Section VI for an analysis of 

this bias. 

(ii) Long- and Short-Term Trends and the Residuals in Predictive Decompositions 

Figure 3.1 compares the past (ex-post, symmetric) and predictive long-term trends L(t) 

FIGURE 3. 1. 

Long Term Trends (Predictive and Symmetric: 91 days): JY 
o 

o '7~ 

~~~-., 

o h 
o
 

200 

Long Term Trends 

400 600 

(Predictive and Symmetric: 
800 rooo 
91 days): GM 

o 

o o 

o a~ 

O 200 400 600 800 1 OOO 
The first graph gives the indexed currency exchange rate of JY and the symmetric - - - and 

predictive --------･ 91-day long-term trends. The second graph shows the same for GM. 

TABLE 3.1. 

91 days 181 days 

JY GM SF BP JY GM SF BP 
JY I .OO 0.07 0.46 - 0.46 l .OO - 0.05 0.3 1 - 0.30 

GM 0.07 1.00 0.87 0.64 - 0.05 1 .OO 0.87 0.78 
SF 0.46 0.8 7 1 .OO 0.4 l 0.3 1 0.87 1 .OO 0.66 
BP - 0.46 0.64 0.4 1 1 .OO , - 0.30 O. 7 8 0.66 1 .OO 

Correlations of long-term predlctive trends for the four currencres, 
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and Lp(t), based on the locally linear method (weights), for the JY and GM series. The graphs 

show how the predictive smoother Lp(t) overshoots the real series when there are sudden 

sustained drops in exchange rates while it undershoots in the case of sudden sustained 
increases. It illustrates the perils of prediction. We also computed L(t) and Lp(t) based on 

uniform moving average weights. This Lp(t) (not shown here) overshoots and undershoots the 

"true" trend L(t) much more than the locally linear Lp(t). 

Table 3. I shows the correlation coefficients ofLp(t) of the four currencies. We see that the 

correlation between JY and GM is very small, whereas the correlation between JY and SF is 

0.46 in the case of 9 l-day trend. The correlation of GM and SF is very high, 0.87. These results 

are consistent with those based on symmetric smoothing noted in Section II. 

We graphed the predictive short-term trends, residual series, and long-term trends for the 

four exchange rates when the long- and short-term trends are based on 91- and 7-day locally 

linear smoothers. The long-term prediction starts 91 days after the beginning (January 5, 

1995) of the exchange rate series while the short-term and residual series start 91 + 7= 98 days 

after January 5, 1992. All the predictive series stop on April 14, 1995, one day before the last 

value in the series. The results (not shown here) were very similar to the symmetric 

decompositions of Section II, except the long- and short-term trends in the predictive 

decomposition are more variable. 

We check the correlations between Sp(t) for the four currencies in Table 3.2. Again the 

correlations are quite similar to those of the symmetric decompositions. Table 3.3 shows 

correlation coefficients between lp(t) for the four currencies and shows that the correlations 

are smaller (by about O. 1) than those in Table 2.3 in the previous section. These are the eifects 

of not using the data posterior to the time t. 

Table 3.4 shows that the predictive decomposition is very successful in achieving 

orthogonality between the terms in the decomposition for JY and is also quite successful for 

the other three European currencies, except the remaining small correlations between Lp(t) 

TABLE 3.2. 

(91,7) days (181,15) days 
JY GM SF BP JY GM SF BP 

JY I .OO 0.4 1 0.43 O. 1 1 1 .OO 0.40 0.42 0.08 
GM 0.41 1.00 0.91 0.66 0.40 1.CO 0.94 0.74 
SF 0.43 0.91 1.00 0.60 0.42 0.94 1.00 0.69 
BP O. I I 0.66 0.60 1 .OO 0.08 0.74 0.69 1 .OO 

Correlations between short-term predictive trends for the four currencies. 

TABLE 3.3. 

(91,7) days 

JY GM SF BP 
JY I .OO O. 37 O. 37 O. 27 

GM 0.37 1.00 0.80 0.61 
SF O. 37 O. 80 1 .OO O. 59 
BP O. 27 O. 6 1 O. 5 9 1 .OO 

(181,15) days 

JY GM SF BP 
l .OO 0.41 0.37 0.3 1 
0.4 1 1 .OO O. 89 O. 70 

0.37 O. 89 1 .OO 0.66 
0.3 1 0.70 0.66 1 .OO 

Correlations between residuals for the four currencies. 
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TABLE3．4．

Corre1ati011for JAPANESE　YEN GERMAN　MARKS
（91，7）day　tr㎝ds

＾1二。（f） 5。（1） f。（f）十靴） ’∫・（f） I1二■（r） 3。（1）
＾　　　　　　　　　　　　　　　　　　＾

工・（1〕十8・（丘）
’∫戸（1）

＾工。（一）

1．00 一〇．09 0．99 一〇．03 1．00 一0．26 0．96 一〇、01

5。（f） 一〇．09 1．00 0．05 一〇．10 一〇．26 1．00 O．01 一〇、13

f。（f）十3。（工）
O．99 O．05 1．00 一〇．04 0．96 0．01 1．00 一0．04

＾

∫・（’） 一〇．03 一〇．10 一0．04 1．00 一0．Ol 一〇．13 一〇．04 1．00

Correlatio11for SWISS　FRANCS BRIT1SH　POUNDS
（91，7〕day　trends

＾L・（工〕 3。（1） f。（f）十3。（f） ’1。（f） ＾工。（’） 3。（1） f。（f）十3。（1） ＾1。（1）

＾工。（1）

1．OO 一0．23 O．97 O．OO 1．oo 一〇．32 O．97 0．00
3、（1）

一〇、23 1．OO O．03 一〇．11 一〇．32 1，OO 一0．07 一〇、17

f。（f）十∫。（1）
O．97 0．03 1．OO 一〇．03 O．97 一〇．07 1．00 一0．05

＾

∫・（1） O．OO 一0．I1 一〇．03 1．00 O，OO 一0．17 一0．05 1．00

Coπe1ation　for JAPANESE　YEN GERMAN　MARKS
（181，15）day　tr㎝ds ＾L（1） 5。（1） ヱ。（1）十3。（f） ＾1・（f） ’工・（丘〕 3。（f） 工。（り十5。（1） I1・（！）

’1二・（1）

1．OO O．03 O．97 一〇．Ol 1，OO 一〇．36 O．90 O．00
5。（1）

O．03 1．00 O，28 一〇．20 一〇、36 1．00 O．08 一〇．22

工。（一）十∫。（1）
O．97 O．28 1．00 一0．06 O．90 O．08 1．00 一〇．10

’∫・（1）

一0．01 一〇．20 一〇、06 1．00 O．OO 一〇．22 一0．10 1．00

Correlation　for SWISS　FRANCS BRITISH　POUNDS
（181，15）daゾrends

’工。（f） 5。（1〕 f。（1）十3。（1） ’1・（1） ＾L・（f） 5。（f） 工一（！）十5。（1） 1∫・（f）

’L・（f）

1．00 一〇．28 O．91 0．01 1．00 一〇．57 O．90 O．OO
∫。（1） 一〇．28 1．OO O．15 ■0．21 一〇．57 1．OO 一〇、15 一〇．22

尤。（f）十3。（1）
0．91 O．15 1．00 一0．08 O．90 一0．15 1．oo 一〇．1l

＾

1・（1） O．O1 一〇．21 一〇．08 1．oo O．00 一0．22 一〇、1l 1，OO

Correlations　betwecn　components　in　the　predictive　decompositions一

and∫P（f）．

（iii）　A“oregressive　Amalysis　of此e　PmdicHve　I皿egular　Series

　　　　Table3．5shows　the　autoregressive　it　to　the　predictive　residua1s1’。（f）．

Information　Criteria　applied　to　the　four　variate　residuals　selects　order3．

　　　　The　four－variate　autoregressive趾ted　model　is：

　　　　　　　　　　　IP（工）：CパI・（f■1）十C1・IP（τ一2）十CゴIP（工一3）十eP（τ），

where

　　　　　　　　　　　　　　　　　　　　I。（f）＝（〃（τ），∫言”（‘），1葦F（f），1葺p（τ））τ，

　　　　　　　　　　　　　　　　　　　e。（f）＝（ξ仰），ξ芦”（f），ξ葦F（1），ξ岩p（f））「，

The　Akaike

（3．2）
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-0.014 -0.051 O 078 O 188J O. 1 49 - 0.06 1 0.008 - 0.046 

_ -0.024 -0.010 0.055 0.007 
C - _0.034 -0.036 0.176 -0.036 ' 

2 [-0.022 -0.154 0.075 -0.ll6J - O. 1 83 - 0.069 0.04 1 0.020 
_ -0.008 -0.110 -0.056 -0.014 

C - _0.000 -0.075 -0.173 0.029 ' 

- O. 1 1 O 0.066 - 0.098 - 0.0 1 l 

_ 0.0 1 2 - 0.043 - O. 1 50 0.004 
C3- _0.024 0.058 -0.238 0.028 ' 

0.0 1 6 0.047 - O. 142 - 0.078 

The coefficients in (3.2) suggest an univariate order 2 autoregressive fit to the JY 

exchange rate series. Using S-PLUS, this fit is 

(3.3) Y (t) :=Lp(t) +Sp(t) + o. 137 Ip(t - I ) - O. 197 Ip(t - 2) + ~:p(t) , 

with residual variance 0.076, which should be compared with the variance 0.080 oflp(t). This 

shows that the decomposition Y(t)=:Lp(t) +Sp(t) + i.i.d. noise is very successful in that the 

TABLE 3.5. 

JY 

GM 
SF 

BP 

JY 
0.073 

0.028 

0.028 

0.026 

Error Variances 

GM SF 
0.028 0.033 

0.08 1 O. 074 

0.074 O. 109 

O.062 0.072 

BP 
0.026 

0.062 

O.072 

0.131 

Order 

AIC 

O
 

24 1 .90 

1
 

175,14 

2
 

53.57 

3
 

0,00 

4
 

16.67 

5
 

19.83 

Prediction error variances and AIC for the order 3 autoregressive fit to the residuals lp(t) of the (91,7) predictive 

decomposition. The AIC has been adjusted by subtracting its smallest value. 

TABLE 3.6. 

Principal　Comp㎝ent 1 2 3 4
Eig㎝・alue 2．548 O．791 0．447 O．214

Contributio11 63．70％ 19．78％ 11．18％ 5．34％

Cum』1ative　Contribution 63．70％ 83．48％ 94．66％ 100．OO％

JY O．351 O．925 O．147 0．O01

GM O．562 一〇．149 一〇．395 一0．711
Eigenvectors

SF O．561 一〇．149 一〇．411 O．703

BF 0．497 一〇．317 O．808 O．OlO

Principal components analysis for the residuals of the order 3 vector autoregressive fit to the residuals 

I.(t) of (91,7) predictive decomposition. 
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reduction in variance by going to the more complex model (3.3) is only 0.080-0.076 =0.004. 

Remark 3.1. The (91,7) predictive decomposition uses 91 days prior to t to make the 
long-term prediction Lp(t) and seven days prior to t to make the short-term prediction Sp(t). 

This short-term predictor can be regarded as a "local autoregressive" fit. It is a weighted linear 

fit using seven lagged values. Autoregressive techniques applies to the residuals lp(t) are 

teasing out possible overall (nonlocal) Iinear dependencies on lagged values. For instance, 

with JY there were slight autoregressive dependencies of I.(t) on the two first lagged values. 

Remark 3.2. For a discussion of conditions needed for the existence of nonparametric 
time-series models of the type considered in this paper, see Masry and Tj6stheim (1995). 

Remark 3.3. Since weekend trades are fewer than weekday trades and subject to different 

rules than weekday trades, we investigated a possible weekend effect by redoing the analysis 

using only weekdays for the (91,7) decomposition. The results (not shown here) did change 

a little. The Akaike Information Criteria selects an order 6 multivariate autoregressive fit with 

the lag one through three coefficients explains most of the variability with one interesting 

exception: The lag 6 (weekly) coefficient for BP is large for GM and SF. The multivariate lag 

one coefficient for JY is 0.149 when weekends are included and 0.125 when weekends are 

excluded. 

IV . Implications for Risk Measurement 

Based on the decompositions in the previous sections, we briefiy describe a few possible 

applications to risk measurement. Recall that the decomposed components have very small 

correlations. We utilize these properties within a series and also their relationship with 

decomposed components of other series. 
The basic idea for the applications is based on the interpretation that long- and short-term 

trends represent macro and micro aspects of the time-series movements, respectively; that the 

irregular part represents daily stochastics; and that the decomposition decomposes the time-

series movements into nearly orthogonal terms. This interpretation for three components, i.e., 

three levels of uncertainties, is heuristic and depends on the time span used in the smoothing 

procedure. In order to confirm it we need to do a further study to relate the components with 

macro- and micro-economic indices of the countries. So the terms, macro, micro, and daily 

moves used in the following suggestions for applications are based on our heuristic interpreta-

tions. 

Table 4.1 and 4.2 show the matrices of correlation coefficients of daily increments of the 

decomposed time-series components, L(t) and S(t), and the final AR-residuals ~.R(t), for the 

four currencies. They are shown for both the symmetric and predictive smoothing methods, 

respectively. 

From Box-Plots (not shown here) for daily increments Y(t) , L (t) , S(t) , I (t) , and the final 

AR residuals, we conclude that the relative magnitude of the increments of L (t) and S(t) are 

small compared to that of I(t) in the symmetric smoothing case; but they are not so small, 

especially S(t) is not small, in the predictive smoothing case. To be precise, for JY during our 

data period, dL (t) , dS(t) , and AR-residual of I (t) take values mostly between - O. 10 and 0.05, 
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TABLE4，1．

d1二（工） 〃二（f） d1二（’） d1二（1） d∫（τ） d∫（f） d∫（1） d∫（’） ノR肥∫ ■R肥∫ ノR昭∫ ノRr靱

JY GM SF BP JY GM SF BP JY GM SF BP
机（f）：〃 1．OO 0，56 O．61 O．29 O．10 0．00 0．01 O．00 一〇．02 O．01 O．01 一〇．01

d1二（’）：G〃 O．56 1．OO O．95 O．72 O．00 0．05 0．06 O．09 O，02 一〇．02 一〇．02 一〇．06

肌（工）：∫戸 O．61 O．95 1．OO O．73 O．01 O．06 0．08 O．10 O．01 0．00 O．OO 一〇．05

κ（‘）：〃 O．29 O．72 O．73 1．OO 一0．03 O．04 O．05 O．11 O．00 一〇．02 一〇．01 一〇．05

d∫（‘）：〃 O．10 O．OO O．O］ 一〇．03 1．00 O．54 O．51 O．27 O．06 0．03 O．04 O．01

d∫（’）：G〃 O．OO O．05 O．06 O．04 O，54 1．OO O．93 O．68 O．02 0．03 O．04 O．02

d∫（1）：∫戸 O．Ol O．06 O．08 O．05 O．51 O．93 1．OO O．69 O．03 O．02 O．03 O．01

d∫（1）1〃 O．OO O．09 O．1O O．11 O．27 O．68 O．69 1．OO O．04 0．00 一〇．01 O．05

ノRrθ∫：Jγ 一〇．02 O．02 O．01 0．00 O．06 O．02 O．03 O．04 1．00 0．54 O．53 0．42

■RFε∫＝G〃 O．Ol 一〇．02 O．OO 一〇．02 O．03 O．03 O，02 O．OO O．54 1．OO O．90 O．76

ノ沢閉：∫戸 O．Ol 一〇．02 O．OO 一〇．01 O．04 O．04 O．03 一〇．Ol O．53 0．90 1．OO 0．71

■R陀∫l　BF 一〇．Ol 一〇、06 一〇．05 一〇．05 0．01 O．02 O．01 O．05 O．42 0．76 O．71 1．00

Correlations　between　d工（1）、d∫（f）and／R－reslduals　for　the　symmetric　decomposition（91，7）．

TABLE4．2．

肌。（1） 肌。（1） 肌。（1） 此。（1） d∫・（一） d∫。（f） d8。（f） d∫。（1） ノR肥∫ ■R肥∫ ■R陀∫ ノRrε∫

JY GM SF BP JY GM SF BP JY GM SF BP
肌。（f）1〃 1．OO O．33 0．41 0．09 ■0．12 0．00 一〇．03 O．03 O．00 O．02 O．06 O．03

牝。（’）：G〃 O．33 1．OO O．85 0．37 一〇．04 一0．10 一〇．05 一〇．04 O．00 一〇．05 O．Ol 一〇．01

肌。（サ）1∫F O．41 O．85 1．OO O．43 一0．04 一0．05 一〇．09 一〇．02 一0．02 一〇．04 一〇．02 一〇．01

肌。（’）：〃 O．09 O．37 O．43 1．00 0．03 O．01 一〇．Ol 一〇．21 一〇．01 O．02 一〇．Ol 一〇．06

d∫。（1）：Jγ 一〇．12 一〇．04 一〇．04 O．03 1．00 O．39 O．40 O．23 0．31 O．30 O．28 O．21

d∫・（’）：G〃 O．OO 一〇．1O 一〇．05 O．01 O．39 1．OO O．82 O．60 0．25 O．45 O．47 O．39

d∫。（一）：∫戸 一〇．03 一〇．05 一〇．09 一〇、01 O．40 0．82 1．OO 0．56 0．22 O．44 O．45 O．33

d∫■（1）：〃 O．03 一0．04 一〇．02 一〇、21 O．23 0．60 O．56 1．00 0．19 O．36 O．37 O．36

■R閉E：Jγ O．OO O．00 ■0．02 一〇．01 O．31 O．25 O．22 O．19 1．OO O．37 O．37 0．27

λ灰κ∫1G〃 O．02 一〇．05 一〇．04 0．02 O．30 O．45 O．44 O．36 0．37 1．00 O．79 O．60

■R柵：∫F O．06 O．01 一〇．02 一〇．01 O．28 O．47 O．45 O．37 0．37 0．79 1．OO 0．60

ノR肥∫：ムF 0．03 一〇、01 一〇．01 一〇．06 O．21 O，39 O．33 O．36 O．27 0．60 O．60 1．OO

Correlations　between　dL’（1），d∫p（f）and■R一祀sidua1s『or　the　predic“ve　decomposition（91，7）．

　　　TABLE4．3．

（a）　Symmetric（91，7）

JY

10％　　90％ 10％

GM
90％ 1O％

SF　　　　　　　BP

909ら　　　109…コ　　　909ら

肌（一） 一〇．101　0．050 ■O．122 O．098 一0．141 0，112　　－O．089　　0，120

d∫（1） 一〇．121　0．118 一〇．173 O．206 一〇．198 O．223　　－O．235　　0，199

ξ〃（f） 一〇．495　0．448 一〇．658 O．629 一〇．699 O．692　　－O．718　0．668

（b）　Predictive（91，7）

肌。（f） 一〇、186　　0．089 一〇．184 O．171 一〇．223 0，204　　－O．168　0．195

d∫・（工） 一〇．386　　0．415 一〇一531 O．554 一〇．606 O．604　　－O．606　　0．591

ξ川（f） 一〇．194　　0．202 一〇．238 O．267 一〇．282 O．296　　－O．294　　0．288

（刮〕10％and　gO％percentiles　of　dL（f〕，d∫（’），a皿d■R－residua1s　of『our　cumencles　based　on　the　symmetric

　　　　　　　　　d㏄ompositions（91，7）．（b）gives　the　same　for　the　predic伽e（91，7）decomposition。
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- O. 12 and O. 12, -0.5 and 0.5, respectively, in our symmetric (91 ,7) decomposition. They are 

mostly between -0.19 and 0.09, -0.39 and 0.41, -0.19 and 0.20, respectively, in our 
predictive (91,7) decomposition. For other currencies see Table 4.3, where 10% and 90% 

percentiles of dL (t), dS(t), and AR-residual for each currency are shown. These results are 

important because they indicate the relative magnitudes of the contributions of dL(t), dS(t) 

and dl(t) to the whole increment of Y(t), that is to "Risk". The algorithm of LOWESS may 

be relevant to these. 

Looking at time-series data retrospectively (with symmetric smoothing), we see how it 

behaved as results of market tradings; and looking at the uncertainties at each time points 

(with predictive smoothing), we simulate what the practitioners have been facing at each time 

point. The applications of our decompositions would utilize these two viewpoints. 

(i) Behaviors of the Four Currencies Against U.S. Dollars in Three Levels 

Our currency exchange rates data represent the relative weakness of each currency 

against U.S. dollars. The correlation coefficients of dL(t) and dS(t) of JY with those of GM 

are 0.56 and 0.54 in symmetric smoothing and they are 0.33 and 0.39 in predictive smoothing. 

These numbers are about the same for SF, but they are much smaller for BP. These numbers 

are smaller in the predictive smoothing case. Note that dL(t) of JY and BP are uncorrelated 

in the predictive smoothing case though there is some correlation (0.29) in symmetric 

smoothing. A further study may be of interest to find what are the causes of this. 

(ii) Calcu]ating VaR (Value at Risk) 

The Value at Risk (VaR) is a lower threshold v for dY(t) = Y(t + 1) - Y(t) defined by 

P(dY(t)~v)=0.01. It is linked to the standard deviation of dY(t). Assuming that the 

long-term trend does not have any sudden changes, it should be possible to reduce the standard 

deviation of dY(t). Note that dY(t) =dLp(t) +dSp(t) +dlp(t) and our idea is that dL^(t) may 

almost be a predictable constant under the assumption. See Figure 4. l. 

At a time point t, our prediction Y(t+ 1) of Y(t + I ) based on data up to time t is 

Y(t + I ) =L.(t) + {L.(t) -Lp(t - I )} +S.(t) + (time-dependent autoregressive form of I.(t) ) . 

Then, under our assumption that Lp(t) is locally constant, dY(t) is decomposed as follows: 

d Y(t) = Y(t + I ) - Y(t) 

= {Y(t + 1) - Y(t + l)} + {Y(t + I ) - Y(t)} 

=d Y.(t) +dSp(t) + (a, - I ) I.(t) +b, Ip(t - I ) + ･ ･ -

Regarding dLp(t) as a constant, the variance of dY(t) is approximately the sum of the 

variances of dSp(t) and lp(t). See Figure 4. 1. Following this intuition, we estimate VaR. Our 

estimate of the 1% percentile of dY(t), or the Value at Risk, will be approximately 

VaR = {Y(t + 1) - Y(t)} -cd 

where ~ stands for the estimated standard deviation of [dS.(t) +1p(t) terms] and -c is the 1 9;~o 

percentile of the distribution of [Y(t + 1) - Y(t)] / er. 

A normal approximation would give c =2.33. In order to see how well our VaR works 

with this c, we calculated our VaR for 201 days in a row and compared it with two other 
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FIGURE 4. l. 
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The first and the second graphs give daily increments of 91-day long-term trends and 91- and 7-day 

short-term trends for JY, respectively. The third one gives the I, term. 

standard VaR based on the equally weighted sample variance and J. P. Morgan's exponentially 

weighted sample variance. Our VaR with c = 2.33 does not work well in the sense that the 

actual d Y(t) went below our VaR 22 times within 201 days while this happened three times for 

J. P. Morgan's method. See Figure 4.2. Our intuitive idea needs to use a more accurate critical 

constant c so that this frequency will be more compatible with I % chance. One possibility is 

a bootstrap method. Our effort is to have a small and efficient d by focusing on the practical 

uncertainties of VaR. Our d is smaller than the standard errors of the other two methods in 

most cases. 

(iii) Back Testing 

Back testing of a VaR measurement system compares the time-series values of VaR 
calculated by the system under examination with the time-series values of realized values of the 

portfolio by counting how many times the realized values went over the estimated I % 

percentile. Our two-step smoothing technique provides decompositions of the variability from 

two viewpoints. So it will be interesting to compare the time-series behavior of VaR with our 

decomposed L(t), S(t), and I(t). When the realized value of a portfolio goes over VaR at a 

certain time, we may check which one of the three components is most responsible in a 

retrospective way (with symmetric decomposition), and we may also check what was known 

to the practitioners at the time in the predictive way. The same remarks apply to the 
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FIGURE 4.2. 
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--- for JY. The first two figures are based on Plots of actual daily increments of Y(t) and VaR ------

log[Y(t+ l)lY(t)] using equal weights and exponential weights with ~ =0.94, respectively. The third 

figure is based on Y(t+ 1) - Y(t) using exponential welghts with ~ =0.94. 

measurement of volatility in evaluating the increments of prices of derivatives. For these 

problems, it will also be interesting to compare the volatilities obtained from our predictive 

smoothing and the implied volatilities provided among the traders in the markets. We leave 

these interesting problems for later research. 

V . Volatility Measures and Their Time-Series DecOmpositions 

The predictive decomposition of Section 111 can be applied to time series other than 

original exchange rates. We next consider the problem of assessing the volatility of exchange 

rate series such as those considered in the earlier section. 

(i) Volatility Measures 

Many commonly used measures of volatility are based on the conditional variance 02(t) 

given the past of the returns X(t)=10g[Y(t)/Y(t-1)], e.g.. ARCH (Engle, 1982) and 
GARCH (Bollerslev, 1986). The set of conditioning variables, which we denote by ~,_1, 
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contains information on lagged values ofX(t) as well as on other exchange rates, interest rates, 

etc. in general, up to and including time t - I . Let m (t) =E(X(t) I ~ ,_1) denote the conditional 

mean of the returns and let V(t)= [X(t)-m(t)]2 denote the squared deviation from the 
conditional mean. By definition, the conditional variance a2(t) given the past is 02(t) =Var(X 

(t) l~,_1) =E[V(t) I~,_l]. Thus, we can think of a2(t) as the conditional mean of V(t), and 

apply the predictive decomposition of Section 111. To illustrate, we take ~ ,_1 to be the set of 

lagged values X(t- 1), X(t-2), . .. of the returns. Because of the empirical evidence and 

computational convenience, m(t) is often taken to be zero or a constant. We considered 
different candidates for m(t) and found that the moving average m (t) = (t - l) ~] ~j=: X(j) 

gave the best results in the sense of avoiding overfits. Using locally linear smoothers for m (t) 

led to overfits, that is, they would tend to make V(t) close to zero. 

The long- and short-term trends in the conditional variance a2(t) are 

a~(t) = ~ wk (t) E[V(k)] , 

k=1 

a~(t) = ~ vk (t) {E[V(k)] -a~(k)}. 

k=] 

Our assumption is that, to a close approximation, Ip(t)= V(t) - [a~(t) +U~(t)] has condi-

tional (given ~ ,_]) expected value zero (if not, a further decomposition of I(t) as in Section 

III could be used). 

Before analyzing V(t) for the exchange rate data, we removed the weekends. In the long-

and short-term decomposition in the earlier sections it was convenient to leave them in since 

it makes the time axis correspond to calendar time and because this particular analysis is not 

sensitive to weekend efflects. However, returns are sensitive to weekend effects, especially since 

the number of weekend transactions is a small fraction of the number of weekday transactions. 

This makes the absolute weekend returns very close to zero and the volatility measures biased 

toward zero. It would help to divide the returns by the logarithm of volume; however, this 

ratio would then have a much larger variance for weekends than for weekdays. 

By using only weekday exchange rates, we will have returns only for Tuesday, Wednes-

day, Thursday, and Friday; that is for 689 days. The restriction to weekdays has the advantage 

of reducing the number of missing data days considerably. For JY there was only one missing 

data day while for GM and SF there were two and two missing data days. For these days we 

used the average of the returns of the two closest days where returns are available. For days 

with volume less than 200, where volume stands for the number of changes on the computer 

screen during a 24-hour period, we used the average of that days return with the returns of the 

two closest days where returns are available. The average volume (in number of changes per 

24 hours) over weekdays for days with volume at least 200 was 3456 and exceptionally small 

volumes were rare. 

Figure 5. I shows a graphical analysis of the volatility of JY. The first figure compares the 

91- and 1 8 l-day long-term trends ^aL(t) and shows how the 91-day trend is sensitive to changes 

in V(t) while the 181-day trend makes more moderate adjustments as V(t) changes. The 
second one shows how the addition of the short-term trend fine tunes the long-term trend and 

results in a volatility measure which is very sensitive to the recent past. 

Figure 5.2 gives a comparison of the volatilities of GM and SF. They resemble each other, 

but the SF are generally more volatile. 
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(ii) RiskMetricsTM 

The J.P.Morgan RiskMetricsrM ( 1994) measure the volatility is an example of a predictive 

long-term trend kernel estimator. In the third edition of RiskMetricsTM (page 80) they give 

~~p(t) = ~ w(t-k)X2(k) 

k=-K 

with w(t-k)=(1-~)~('~^), ~=0.94 and X(O), X(-1), ..., X(-K) historical data. An 
approximation to d~.(t) based on the historical data is 

~~p(t) =~ ~ ~p(t - l) + ( I -~)X'(t) 

where ~~~p(O) = ~ ~:=_*X'(k). This formula ~~p (t) is the one recommended by J. P. Morgan 

even though ~r~^ (t) also can be computed for historical data and gives roughly the same results. 

However, ~~~.(t) has the advantage of being easy to understand as an updating formula. Note 

that RiskMetricsTM uses m(t) =0 and V(t) =X2(t). Other m(t) were tried by J. P. Morgan in 

earlier versions. 

Figure 5.3 uses the Japanese exchange rate series to give a comparison between the square 

roots of the predictive 91-day long-term smoother and the RiskMetricsrM exponential kernel 

estimator. Both are based on using the first 91 days as historical data. The figure shows that 

Percent of Changes: 
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O 100 200 300 400 500 600 The first figure gives the returns of the Japanese exchange rate series. The second figure gives the 91-day long-term 

and the J. P. Morgan's RiskMetrics"" volatility --------･ of trend volatrlity using our predictive decomposition 

JY using Tuesday-Friday data from the time period from January 6, 1992, to April 14, 1995. 
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both estimators give similar assessments of volatility with the 91-day predictive smoother 

having slightly less abrupt changes. In Section VI we argue that the locally linear predictive 

smoother shown in Figure 5.3 falls closer to the true volatility than RiskMetrics'~. Note that 

RiskMetricsTM is higher than L.(t) because it is based on using m (t) EO whereas Lp(t) is based 

on a data-based centering statistic th(t). 

VI . Asymptotic Analysis 

Asymptotic results and approximations that yield insights into our decompositions can be 

obtained by letting the number of terms T in the series Y(t) tend to infinity. In particular, we 

can use approximations to quantify how sudden changes in the mean function of a time series 

is reflected in our long- and short-term trend functions. 

The approximations also lead to ways of evaluating the performance of predictive 

smoothers by comparing them with symmetric smoothers. The reasoning is as follows: Because 

the symmetric smoothers are based on future as well as past values of a time series, they track 

the "true" trends in the time series more closely than the predictive smoothers. On the other 

hand, the predictive smoothers, such as J. P. Morgan's RiskMetricsTM, have applications to 

volatility assessment which can be used in portfolio management. One way to choose among 

the many predictive smoothers available is to choose the one that falls closest to the symmetric 

smoother since the symmetric smoother tracks the "true" series better. Our approximations of 

this section show that in this sense the locally linear predictor is preferable to kernel estimators 

such as RiskMetricsT" when /1'(t) ~ O. 

We rescale by setting 

h=-,v ~ T+1 ' T' 
That is, the fixed time point t of interest is transformed to v =tl(T+ 1), the summation index 

k is transformed to u =kl(T+ 1), and the time interval [ -M, M] where the nonparametric 

regression smoother is nonzero is transformed to ( -h, h). 

The notation is as in Section II. We define /l^(u) =/1([u(T+ l)]), uE(O, 1), where [ l 

denotes the greatest integer function, and assume that 1lh(u ) - /lo(u) as T - QQ , u eE (O, I ), for 

some function //*(u) on (O, 1) as T - oo. In other words, /1.(u) is the limiting mean function 

of the time series Y(t) after the transformation (6.1) of the time scale to (0,1). 

(i) The Symmetric Regression Smoothers 

In the case of the symmetric long-term smoothing kernel weights of Section II, we write 

[ -ML, ML] for the interval of time points k that the kernel is nonzero; and we set h. =M./T. 

Using a very long-term smoother is equivalent to assuming that for some 0< h0< l, h. - ho as 

T - oo . We let Lh(u) =L( [u (T+ l)] ) be the long-term trend in the new units where L is based 

on the weights (2.1) and (2.2), then 

Proposition 6.1. Suppose the kernel K is a symmetric continuous density on [ - l, I] and 

suppose that !lo(u) is Riemann integrable. Ifh =h. - ho wtth h eE(O 1) as T - OQ then for 

each vE(ho, I -h*), 
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o , ' +h* L (v) limLh(v) h u-v = /lo(v+hox)K(x)dx. (6.2) ( o) l /lo (u ) K d u 
h
 

Proof. First apply the change of variable (6.1) to the sum (2.1) with weights (2.2). Next 

note that the limit of the sum is the Riemann integral (6.2). 

We call the limit Lo(v) in (6.2) the asymptotic long-term trend. 

For the short-term kernel weights of Section 11 we introduce hs=MS/L where [ -Ms' Ms] 

is the time interval where the kernel is nonzero. To use a short-term smoother is equivalent to 

assuming that hs ~ O as T - oo. We consider the following "large T" short-term trend for 

v~~(ho' I -ho): 

Lemma 6.1. Suppose that //o(u) and Lo(u) have continuous third derivatives at v. If h =hs ~ 

O and Th~ - oo as T - oo, then 

u -v (
 

Sh(v) = (Ms) ~1 ~ K hs [//o(u ) -Lo(u )] 

~ )[/1 (v)-Lo(v)+Du(v) L (v)](u v) (hsT) ~ I ~ K ( s o 
h
 

+ ~ [u6(v) -L~(v)] (u -v)2J +0(h~). l
 

Since the kernel K is symmetric, the first derivative term in the expansion (6.3) is zero. By 

setting x = (u -v)/hs and a~ = f_il x2K(x)dx = the variance of K, we find the following approxi-

mation to the limiting short-term trend. 

Proposition 6.2. Under the conditions ofLemma 6.1 and Proposition 6.1, 

Sh(v) =//o(v) -Lo(v) + ~ [/lg(v) -Lg(v)]h~ o~ + o(h~), h0<v < I -ho. (6.4) 

This approximation shows how the short-term trend depends on the instantaneous value 

llo(v) -Lo(v), the second derivative, the bandwidth hs, and the variance of K. 

Next, we consider the case where hL is of order between T~1 and hs, that is hL - O and 

(hs/hL) - O. In this case the trend considered is moderately long. From (6.2) we find that the 

moderately long-term trend Lh(v) with h =hL is 

Lh(v) =/lo(v) + ; /l~(v)h~ a~+0(h~) +0(h~), h0<v < I -ho' (6.5) 

By combining this with (6.4) we find 

Proposition 6.3. Suppose the conditions ofProposition 6.1 and Lemma 6.1 hold. Ifh =hL ~> O 

and (hs/hL) - O as T - oQ, then 

1
 S(v)=- l/l~(v)h~a~+0(h ) h <v<1 h (6.6) 

This approximation shows that the second derivative has a crucial influence on the 

short-term trend in the case of a "moderately long" Iong-term trend. 

The idea of using hL of diiferent order corresponds to using different time spans or 

"different levels of uncertainty". See Miura and Kishino (1995). 
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(ii) The Predictive Regression Smoothers 

We let L(h)(v) denote the long-term trend in the new units. If we apply the preceding 

limits and approximations to the predictive smothers in Section 111 based on weights of the 

form (2.2), we find the following approximations to Lp. ' 

Proposition 6.4. Under the conditions ofProposition 6.1,for each vE(ho, T)' 

L(po)(v)~TlimL(ph)(v)=2h~l u-v du=2 /10(v+hox)K(x)dx. (6.7) ~h' ( o ) l llo (u ) K 
h
 

We define the "large T" predictive short-term trend as 

1 -i u-v ( JL s ( 2 ) S(h)(v)= ~M) ~~K hs [/lo(u)-L(o)(u)] 

By Taylor expansion, as T - co, h =hs ~> O, 

S(ph)(v) =/lo(v) -L(po)(v) + [/1~ (v) -L(po)'(v)]hsllpK + ~ [/lg (v) -L(po)~v)]h~ p2pK + O(h~) (6.8) 

where /lpK=2f ol xK(x)dx , a2pK=4f o] x2K(x)dx , and VE rho' ~ -)
 

¥
 

We now note that the short-term trend depends crucially on the first derivative /1~ (v) of 

the mean. That is, the short-term kernel regression smoother is very sensitive to sudden 

changes in the theoretical means Lu(t)}. On the other hand, the locally linear smoothers 

discussed in Section 11 do not have this property. Using the results of Fan and Gijbels (1996) 

and some manipulations, it is possible to show that for the locally linear short-term predictive 

smoother defined by (2.3) and (2.4), the "large r' short-term trend is, 

S(Lh(~)(v) /1 (v)-Lp (v)+ ~ [,1g(v)-L(po)~v)]h~/12pK+0(h~). (6.9) 
(o) 

From this it follows that when /1~ (v) ~ O the locally linear predictive smoothers are much closer 

to the symmetric smoothers; and, in this sense, they are better than the kernel smoothers at 

tracking the "true" trends in the time series. 

If we consider moderately long-term trends where hL - O and (hs /hL) - O, we obtain, 

for smoothers based on the weights (2.2), the approximations 

L(h)(v) /1 (v)+/1 (v)hL/lpK+ ;/lg(v)hL/lpK+0(hi). (6.lO) 22 

S(ph)(v) =/13 (v) hLllpK + O(h~) . (6. 1 1 ) 

These approximations show more clearly the sensitivity of the predictive kernel regression 

smoothers to the first derivative/1~ (v). The locally linear predictive smoothers do not share this 

sensitivity and are much closer to the symmetric linear smoothers. 
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