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A NOTE ON LOOK-BACK OPTIONS
BASED ON ORDER STATISTICS

Ryozo Miura

Abstract

Average options and minimum (or maximum) options are well-known look-back
options. In this paper we define new look-back options which use the order statistics of
the stock prices for the exercise prices and/or for the underlying variables of the options.

The probability distributions of the order statistics which are required for pricing are
obtained here. Though we have not yet reached the pricing formula of these options,
we are close to it. What is left to be done for pricing will be pointed out.

I. Introduction

Average options and minimum (or maximum) options are the well-known look-back
options. They are also called path-dependent options (or contingent claims) while the
ordinary options are called path-independent since they depends only on the price of the
underlying asset at the time of maturity. In defining a look-back option, any statistic
which is a function of the prices or a functional of the price path of the underlying asset
can be used. Arithmetic average, geometric average, maximum and minimum are the simple
statistics, and they are already used.

For the European average options, there are several studies in the literature including
Bergman [1], Kemna and Vorst [6], Kunitomo and Takahashi [7] and Tumbull and Wake-
man [9]. They determined the probability distribution of the geometric average of the
prices when the underlying asset price follows the log-normal distributilon, and the closed
form for the option prices were obtained. However, the closed form pricing formula for
the arithmetic average options do not seem to be derived yet except for a special case in
Bergman [1]. The approximated pricing formula and the algorithms for them are quite well
studied. The diffiiculty seems to be in deriving the exact distribution function of the average
price.

For the European minimum (or maximum) options, Goldman et al. [3] defined and
derived the closed form pricing formula. The exact distribution of the maximum and the
minimum of the prices-path had been available among the established results in the field
of mathematics (Probability Theory).

In this paper the order statistics of the ptices of the underlying asset are used for the
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state variables: the i-th order statistic is the i-th smallest of the n observed prices for the dis-
crete time representation as seen in Section 2, and a-percentile point for a continuous price
path for 0<a <1 is the level of the price to which the price path stays below, for the 100 x
percent of the time during the option’s contract period. The exact distribution of the a-
percentile point or equivalently the asymptotic (n—oo) distribution of the i-th order sta-
tistics are obtained here. However, the proofs are informal. Using these distributions, the
pricing of options in a risk-neutral economic world is possible. It is indicated in Section 4
but the calculation is not performed there. Before using the Preference-free pricing method,
we wanted to check the hedgability of these options. We have checked the necessary re-
quirement for the hedgability except one point. We have not seen yet the independence
of the conditional distribution of the whole-period a-percentile on the present (conditioned)
value of the a-percentile. This may be obtained by some more effort.

Now we outline the present paper. In Section II, the notations and the definitions are
given. In Section III, the unconditional and the conditional distribution of the i-th order
statistic of the prices of the underlying asset are obtained in the asymptotic manner. Their
joint distributions with the price of the underlying asset at the maturity time are also
sketched. This is the main body of the paper. In Section IV, the hedgability of the type
of options treated in this paper is examined.

We may call our options the a-percentile options. They can be regarded as an extension
or soothed version of maximum or minimum options since a-percentile are in the middle
rather than at the extremes. a-percentiles may find a certain needs in the investment society
since they may be more stable than the arithmetic average.

II. Model and Definitions

The underlying asset could be anything which satisfy the following price behavior. For
simplicity, let it be a stock. We begin with discrete times and stock prices at these times
rather than with continuous time setting. We will later on take the time intervals approach
to zero in order to approximate the probability distribution of the order statistics.

Let the time period for options be [0, T] and the stock be traded at times #o, #;, . . .,
1, where.
o=ty <t,<ty< ... <tp,=T
ti—ti,=T/n.

Let S, denote the stock price at time ¢. For simplicity, we write S; instead of S, i=0, 1,
2,...,n

The Model.

Assume that the behavior of the stock price follow the multiplicative stochastic process:
fori=1,2,...,n—1.

Si51=S1 » exp (X141}
=S, s exp{Xi+Xz+ ... +Xip)
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where X;, . . ., X, are independent random variables and are identically distributed with
a continuous distribution function F. F is not necessarily normal. We assume that for
i=1,2,...,n—-1

EX)=(T/n) « p2pn
Var[X;]=(T/n) + 6*=20g,2

where # and % are constants.
Order Statistics.

We denote. by S, the i-th smallest value in the set {S;, S,, . . ., Si};
Su<Siy< ... <Swm.

We exclude S, from the set for simplicity. S, is called the i-th order statistic of {Sy, . . .,
S»}
Fori=1,2,...,n, let

Y¢=X1+X2+ o1 X
and Y4 be the i-th order statistic of {¥;, ¥,, ..., Y,}. Note that for i=i,2,...,n we
have

Sy =exp{Y}

since ;=S + exp{Y;} and the transformation y—exp {y} does not change the order of mag;
nitude: that is ;< S, if and only if ¥;< Y,.

Option Contract.

(@) For any i, S can be used as an underlying state variable. A new deposit may
be an European option whose pay-off at the maturity date is Sy. The price of this option
at time t, is the amount deposited at the beginning of the period and Sy, is the amount of
return at the end of the period. A call (put) option can be defined in an ordinary manner
by setting its pay-off as max {S;)— K,0} (max {K—S,;),0}).

(b) For any i, ;) can be used as an uncertain exercise price of ordinary call or put
options. The pay-off of the call and put options will be max {Sr—S81),0}, and max {Sq —
S7,0} respectively.

III. Asymptotic Distributions of Order Statistics
Unconditional Distribution of Order Statistics.

We define a step function G.(-) for {¥;,..., Y.} as follows. For an arbitrary real
number y, define '
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n
Gu(n)=(l/n) » X I{Te<)},
where I{ -} is the indicator function such that

I¥<) 1 f Y=<y
=Y ”—{0 otherwise.

Note that G(«) is different from the ordinary empirical distribution function since
the Y, are not independent at all.

We first give an asymptotic distribution of Ga( ).

Lemma 1.

For an arbitrary, fixed real number y, the distribution of G.(y) converges to the dis-
tribution of

[1POs(=1 4« Do - TN a1

as n— oo, where W(¢) is a standard Wiener process,

Proof.

When i/n converges to tE(0,1) as n— oo, it is known that the sum of the standardized

Xy, converges in distribution to a standard Wiener process W(z). Therefore we have, as
n—co

1

Gu(»)= Pl i§11{Yt§y}
1 n Yi—i“un ,V_i'/ln
=’ Ell{ on = On }
1 n 1 i [ Xj—pm y=(@n).pu-T
= i§11{ me j§1< on )é oo T2

1 y—teps T
LW(t)s———Fz (4t
(in distribution) jo { )= g T2 }d

(We denote this limit by G(y:,0)). [ |

We owe, for the validity of this convergence, to the argument shown in Shorack-
Wellner [8] pp. 59-62.

Now we show the asymptotic distribution of order statistics Y, and S.

Theorem 1.

Let i/n converge to t<(0,1) as n—oo.

For an arbitrary, fixed real number y, we have,
as n— oo,

P{Yiy <y} — PUSGO: 1, o)}
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and for an arbitrary, fixed positive real number x, we also have, as 7— oo
P {S(t) é_x} —_—> P {té G(log (x/SO) N f2 0')-

Proof,
Let G,7( - ) be defined by

G. N (D)=inf{y: G.(y)=1}.

Then, we have, as n— oo, by lemma 1

i
rorson-r{oci )]
=P{iln=Ga(y)} — P{t=<G(y: p, 0)}.
Similarly, we have as n—s oo

P{Siy=x}=P{S, « exp{Yy)} <x}
=P{Yyy<log (x/Sy)}
=P{i/n=Gnllog (x/Se)} —> P{t<G(log (x/S): p,0)}. M

Theexplicit form of the distribution function of G(y: g, ¢) is given in the following the-
orems. As for the special case where =0 and ¢=1, we introduce a new notation.
Define for any real number y,

G*(»)=G(y » T¥2: 0, 1)
SGEES

Theorem 2.
For —oo<y< oo and 0<x<1, we have

P{G*(y)<x} =j:1>”:"1{W(t)sO} dtgx—s}h,*(sjds

z 2 . x—t \1/2
=j07-sm 1(( — ) ).h,,*(t)dt

where

y2

hv*(t)=Ej:,)T e 2%, for O<t<oo.

Proof. .
By definition, we see that 0 G*(y)< 1.

We prove the statement for y=0. The proof for y<0 can be obtained by using
the following relation. .
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PG ()=x =P{[ 1I-WOz -y =2
=P{j:I{W(t)g —y}dtgx}

1
=P“0 [—I{W(1)< —y}]dtéx}
=P{G*(»)z1-x}
=1-P{G*(—y)=1-x}.
Let 7,*, for y<0, be the first time for the process W(¢) to hit y, i.e.

¥ =inf{t: W(t)=y}.
The density function #,*(¢) of the distribution of z,* is given by

¥y 2
hv*(1)=—('2nt3—)1,2‘e- 2, for O<t<oo.

(See for example, Shorack and Weller [8], p. 33)
Then
P{G*(»)=x}
—p{[ vyt

=P“:I{W(t)§y}dt§x , and 'r,,*gx}
(because the inclusive relation of the events holds:
{[1mosnasalc @rsn.)

= j P{EI (W(1) < y}dt < x| ry*=s} by *(s)ds

(because the process W(t) reaches y for the first time at time 5, and then the behavior
of W(t) afterward is the same as that of W(.) restarting from that point, and we check

{xP{ﬁ_sI (W(1) <0} dt+s§x} <y *(s)ds

if it is below zero.)

Thoox 1—
(This is the Arc Sine Law. See Billingsley or Shorack & Wellner [8] p. 34, for example.)
Let W(t)=g + T + t+0 ¥T « W(1), for 0<< o0, and define, for y>0.

B
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ty=inf{t: W(t)=y}.
The density () of the distribution of =, is given by

y (y—pt)®
h”(t)=¢r(Tt3)1/2exP [_T]’ for 1>0.

(See, for example. Karlin and Taylor [5] p. 363.)

Theorem 2',
For —eo<y< o and 0<x<1, we have

P{G(y: p, 0)=x)
=jo P{ ﬁ I <0} dr<x -s} hy(s)ds
Proof. .
The proof is exactly the same as that for Theorem 2 when W( - ) is replaced by W( -+ ).
P{G(y: p, 0) = x}

PH: I{Ww@®)<yldt, and =, §x}

I

(A ozt o

[iP{[ 1070z 0 dzx—slho)ds. w

Various forms of pay-off’s can be defined, based on the orderst atistics. In evaluating
options with these pay-offs, we need to know the joint distribution of the random variables
used in the pay-off functions.

Here we deal with the joint distribution of S, and S;, which is a simplest case of this
kind and was described in the Section 2.

Let a and b be arbitrary, fixed positive real numbers. Then

P{S(i) <a, Sn§b}
=P{Yy<log (a/S,), Y. <log (b/Sy)}

jlog(b/So) P{Yy<log (a/Sy)| Yn=)) Sr.»)dy

—co

where fr (- ) is the density function of the distribution of the random variable Y, which
is asymptotically normal.

The probability in the integrand can be obtained in the following way. Define a con-
ditional empirical distribution function;

1 =
Ga(x] Yn=y)=7§l I[Y:<x|Yn=)]
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Then this converges, as n— oo, in distribution to

E}I{W(t)—zW(l)g -J;—Ttl/’zy—}dt .

(Denote this by G(x[y).)
To see this, we just rewrite the definition;

Ga(x{Ya=y)

= B Y= (Y= p)=xly
_ 1 n [ Yi—ieps 1 (1 i X—ivpm | o
T n ,'§1 I{ an - On (l’l Yo— n .n.‘u")é On Y _y}
I 1 i Xyj—pn i 1 n [ X;j—pin
= ,.§1’{ N ',‘3( on ) n Vn ,§1< o )
i

1 TR

é ‘\/—’—1 ) Jn Yn=y}

x—t-y

T ‘}dt ,  in distribution .
n

L

:I{W(t)—t- w(l)<
Then
P{Y<log (a/Sy)| Yu=y}

=p{ S GulloB (@S0 Yo}

n+1
— P{a<G(log (a/Sy)|»)}

where —ac(0,1), as n—co .

_t
n+1
Thus, we have

log (6/59)

PSwsa, Sasb)— [ PlasGllog @Sy} fr-)dy -

Conditional Distribution of Order Statistics.

After the look-back option is issued, the stock prices will incur one after another as time
passes by. On the middle way to the maturity of the option’s period, the conditional distri-
bution of the order statistic Sy, at the time of the maturity, given the stock prices S;=s,, ...,
Sy=sz, is required for evaluation of the value of the option at the time t=f;. We will briefly
derive this conditional distribution here.

Let S;=sy, . . . » St=s: be the realized stock prices by the time f=f;x. Then we de-
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note the realized Y’s by Y;=y,, . .., Ys=y:. Define the conditional empirical distribution
in a similar way as follows.

1 k n !
Gol¥lpss -+ W= [ LT S0h + 2 T(¥is)]

Note that given Y;=yy, , ... Ys=w, we have Yi=yi+Xep+ . .. +X;, fori>k.
Let’s write

1k
Gui(¥) = ”mgl I{y.< y}

and

1 n 1 n—k i3
GosN =751 2, =N =5y B 1 sy-nd

where ¥,=Y.—, and j=i—k, for i=k+1,...,n.

Then
Ga(Y: Y1 - + > ) =Ba Ena(¥) + (1= Ba) Ga ()
where
k
=Tt

Assume that

i
n+1

— a0, 1)

n+1l I 13 = (O’,l)

gn () — g4(») for each fixed y,

as n— oo,

Then, G, x(y) converges in distribution to G4(y —y;) where y, is the limit of yi, as n—oo,
which has the same distribution as G(y —y;: p, ). Now we will briefly sketch the conditional
distribution of Y3 and S.

Theorem 3.
Under the assumptions mentioned in the above, we have, as n— co

P{Yy=<ylYi=y1, ..., Ya=p} — Pla— -850 = (1= 5)-Go(y —ys)}

and
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P{S(i)§X|S1=S1, .y Sk=Sk}
— P{a AAE <))sa-a- Gioe( 5~ )- yp)}
Proof.

Define as before, for any t=(0, 1)

G 'ty - - y)=IDf (Y Ga(Wlysy . . ., )2 H)

Then for any fixed real number y, as n— oo

P{Yy=y|yi=yn ..., Y=y}
i

— —~ —_—

P{G" ( n+1

=P{ P an(ylyo,---syk)}

Yir e oo ,yk)éy}

=Pl = £ 0)S =) 6]
—> Pla—£-2(0) (1= 5)-Go(y—ys)}.

The second statement is obvious since

P{Su=x|Sy=sy, ..., Si=s} —P{Yu,slog< )

Yl_‘yh « ey Ykzyk}. |

The conditional (given Y;=y,, . .., Yi,=y,) joint distribution of S« and S, can also
be obtained in a similar way.

Define the conditional empirical distribution,

G-n(XI Y1=y1, e s Yk=yk, Y,,,Zy)

1 1% n
= [ L Ivsx Yo+ 5 1Y isx] Vamnl].
j=1 F=k+1

Then, this converges as n— oo, in distribution, to
B-86(x)+(1=p5)-Go(x~y;1y)
since it can be rewritten as follows:

G.,.(x| Y1=y1, PR Yk=yk; Yn=)’)

1 ” j
s+ (=0 S B Y= (e 5a1 V).

Note that Gg(x—y,|y) has the same distribution as G(x—y,|y) does.
Now the conditional distribution of Sy, and S, can be given as follows:
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P{Su=a, Sn<blY1=y1, ..., Ya=yi}
=P{Y(i) élog (a/So)’ Ynélog (b/So)I leyls « ey Yk':yk}
log (6/S0)
=" Pi¥ig slog @ISy Ya=y, Ya=s, - - -, Ve fra(D)y

—0o0

log (5/59) i
_—_-j_i P{ n+1 éGn(log (a/SO)I Yn:ya leyl’ LR Yk:yk)}fyn(y)dy

. Sloi(b/so) P{aéﬁ‘gﬁ(IOg @S+ —ﬁ)’Gﬁ(IOg (G/So)_yﬁ]y)}wa(y)dy

IV. Hedgability and Option Pricing

In this section we examine the hedgability of the options based on the order sta-
tistics. Once the hedgability is shown for these options, the pricing can be done in the
risk-neutral economic world to give the correct price for the ordinary economic world.
Though we have not completely shown their hedgability in this section, we will point out
what is left to study.

Let, for O<a<1, F.(x,8) be the approximated conditional distribution function of
S, derived in Theorem 3, i.e.

Fut, .e)=P{a— p-aifios( )= (1~ 9-6ilog( 5 —yp)}

Let f.(x, p) be its density function.

In the risk-neutral economic world, the option price is given by taking the expectation
of its pay-off at the maturity and multiplying the time discount factor. For example, for the
option with the pay-off Sy, the approximated price at time # is

E[S4)|Sy ..., Si, given]-e~T(7 =)

=[x £, prax-emrir-w

and »n is the total number of observed stock prices which are

hore gt
where a== "1 B="0 11 -

used for determining the order statistics.
To examine the hedgability, we introduce a continuous time version of the order sta-
tistics. Let m,(?), for t>0, and 0<a <1, be the number such that

1 ¢
a=TLI{u. Susm ()} du,

Call this the a-percentile for the continuous path S, O<u<t.
Similarly, let m(T,,T), for 0< T,< T and 0<a <1, be the number such that,
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1 To T
a=— Ho Hu: Su = mo(Ty, T)} a?u+jTo I{u: Sy mu(Ty, T)} du]

provided that the path S, up to the time T, is given. Call m,(T,,T) the conditional a-percen-
tile given Sy, up to the time T,. Note that m.(t) =m,(0,?).
What we obtained in the section III were the probability distribution of m,(¢) and

mo(To,T), i.e.
P {m(T) = x} =F(x,0)

P{ma(T03T)§x} EFa(xaﬁ)

i k
where a= il s B= nrl and t~T,,.

We follow the argument in Ingersall [4], pp. 376-379, for examination of the hedgability.

The price of options based on the a-percentile of the continuous path is a function
of the state variables; s., mz(t,T) and ¢.

To express the evolution of m,, we introduce some notations.

Let l(m,t)=ﬁI { Su<m}du. Then I(m,t) is an increasing function of m. Let
dl(m, t)
dm Mmam,

at the level m=m,.
Then, the evaluations of S; and m, are

denote the ratio of the amount of instantaneous increment of I(m, t) to dm

1
dS‘=(/_¢ + Taz)Sg'dt-l-a"Sc'th s

a—1
dl(m,t) «dt,  for Si<my(t),
am |, ..
[24
dl(m,1) «dt,  for Si>my(t),
am |y,
dt dm oy +
o ds,  for Si= d ds.<0
ds_ditmp) ds for Si=m() and dSi<0.
dt dm oy -
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Therefore the hedge is possible only when S;=m,(t). If we have afnc =0 when S,=
m,(t), hedging is possible since the option’s price dynamics are,
R 1 e o, de L de
de= ot ~dt+ 25, -dS:+ K (dS)*+ Py cdmg + 7 am (dmyg)
9%
+ oM+ 8S; {(dma)(dS:) ,

letting ¢ denote the option price,
As the original proof by Goldman et al. [3] goes, the independence of the probability dis-

=0. However
amg

I have not been able to prove this yet. The examination of the conditional distribution
of my(t, T) may or may not imply this property when the exact functional form of the distri-
bution is obtained. Note that m,(t)=S,=S,-exp {¥;}.

tribution of m,(¢,T) on the present value of m,(z), if proved, will imply
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