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I. Introduction 

Issues surrounding centralization v.s. decentralization of the decision-making process 

in an organization have been examined by many over the years. One of the basic char-
acteristics of decentralization is that while a proper decentralization scheme could bring 

about various tangible and intangible benefits to organizations, it could also introduce a 

risk of suboptimization. 

This paper examines the issue of global optimization in a simple decentralized environ-

ment. More specifically, following Itami and Kaplan [3] we consider a reasonably realistic 

linear programming (LP) model of a decentralized process in which sales and production 

decisions are made virtually separately. We shall show that a global optimum can be 
achieved, at least in principle, without unduly compromising autonomy of each department's 

decision-making process, if suffcient information is exchanged and if proper coordination 

mechanism implemented between the two departments. 

It turns out that the key mechanism ensuring the successful global optimization is a 

certain "conservatism" in choosing a right set of marginal costs of goods used by the sales 

department. This result seems to have an implication to the following open question in a 

more general context: When a "marginal cost" or "shadow price" interpretation of a dual 

optimal solution is used in a LP model, and when there are more than one dual optimal 
solution, which solution should be used to base one's decision on? Our analysis indicates 

that choosing the most "conservative" one ensures a desirable result in a global system, 

where the global system consists of sections with conflicting interests. 

To explain our basic formulation consider a hypothetical company with sales and pro-

duction departments. A model for the global optimization (which we denote by G) of this 

company is that of finding a vector x of sales amounts and a vector z of production levels 

which maximize the sales revenue minus the production cost under the following three sets 

of requirements : (a) the sales amounts satisfy sales restrictions, (b) enough goods be produced 

for the sale, and (c) the production satisfy capacity/resource limitations. 

A sales/production model, which may be more true to the reality than the model G 

above rs the followmg "two stage" process considered m [3]･ In this model, the global 
problem G is decomposed into two problems, one corresponding to sales and the other 
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to production. First, the sales department receives a set of goods (from the accounting 

department) and solves an optimization problem in which the net profit (based on the given 

cost figures) is maximized under a set of sales restriction ((a) above). We let S or S(v) 

denote the sales optimization problem, where v is the set of costs used; also let x solve S(v). 

The sales department then informs the production department that such-and-such amounts 
of goods (i.e., x) are needed. The problem of the production department (which is denoted 

by P or P(x)) is then that of minimizing the production cost under the requirements that 

the production quota x be fulfilled ((b) above), and that a set of own capacity/resource limit-

ations ((c) above) be satisfied. This decentralization model nicely reflects a common notion 

of a sales department being a profit center while a production department a cost center, as 

noted in [3]-

This two-stage procedure may or may not yield a global optimal solution. The obvious 

reason for which the two-stage decentralization process described above may not work is 

that the information fiow is one-way. A coordination effort in the opposite direction could 

be achieved indirectly through cost adjustments in the literative process described below. 

This cycle of an information flow is implicit in the discussion given in Itami and Kaplan 

[p. 837,3], but we shall make it more explicit : 

(O) Initially a set of costs, v, is given by the accounting department to the sales depart-

ment. 
(i) The sales department solves S(v), and gives the computed optimal solution, x, to 

the production department as a production quota. 
(ii) The production department solves P(x), and gives the marginal costs, v, associated 

with the production quota constraints to the accounting department. The ac-
counting department gives this v to the sales department as an updated set of costs, 

The process (i) and (ii) repeats itself. 

Figure I depicts the exchange of information between the departments. 

FIGURE I . INFORMATION FLOW 

sa]es department 
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The iterative procedure suggested above appears to be a relatively realistic model of 

what goes on, at least in an idealized sense, in real-world situations. 

It is well-known (see e.g., Ha [4] and Van Roy [1 l]) that a decomposition procedure of 

the type such as the above two-stage process does not always succeed in finding a global 
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optimal so]ution of G (c,f. Section II). It will be shown, however that if one modifies the 
,
 procedure in such a way that more information is exchanged and a stricter coordination 

implemented between the two departments, then a convergence to a true global optimum 

will indeed take place. This guarantee of success, however, is achieved at a cost, i.e., the 

modified version of the procedure which is guaranteed to find a global optimum is consider-

ably more complex than the original iterative two-stage procedure. In a sense, this added 

complexity is consistent with common sense. That is, if one wants to achieve a global op-

timum in a decentralized environment, one must be prepared to compensate for the seg-

mentation of decision-making. In Section IV, we wil] find out exactly how much the com-
pensation of decentralization is in our simplified model. 

The best-known "decentralization" scheme for an LP activity analysis is that based 

on the Dantzig-Wolfe decomposition algorithm. It is we]]-known, however, that a scheme 

based on the decomposition algorithm does not really represent a common notion of de-

centralization with divisional autonomy (c,f. Baumol and Fabian [1]). 

In each iteration of the Dantzig-Wolfe algorithm, each "division" submits a "solution 

proposal" to "the company" or a central decision unit. The part of the optimal solution 

corresponding to each division is a certain weighted average of past proposals made by the 

division, but the division has no idea as to why this particular set of weights are selected 

by the central decision unit. For an iterative scheme to "qualify" as a decentralized pro-

cedure preserving essential divisional autonomy, we consider that at least the following 

two properties must be satisfied : 

(A) The only variables involved in the optimization problem solved by each division 
(at each iteration) are those relevant to its own division; and 

(B) A global optimum, when it is achieved, is a simple aggregate of the "current" 
optimal solutions of individual divisions. For instance, if there are two divisions and 

a global optimum (xl' x2) is generated at some iteration, where xl and x2 correspond 

to the first and second divisions, respective]y, then xl and x2 themselves must be optimal 

solutions of the respective two divisions at the current iteration. 

Clearly, the scheme based on Dantzig-Wolfe decomposition satisfies (A) but not (B). 

In the next section we specify the basic models, problems G, S and P mentioned above, 

and present a numerical example. After the prob]em G is reformulated as a maximin 
problem in Section 111, we describe in Section IV a modified iterative two-stage procedure 

which is guaranteed to find a global optimum and which satisfies both (A) and (B) above. 

We will also discuss re]ationships of the proposed procedure with some existing results in 

Section IV. The so]ution procedure we shall propose allows some interesting economic 

and managerial interpretations; these interpretations are given in the fifth and final section. 

An appendix deals with some mathematica] aspects. 

II. Preliminaries 

The three optimization problem mode]s, the global problem G, the sales problem S 

and the production problem P mentioned in Section I are given respectively as follows (for 

the purpose of reference, the dual of P is also shown). These models are borrowed from 

Itami and Kaplan [3]-
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The global optimization model G: 

(G 1) ' ' qx-cAz . maxrmlze 
(G.2) subject to Hx;~h 

(G.3) Pz~x (G.4) Bz ~d (G.5) x, z;~0. 
The sales optimization model S(v) : 

maximize (q - v)x 
(S(v)) subject to Hx~h 

x>=0, 

The production optimization model P(x) and its dual DP(x) : 

mini mize CAZ maximize xv - dw 
pz~x subject to PTV-BTW;~ATC (P(x)) subject to (DP(x)) 
z~~O. 

Here, x is the vector variable representing amounts of goods to be sold, and z is the vector 

variable of activity levels in the production department; (G.2) represents the set of sales 

restrictions, (G.3) denotes the requirement that the output quota, x, be satisfied by the pro-

duction department, and (G.4) is the set of production restrictions (capacity and resource 

limitations); q is the vector of selling prices, c is the vector of unit prices of variable input 

factors, and A is a matrix such that Az is the vector of amounts of the variable input factors 

consumed by production at level z. A vector is a column or a row, depending on the context, 

and superscript T is used to denote matrix transposition. 

We denote by X, Z(x) and Y the feasible regions of S(v), P(x) and DP(x) respectively. 

Note that X is independent of v and that Y is constant for any x. We adopt the following 

informal abbreviations. The "x-part" of a solution of G refers to the component x in a 

so]ution (x, z) of G, the "v-part" of a solution of DP(x) is v in a solution (v, w) of DP(x). 

For the sake of simplicity we shall adopt the following assumption throughout the rest of 

the paper. 

(i) X is nonempty and bounded;and 
(ii) Z(x) is nonempty and bounded for any x in X. 

These assumptions are purely technical ones which can be relaxed. We shall make these 
assumptions to keep our presentation simple and to better focus on essentials. Note that 

from these two assumptions it follows that S(v) has an optimal solution for any given v, and 

that P(x) has an optimum (and hence so does DP(x)) for any given x in X. 

We shall consider the following example in this and subsequent sections. This example 

is an extension of that considered in [3]･ (See [3] for an explanation for the meaning of the 

data, except q, H and h.) 

1 1 -0.5 O =[o O I O] c=(1, 2, 2.5, 1, 1.2, 1) P
 

2.5 4 O O 
1 1.5 O 
2 1 O B

 O O 1 
1 .15 .05 l 

O O O .2 d=(350, 300, 300, 20) 
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h:=:(110' 140' 160' 250) 

1 O H [~ J =; 7/8 1 
2 -1 
l /2 l 

[October 

The following two values of q will be considered: 

ql=(27.8,18), and q2=(12.53, 10.27). 

Figure 2 shows the feasible region Xof the LP problem S. The first value of q is chosen 

so that the point a=(100, 200) is the x-part of an optimal solution of G (along with all points 

on the edge between b and c). Point e in Figure 2 represents the x-part of an optimum of 

G for the second q. In the latter case, the problem G has a unique optimal solution. The 

feasible region X in Figure 2 is partitioned into four "cells" Cl to C . These cells represent 

the sets of x in X with the same marginal cost vector (c,f. Section lll). The marginal cost 

vector corresponding to each of the four cells is given as follows: 

Cl: vl=(12.5, 10.25), C2: v2=(27.5, 17.75) 

C3: v3=(12.64, 10.36) and C4: v4=(27.78, 17.96). 

As mentioned in the previous section, the iterative two stage procedure specified in 

Section I may fail to find a global optimal solution of G: in particular, it may enter a cycle 

and "get stuck." The iterative procedure in fact fails when it is applied to the numerical 

example given above with q2. The procedure enters a cycle alternating between an extremely 

low sales quantity, x=(O, O), and an extremely high sales quantity, x=(110, 195) (point b 

in Figure 2).l 

When x=(O, O), the cost vector for the sales pronlem S(v) is given by vl=(12.5, 10.25). 

This v causes a strictly positive q-v and so the sales department is encouraged to sell as 

much as possible, generating the high x=(llO, 195)=b as an optimal solution. The high 

demand in the production then causes high va]ues of marginal costs of v4=(27.28, 17.96) 

as a result of solving P(x) with the high x. This means that in the ensuing period, the net 

profit coeffcients for the sales department will be strictly negative and thus the low extreme 

x=(O, O) will result from the sales optimization. Thus, the process is drawn into an in-

stable cycle by overcorrecting the "mistake" in the preceding period. 

The error in this process is a failure to recognize the fact that there is a limit, in addi-

tion to the sales restrictions, on the sales volume beyond which the current costs will be 

invalid. In Figure 2, the cell C1 is the limit of x such that the set of costs vl is valid. Sim-

ilarly, when v changes to the high (27.28, 17.96) as a result of a high production quota, the 

sales department should be aware of the admissible region C4 outside of which the existing 

costs are not meaningful. 

The iterative two-stage procedure does not always fail. If the procudere is applied 

to G with ql in the above example, then the optimum of G, whose x-part is (1 10, 195) (point 

b in Figure 2) is computed in no'more than two iterations. 

We close this section by giving a mathematical programming interpretation of S(v). 

~ Note that for q2, G has a unique optimum (x, z) where x=(lOO, 100) (point e in Figure 2), as mentioned 
above. There is no chance that the iterative two-stage procedure finds this solution since the x-part of this 
unique optimum is an interior point of X and by solving LPs S and P separate]y (presumably by the simplex 
method), only extreme points of X and Z(x) are looked at. 
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FIGURE 2. THE FEASIBLE REGION FOR S 
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As mentioned in the first section, the sales problem, S(v), reflects naturally what a sa]es 

department may do in a real situation : given sales prices and costs of goods, maximize the 

net profit subject to sales restrictions. It turns out that S(v) has an interesting interpretation 

from a mathematical programming point of view. In the problem G consider the Lagran-

gean problem where the constraints (G.3) and (G.4) are dualized, i,e., where dual variables 

v and w are multiplied to (G.3) and (G.4), respectively, and each product is added to the 

objective. (A dual of G is obtained by optimizing this problem with respect to (v, w).) If 

(v, w) is feasible in DP(x), then it is not difficult to show that z could be set equal to zero 

to maximize the objective of this Lagrangean problem. Thus z may be removed from the 

problem and then the Lagrangean problem reduces to S(v). Thus it can be said that S(v) 

is obtained from G by taking the Lagrangean problem of G with respect to (G.3) and (G.4), 

while P(x) is obtained from G by fixing x. 

III. Maximin Formulation 

As a preparation for presenting a modified version of the iterative procedure, we shall, 

in this section, reformulate the problem G into a maximin problem using a well-known 

decomposition technique. 
Let us recall that X, Z(x), Y denote, respectively, the feasible sets of S, P(x), and DP(x). 

Assume that Y has L extreme points and let (vi, wt) denote the i-th one. From our assump-

tions (c,f. Section II) it follows that for any given x in X, there corresponds an (at least one) 



46 HrroTSUBASHI JOURNAL OF COMMERCE AND MANAGEMENT [Octobcr 

extreme point (v', w') which is optimal in DP(x). With this, the following well-known chain 

of transformation of G into a maximin problem should be clear. 

max {qx - cAz} 
*ex 

'e z(*) 

=max {qx- min (cAz)} 
*ex .e~z(*) 

=max {qx- max xv-dst'} 
*ex (., ~) e Y 

=max { min {x(q-v)+dw} } 
*ex (.,~)~Y 

=max {min {x(q-vi)+dvvt} } . 
*ex l~i~L 

Thus, G is equivalent to the following: 

(M) max F(x), where 
*ex 

F(x)= min {x(q- vi) +dwt} -
l ~i~L 

More precisely, x solves M and z solves P(x) if and only if (x, z) solves G. In particular, 

for any given x, the objective value of the global problem G is given by 

x(q - v) + dw, 

where (v, w) solves DP(x). 

The definition of F(x) suggests that F(x) is piecewise linear: i.e., X is partitioned into 

"cells" in such a way that on each of these cells. F(x) is linear (plus constant). More spec-

ifically, Iet the cell Ct be defined as the set of x in X such that i-th extreme point (vt, wt) is 

an optimal so]ution to the LP DP(x). Then clearly F(x) is linear on each such Ct' It can 

be shown (see appendix) that each Ci is a convex polyhedron and that to any interior point 

of Ct there corresponds a unique marginal cost vector v. In the numerical example given 

in Section II, there are 4 cells partitioning X with the corresponding unique v as shown. 

Note that it follows directly from its definition that Ct is the admissible region, discussed 

in Section II, outside of which the marglnal cost vector vi is invalid. 

It is interesting to observe that a global optimal solution of G is a saddle point of the 

maximin problem M. For convenience, Iet us define the maximin functionfby 

f(x, (v, w)) =x(q - v) + dw, 

and rewrite M as 

(M ') max min f(x, (v, w)). 

*~X (',~)=Y 

It is not diffcult to prove that x* solves G and (v*, w*) solves its dual (more precisely, "(x*, 

z*) solves G for some z* and (w*, v*, u*) solves its dual for some u*") if and only if (x*, v*, 

w*) is a saddle point of M', or 

f(x, (v*, w*)) ~f(x*, (v*, w*)) ~f(x*, (v, w)) 

for any x in X and for any (v, w) in Y. 

This "nash-equilibrium" property of an optimal solution of G implies the following: (x, z) 

solves G if and only if the production department has no incentive to change its current 
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optimal solution x as long as the cost vector is unchanged, and the production department 

has no desire to alter its current optimal solution, z, as long as the output quota remains 

identical. This is another indication of autonomy in our decentralized model. 

IV. Modlfied Iterative Two-Stage Procedure 

In this section we shall present a modified version of the iterative two-stage procedure 

which is guaranteed to find an optimum of the global prob]em, G. We shall also discuss 

its relationships to some of the existing results. 

We need to introduce some notation. For any given x in X define 

R(x)= {i: F(x)=x(q- vi) + dwi} = {i: (vi, wt) solves DP(x)} . 

We shall sometimes use the letter k to denote the number of elements in R(x). For any x 
in X, Ax is called a feasible direction of X at x if one can stay in X by moving along the direc-

tion dx: i,e., if there exists a positive e* such that for any ee[O, e*], x+eAx is in X. The 

set of feasible directions can be characterized by inequalities corresponding to "active con-

stramts." We let T(x) denote the set of feasible directions of X at x: 

H,･Ax~O for all i such that Ht'=hi 
T(x) = Ax : x/~O for alljsuch that xj=0 , 

l Axj I;~l for allj 

where Hf' denotes the i-th row of H. 

In the modified procedure, the "accounting department" must solve a certain problem 
in order to choose a right set of costs, i.e., for a given x in X, R(x) and all vt for all i in R(x), 

let E be the problem 

(E) max {min {(q-vt)AxJ J . 
4*e T(*) , '~R(*) 

The sales problem to be solved must be modified to reflect the admissible region. That is, 

given vt and Ci, the following replaces S. 

(S'(vi)) max (q- v')x subject to xe Ci. 

The algorithm (modified iterative two-stage procedure) : 

Step O: Assume an arbitrary x in X is given. Also assume that R(x) and vi for all i in 

R(x) are given. 

Step I ' Solve E. If the optimal value is zero, then stop: (x, z) solves G, where x and z 

are, respectively, the optimal solutions of the sales and production departments 

in the previous iteration. Otherwise, Iet i be an index for which the optimal value 

is attained, and go to Step 2. 

Step 2: Solve S'(vi) and replace x by the computed optimum. Go to Step 3. 
Step 3 : Solve P(x), and determine R(x) by finding all dual extreme point optimal solutions 

of P(x) and the corresponding cells. Rrtuen to Step l. 

This procedure terminates in a finite number of iterations generating an optimum solution 

of G. A proof of the validity of the algorithm is given in an appendix. It is clear that 

this modified procedure satisfies both properties (A) and (B) given in Srction I. 

The problem E resembles M, but from a computational point of view, it is consider-
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ably simpler, provided that k, the number of elements in R(x) is relatively small. In most 

cases, k is considerably smaller than L. For instance, in the numerical example given in 

Section II, the number of bases for DP(x) could be (and hence L could also be) as large as 

210, whereas the maximum value of k for all x in X is four. Also, the problem M can't 

be set up unless one knows all the extreme points of DP(x) in advance. In contrast, in E, 

the necessary extreme points (and only necessary ones) are supplied by solving DP(x) in 

the previous period. The best way to solve E is to use a standard LP transformation (see 

[9]); the resulting LP has k+p constraints, where p is the number of active constraints at 

x. The modified sales problem, S', is a LP since Ci is polyhedral. 

In Step 3, a]1 extreme point optimal solutions of DP(x) must be determined. This 

can be done by a well-known pivoting scheme (see e.g., Simonnard [lO]) applied to an op-

timal simplex tableau of DP(x). 

The proposed procedure described above is related to several schemes appeared in 
the literature. The procedure is in a way a "specialization" of the algorithm given in Madsen 

and Schjaer-Jacobsen [6] for a nonlinear minimax problem. It also employs an overall 

strategy similar to that used in Kaneko [5] in a considerably different context. 

There are many decomposition methods proposed in the Mathematical Programming 
literature which are potentially applicable to solving the global problem G in a decentralized 

manner. Most of these existing schemes may be grouped into the following two categories: 
(i) price directive decomposition, and (ii) resource directive decomposition. The major 

difference between these two groups of decomposition schemes is the way the central co-

ordination of divisions is performed. 

Roughly speaking, in a price directive scheme, the coordination is done by the central 

decision unit by issueing appropriate prices (or costs) under which each division executes 

its optimization. Meanwhile, the central control in a resource directive scheme consists 

of imposing limitations on resources (or production quotas) on individual divisons. 

In most of existing decomposition schemes (with a notable exception of Cress Decom-

position by Van Roy [1 I]; see below), the central control is either price directive with respect 

to all divisions, or resource directive with respect to all divisions. The proposed model 

differs from these existing approaches in that it employs a combination of price and resource 

directive coordinations; more specifically, it uses a resource directive contril with respect 

to the production department, and it emp]oys essentially a price directive control with respect 

to the sales department. 

In a decomposition model in which the central coordination is of the same type (price 

or resource directive) for all divisions, all divisions are assumed to be interchangeable units 

of the same type (e.g., all divisions are factories, or all divisions are sales offices). In the 

problem we are dealing with, however, the two divisions are of distinct types; the sales de-

partment is a profit center and the production department a cost center. For this reason, 

the model we are proposing in the present paper seems to provide a more natural setting 

for the problem under consideration, compared to most of the existing decomposition 

methods. 

Cross Decomposition of Van Roy [ll] decomposes G in a way which is much similar 

to the way our scheme decomposes G. Cross Decomposition consists of (i) a recource 
directed "primal" subproblem LP (ii) a price directed "dual" subproblem LP, and a central 

coordination problem, which is a certain "implicit enumeration" scheme with respect to 
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extreme points of the feasible regions of the subproblems. The decomposition procedure 

is executed by solving the primal and dual subproblems alternatingly, while the central pro-

blem is solved occasionally to control the sequence of subproblems to be solved, and to 

provide (resource and price) directives to the subproblems. 

If one applies Cross Decomposition to G in a certain appropriate way, it turns out that 

the primal and dual subproblems in the decomposition scheme are identical to P(x) and 

S(v), respectively. Thus, Cross Decomposition is similar to the (unmodified) iterative 

two-stage procedure, except that solving the central coordination problem guarantees a 

termination of the procedure generating a global optimum of G. A difference between 
Cross Decomposition and the modified iterative two-stage procedure we are proposing is 

that Cross Cecomposition does not satisfy the autonomy requirement (B) discussed in 

the first section.2 

V. Economical and Managerial Implications 

In this final section we shall give some managerial interpretation of the modified iter-

ative two-stage prodecure, and discuss economic implications of the interpretation. 

First of all, the modified iterative two-stage procedure shows that the problem G can 

be solved in an autonomous, decentralized process although the process is much more com-

plex than solving G directly (by the simplex method, say). The complexity may be regarded 

as the "cost" of decentralization; l,e., it represents "how much we have to pay" if we are 

to solve G by a decentralized process and still want to guarantee global optimality. 

Compared to the original version, the modified process requires a more information 

fiow and a more coordination effort. The added requirements may be summarized as 
follows : 

(C) For the set of costs to be used, the corresponding admissible region be found and 

taken into consideration in the sales optimization. 

(D) A11 marginal cost vectors be found in P and an appropriate one (to be used in the 

sales optimization) be selected among them by solving E. 

Figure 3 depicts the new information flow. 

Necessity of requirement (C) was explained in Section II. Intuitively, a good planner 

must be aware of the fact that the current level of prices/costs will not be sustained beyond 

a certain limit. Since it is impossible to know ahead of time exactly how the prices/costs 

will change, a modest strategy is to limit one's activity within the admissible region where 

the current prices/costs remain valid. The modified sales optimization S' does just that. 

The role of requirement (D) is less apparent, but turns out to be a crucially important 

one. In particular, the proper handling of multiple marginal cost vectors implied by solving 

E is the key mechanism ensuring the successful global optimization in the decentralized 

decision-making process. 

' A reason for which Cross Decomposition does not satisfy (B) can be explained as follows. Assuming 
the simplex method is used to solve the sales subproblem S(v), the sales vector, x, resulting from solving S(v) 
will always be an extreme point of the feasible region X of S(v). There are cases, however, in which each 
optimal solution (x, z) of G has the property that x is in the interior of X. The numerical example given 
in Section 11 with q=q' is one such case. In general, a decomposition procedure whose sales problem is S(v) 

does not satisfy (B). Dantzig-Wolfe decomposition algorithm is also of this type. 
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FIGURE 3. NEW INFORMATION FLOW 
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Some readers may wonder how often there are more than one marginal cost vector ; 
if there is only one marginal cost vector, solving E is irrelevant. Computational experience 

has shown that LPs arising in practice often possess multiple optimal solutions.3 (Recall 

that a marginal cost vector is the v-part of an optimal solution of DP(x).) In our case, in 

particular, it can be shown that the DP(x) solved in our two-stage procedure always has 

multiple optimal solutions, except possibly at the first and last iterations. 

The basic strategy, achieved by solving E, in the modified iterative two-stage procedure 

is this: In each iteration, choose a marginal cost vector v so that at the end of the iteration, 

i.e., after the sales department solves S'(v) and the production department solves P(x), where 

x is the computed optimum of S'(v), the objective value of the global problem G increases 

strictly. In this way, a positive improvement is made in every iteration and due to a finite 

nature of the problem a true global optimum is reached after finitely many iterations. 

Needless to say, it is not a trivial taskto guarantee an improvement in the global objective 

value in a decentralized decision process. That is, a combination of two separate optimiza-

tions does not necessarily result in a better solution in the global problem. Indeed, the 

difficulty is compounded by the fact that interests of the two departments are basically in 

conflict. For example, a higher level of sales tends to generate a higher profit and so is 

desirable at the sales department, but it is undesirable at the production department since 

it tends to increase the production cost (to meet the higher demand). To see a clear man-

ifestation of this conflict, Iet (for a given x) a constant xq be subtracted from the objective 

of DP(x), and let (given v, w) dw be added to the objective of S(v). Then, (q-v)x+dw is 

maximized by the sales department, while the same is minimized by the production depart-

ment. Thus, an action at the sales department tends to be countered by the production 
department. It is, therefore, highly unlikely that an arbitrarily chosen marginal cost vector 

' This is so despite the fact that multiplicity of optimal solutions is a "rare" phenomenon, from a purely 
theoretical point of view. 
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will do a coordinating job resolving the conflict. 

To explain why solving E yields a right cost vector, which does do the coordinating 

job, assume that a given production quota vector x* corresponds to k marginal cost vectors, 

1 . . . , vh. Suppose that the sales optimization results in incrementing x* by Ax to a new v. 
level x*+Ax. Assuming Ax is sufficiently small (so that x* +AX Stays in the union of C/, 

j=1, . . . , k), the optimal solution of the (dual of) production optimization is (vt, w'), where 

v' is one of the k marginal cost vectors of x*. It follows that at the end of the iteration, 

the increment of the global objective value is expressed as (q - vt)Ax. Since this vt is (the 

v-part of) an optimal solution of DP (note that in DP, (q - v)x + dw is minimized, as pointed 

out above), it has the property that (q- v)Ax is as small as possible, i.e., that 

(q- vi)Ax=min (q-vj)Ax. 
.n j 

To summarize, if the sales optimization results in incrementing x* by Ax, the corres-

ponding increment of the global objective value at the end of the iteration is the minimum 

of (q-vj)dx for all marginal cost vectors vj, j=1, . . . , k. Thus, by choosing the vt mini-

mizing (q-vj)Ax, and by using it as the cost vector in the sales optimization, an improvement 

of the global objective coincides with that of the sales optimization problem, and hence a 

g]obal improvement is induced by the sa]es optimization. It is now clear what E and Step 

1 of the modified procedure attempt to do. A global improvement is possible if the op, timal 

objective value of E is strictly positive, and if we choose, as the cost vector in the sales op-

timization, the v' minimizing (q - VJ)AX. 

Note that if v is the given cost vector, (q - v)x is maximized in the sales optimization 

problem. The marginal cost vector vt which is selected minimizes (q - v)Ax, and so is 

actually the worst choice among all the marginal cost vectors, as far as the sales optimization 

alone is concerned. That is, to ensure a global improvement, we need to adopt the follow-

ing conservative policy : . To select a cost vector among all the marginal cost vectors for the sales optimization, 

choose the one which corresponds to the smallest marginal increment in the objective 

of the sales optimization problem. 

It is not difficult to see that this suggested conservatism is a direct result of the conflict 

between the sales and production departments mentioned above. That is, since the pro-

duction department will try to minimize (q - v)Ax, the sales department must assume the 

"worst case scinario" and choose the vt with the minimal (q- v)Ax. 

The discussion given above concerning multiple marginal cost vectors and the suggested 

conservative choice among them4 seems to possess wide implications beyond the current 

framework of the iterative two-stage procedure. A "marginal cost" or "shadow price" 
interpretation of a dual optimal solution in LP activity analysis (or pther LP) models are 

commonly used in many managerial situations. When there are more than one dual optimal 

solution, however, it appears that the conventional theory/practice is not clear as to which 

dual optima] solution should be used, or as to a possible ill effect of making a "wrong" 

choice. 

As mentioned above, multiplicity of optimal solutions in LPs is not a remote possibility 

a The notion of choosing the "best" dual optimal solution is discussed in [7] in a different context (accelerat-

ing Benders' decomposition). 
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in pathological cases, but is a frequent occurrence is practical cases. Clearly, a choice of 

dual optimal solution may have a profound effect in the underlying decision-making process. 

For instance, suppose in the problem of evaluating effects of adding resources, there are 

two sets of shadow prices suggesting contradicting decisions. Which set of shadow prices 

should be used? Is using one more desirable, in some sense, than using the other? 

An answer is given in the case of the decentralized decision-making process we are ana-

lyzing in this paper. It is suggested that a conservative policy be adopted in choosing a 

right dual optimal solution in order to ensure global optimization. 

Strictly speaking, the results obtained in this paper are shown to be valid only within 

the framework of the stated decentralized scheme. However, the results may have some 

implications in a wider context. Our framework provides a reasonably general and real-

istic model for an economy in which there are two (or possibly more) sections whose ob-

jectives are basically in conflict. Our analysis may indicate that under a certain economic 

situation, where conflicting forces are present, one should adopt the worst case scinario and 

pick a conservative choice of a marginal cost vector in order to ensure a desirable conse-

quence in the global system. 

Finally, we would like to point out that some additional insight may be obtained by 

considering the equivalence between optimality of G and a state of equilibrium, mentioned 

in Section 111, in our two-stage decentralization model. Instead of defining our problem 

as one of optimization, we can regard our ultimate goal to be one of achieving a state of 

equilibrium. The validity of the modified iterative two-stage procedure in solving G is 

then interpreted as a proof that a state of equilibrium is eventually achieved in the two-stage 

process, if the required set of information is exchanged. One may look at the situation 

from the opposite direction. If one believes that an economic process, which follows an 

appropriate price guideline, will eventually attain an equilibrium, then one may argue that 

the modified iterative two-stage procedure achieves an equilibrium because it follows a 

proper price guideline, given by items (C) and (D) mentioned above. 
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A ppENDI X 

A. The subdivision of X. 

Let (vt, wi) be the i-th extreme point of Y. We defined the i-th cell, Ct, as the set of 

a]1 x in X such that (vi, wi) solves the LP DP(x). Clearly, Ct is given as the set of x such 

that there exists a dual (of DP(x)) feasible vector (i.e., a vector in Z(x)) satisfying the com-

plementary slackness conditions with (vi, wi). Jt is not difficult to prove that such a set 

is a convex polyhedron. It is clear that the union of all such cells covers X since, by the 

assumptions in Section II, there exists an extreme point optimal solution to DP(x) for any 
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given x in X. The cell Ci Permits a particularly simple representation if (v', wi) corresponds 

to a nondegenerate basic feasible solution of DP(x). In this case, (vi, w') corresponds to a 

unique optimal basis in DP(x) and so Ct is the set of x such that the relative cost coefficients 

with respect to the optimal basis are all nonnegative. 

The uniqueness of the marginal cost vector for all interior points of a given cell can 

be proved by carefully examining the optimal simplex tableau for DP(x). We give an outline 

of the proof. Let (v*, w*) be an extreme point of Y and let C* be the associated cell. Let 

x* be an inteiror point of C*. Suppose x* belongs to another cell defined by another extreme 

point (v', w') of Y, i.e., suppose that an extreme point (v', w') also solves the LP DP(x*). 

It is well-known (see Simonnard [10]) that (v', w') can be reached from the optimal simplex 

tableau for (v*, w*) by pivoting nonbasic variables with zero relative cost coefficients into 

basis. The proof consists of showing that in the pivoting process which transforms (v*, w*) 

into (v', w'), no pivot takes place which changes the values of the v variables. More speci-

fically, you can prove that (i) no nonbasic v-variable is replaced by a nondegenerate basic 

variable, and (ii) if a nonbasic w-variable or a nonbasic slack variable enters a basis by a 

nondegenerate pivot, the part of the incoming column corresponding to the basic v-variables 

is zero. You can prove these by showing that an occurrence of (i) or (ii) would imply that 

a small perturbation of x* would bring the interior point out of C*, which is a contradic-

tion. 

B. Validity of the modified iterative two-stage procedure. 
Firstly, it is clear that the objective value F(x) is strictly and monotonically increasing 

during the execution of the algorithm. Since the number of cells is finite and since no cell 

is repeated, the algorithm terminates in a finite number of iterations. 

We need to show that when the algorithm terminates, we have an optimal solution to 

G. Some notation is necessary. We rewrite the constraints in X as 

[ I =-] [
 

Nx~a, where N= and a 
For any x in X, we let R(x) denote the same as before, and let 

I(x)= {i: Ni･x=ai} , -
where N,･ is the i-th row of N. By NI(*)' we denote the submatrix of N with the rows in 
the index set I(x). It follows then that Ax is a feasible direction of X at any given x in X 

if and only if 

NI (*) 'Ax~O 

It is convenient to introduce the concept of a stationary point for nondifferentiable 

problems with subgradients (see e,g., [6]). A point x in X is called a stationary point of 

the problem M if and only if 

there exist 6i;~0, i ~R(x), EieR(*)ai=1 and 

there exist li~O, i e:1(x) such that (*) 

li~R(')6i(~ q+ vi) =2iel(')It(N ) 

Note that if IR(x)1 =1, then (*) is the set of complementary slackness optimality conditions. 

We shall show that (i) the algorithm terminates if and only if a stationary point is generated, 



54 HITOTSUBASHI JOURNAL OF COMMERCE AND MANAGEMENT 

and that (ii) if x is a stationary point and if z solves P(x), then (x, z) solves G. 

From (*) and from Farkas Lemma (see e.g.. Mangasarian [8]) it follows that x is a sta-

tionary point of M if and only if there does not exist dx such that NI(')'Ax~~O and (q-v') 

Ax>0 for all i in R(x).' i,e., if and only if for any feasible direction Ax of X at x, there exists 

at least one i in R(x) for which (q-vi)Ax is nonpositive. This last set of conditions is equi-

valent to that the Problem E in Step I has the zero optimal objective value. 

Now let x be a stationary point and let z solve P(x). Define a vector u by 

li if ie[(x) {
 

ut- O if ieI~I(x). 

Further, Iet 

v 2*eR(*)6tv and w=2i~~R(.)atwi. 

Then (5) for x (plus that xeX) is rewritten as 

q- v +HTu~~O, x~O, x(q-v+HTu)=0 
h-Hx ~0, u~O, u(h-Hx) =0; 

thus, x solves S(v). Since each (vi, wt), ieR(x), solves DP(x), so does (v, w). Thus, we 

have that x so]ves S(v), (v, w) solves DP(x) and z solves P(x). By comparing optimality 

conditions of the LPs involved, it is not difficult to conclude that (x, z) solves G. 
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