ON THE TIME OPTIMAL CONTROL OF SIMON-HOMANS
SYSTEM TO ITS DISSOLUTION'

By  Sersuo OHNARI*

1. Introduction

How does a social group behave as a system? It is possible that there exist many solu-
tions for this problem according to the kind of the system. Namely many kinds of solutions
shall be shown to us according as the system is an enterprise, a political party, a government
or a state. On the other hand I make no question of the fact that we have something in com-
mon among a good many kinds of solutions. Namely we can consider the common behavior
of systems which can be an enterprise, a political party, a government or a state. This com-
mon behavior of systems is the very problem that I will take up in this note.

H. A. Simon showed a concrete model of system in his article [1]. He constructed the
model on the basis of G. H. Homans’ book [2], and he considered that his model systematized
a substantial number of the important empirical relationships that had been observed in the
behavior of human groups. I, also, consider that his concrete model of system represents
some substantial parts of the common behavior of systems described above.

For a short account of description let us call this model Simon-Homans system. The
behavior of Simon-Homans system is characterized by four variables, which are all functions
of time:

I(t) = the intensity of interaction among the members,

F(t) = the level of friendliness among the members,

A(f) = the amount of activity carried on by members within the system,

E(f) = the amount of activity imposed on the system by the external environment (the
“external system’’).

The detailed explanation on Simon-Homans system shall be described in the next section.
But here let us use these four variables for the explanation of the purpose of this note. Letus
consider that I(?), F(¢r) and A(¢) are state variables of Simon-Homans system, namely (I(¢),
F(?), A(®) is a phase point of the state space of Simon-Homans system. And let us consider
that E(¥) is a control function from the external system. Let us put a definition on the dis-
solution of Simon-Homans system. Namely if and only if all of values of state variables, 1(%),
F(?) and A(¢) vanish, the state of the system will be called DISSOLUTION. Now the purpose
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of this note is to decide the region of state space whose point we can transfer to the dissolution
by the optimal control E(f) in the meaning of minimum time. Using some control function
E(f), perhaps we might transfer to the dissolution the phase points outside of our region which
we are going to decide in this note, but the time interval neccessary to transfer the phase
points to the dissolution is not minimum. We are going to decide the region of phase space
which is constructed by points transferable to the dissolution, by some external pressure E(f),
with minimum time interval.

In section 2, we shall describe the detailed explanation on Simon-Homans system accord-
ing to H. A. Simon [1] and in section 3 we shall decide the region described above.

2. Simon-Homans System

Let us assume Simon-Homans system constructed by » members which are indicated by
numbers from 1 to n. For i and j such that 1 < i=¢j < n, let I(f) represent the intensity of
interactions at time ¢ of the it» member of the system with the jt member. Then we can define
the intensity of interaction I(f) at time ¢ of the system as

1) = Z Iu’(t)- ~

- Similarly for i and jsuch that 1< zﬂF i< <n let F,(¢) represent the level of friendliness at
time ¢ of the itb member of the system w1th ]th member. Then we can define the level of
frlendhness F(t) at tlme t of the system as’

P A : i

For each i=1,2, -, n, let AL represent the amount of activity carried on by the it

member of the system and we can define the amount of activity 4(¢) at time ¢ carried on by
the system as

A@) = léZi;s",et;(t).

Finally E(r) is defined as the total amount of external pressures at time 7. In section 3
E(2) shall be construed in the meaning of a control function of the system.

H. A. Simon put the postulates in his article [1] which can be represented by the following
three equations, where'a,, a, b, ¢, ¢s, B and y are positive real constants. Namely

< (1) I(t) = aiF())+a=A(1),
Yo Ty s waw-sro, |
R dA

(3) A4 = e (F@—7AQ) ~ o ED — AW).

In these equations F(f) and A(?), accordingly I(f) too, are assumed to be differentiable and
E(¥) is assumed to be arcwise continuous.
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For these equations the explanations by H. A. Simon are as follows. First, for the
equation (1), the intensity of interaction depends upon, and increases with, the level of friendli-
ness and the amount of activity carried on within the system. In other words we postulate
that the interaction is produced on the one hand by friendliness, and on the other hand by
requirements of the activity pattern; and that these two causes of communication are additive
in their effect. Secondly, for the equation (2), the level of system friendliness will increase
if the actual level of interaction is higher than that “appropriate’ to the existing level of friend-
liness. That is, if a system of members with little friendliness is induced to interact a great
deal, the friendliness will grow; while, if a system with a great deal of friendliness seldom in-
teracts, the friendliness will weaken. Finally, for the equation (3), the amount of activity car-
ried on by the system will tend to increase if the actual level of friendliness is higher than
that “appropriate’ to the existing amount of activity, and if the amount of activity imposed
externally on the system is higher than the existing amount of activity.

On seven real positive constants in the equality from (1) to (3), the explanations by H. A.
Simon are as follows. First, in the differential equation (2), SF(¢) may be regarded as the
amount of interaction ‘‘appropriate’ to the level, F(f), of friendliness. For if I(t)=8F(?),
then F(f) will have no tendency either to increase or to decrease. The reciprocal of the co- -
efficient B, that is, 1/8, might be called the “congeniality coefficient’ since it measures the
amount of friendliness that will be generated per unit of interaction. Secondly, from equation
(1), ey F(¢) may be regarded as the amount of interaction generated by the level, F(?), of friend-
liness in the absence of any group activity. That is, if A(f)=0, then I(f)=a,F(t). Further,
the coefﬁuent a, measures the amount of interaction generated per unit of system activity in
the-absence of friendliness. Hence a; and a, might be called “coefficients of interdependence.”
Finally, from the differential equation (3) the reciprocal of the coefficient' y measures the
amount of activity that is generated per unit of friendliness, in the absence of external pressure.
We may call 1/ a coefficient of ““spontaneity.”” The remaining coefficients, b, ¢, and c,,
determine how rapidly the system will adjust itself if it starts out from a position of disequilib-
rium.

The above is the gist of explanation for Simon-Homans system by H. A. Simon [1]. In
the next section we shall decide the controllability region of this system.

3. The region controllable to the dissoiution

Using (1) let-us eliminate I(z) from (2) and (3) and replace E(f) with palameter E. Then
we obtain linear differential equation with constant coefficients;

L) = @—ppFt  awbd
(4) o lad
! W(I) = ClF—(Clr-l—Cg)A-l-CzE,

where for simplicity the region of palameter E is a closed interval [—1, 1]. Let us denote the
coefficient matrix of (4) by M and then we obtain
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) w0 (P2

The characteristic polynomial fps(x) of M is
Ju(x) = det (xE;— M)
= x2+{(ei7 +c2) —(a1— B)b}x —b{(a1— B)(cry +c2) +azcn},

and the discriminant D of f,(x) is positive, since

D = {(eiy+c2)—(a1— P)b}2+4b{(a1— B)(crr +c2) +axcn }
= {(c1y +¢2) +(a1— )b} 2+4azbcy,

and a,, b and ¢, are positive real constants by our assumption. Therefore eigenvalues of M
are two different real numbers. Let us denote them by & and 7, namely

£ = %{ —(crir+ o)+ (@ — Bb+ o/ {(cry + o)+ (a1 — B)b}2+4asbcy },

and n= %{—(CIT‘*‘Cz)'I‘(dl—.B)b—'\/{(CIT+02)+(‘11—ﬁ)b}2+4azbcl}~

So we can consider five cases: (i) 0<<yp<C§, (ii) <& <0, (iii) p<0<§, (iv) O=9<§, (v) <&
=0. Let us consider only one case (i) in this note. Now the necessary and sufficient condi-
tion that two eigenvalues of M are two positive real numbers, is by the relation of root and
coefficient of fas(x)

(a7 +ca)—(a—B)o>0, and —b{(ai—B)c17+¢2)+axc1}>0,

which are equivalent to the following two inequalities,

{al <ﬁ’
(AB - al)(cl‘r'i‘ Cz)> asCy.

In Simon [1], the above two inequalities were dealed with a necessary and sufficient condition
for stability of the system.
Now we seek two eigenspaces in a wide sense W and W,. Solving linear equations:

{(al—ﬁ)x'*' asby = §x, and {(al—ﬁ)x+ asby = yx,
cx—(ar+c)y =€y, ax—(ay+c)y =9,

we obtain that

artec+é .
We ={

A

2 )eRZ;ZeRl, W,,={
2

Then using an element of W, with 2=1 and an element of W, with =1, square matrix P with

degree 2 is defined as follows;

artctn
€1 )eRZ;zeR
yZ
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1 C1

artea+§ ay+ca+n
P=
1 1.

Then P is a non-singular matrix and we get

Cy _ C1T+C2+ﬂ

P-lMP=[$ OJ, pi=| 77 £
0 75 __a artceté

§—y §—y

Multiplying the left side of (5) by P—1, we get

d (F F 0
-1 = p-1MP.P-1 -1
P a ( ) = P-1MP.P ( )+P (cz)E'

Accordingly we introduce two new variables x; and x, in place of F and A4 as follows;

4 ciyt+ea+n

x — _ A,
x T e
(6) X =P~1A, i.e. ot
2, 0 C17 1T C2
= — A
Xa 6—77 F+ &._7] N

and two new control variables v, and vy in place of E as foilo'ws;

_lartetne

by = E,
, &—
<111) = P_l( 0>E, 1.e. 7
Vo, Co vy = (C17+Cz+§)62 .E.
§—n .
Then system (5) become&
A ~ i;ﬁ = §x 40,
~ t
(7) T
2 R

dr T TeTle

According to new control variables »; and v,, the control domain of the system (7) becomes
V, where

J _ (air +ca+n)es (C1T+02+0)02-. .
y =1l1=1) A S ceRH0< A< 1L
l (017+02f5)02 _ (17 +c2+8)cs '
£~y §—n

Defining two points AW, 4@ as follows;
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_ (arteatne (eip+catncs
(8) AW = <A1<1)> §—7y 4 = (A1(2)> _ =
AL (cip+éa+8)cs | A _(artcat+e |

§—7 §—y

V'is a segment which is pictured in Figure 1.  So the condition of general position with respect
to Vis fulfilled. Accordingly we can use the general theory of optimal control.

Now using adjoint variables ¢; and ¢, of the system (7), we get the Hamiltonian of system
(8) as follows; S

\

H($1(5), Po(8); x1(8), x2(2); 01, )
= 1(D(Ex1(D) +v1) + Pa(O)(px2(£) + v2)
= {£01(0)x1(0+ 1) x2(O)} + {D1(Dvr + Po(P)va} -
By Pontrjagin’s Maximum Principle, if v1(f) and vy(f) are the optimal control of the system (8)

transfering initial phase point x(® to the origin O, with minimum time interval, »,(z) and vy(f)
must satisfy the following condition:

MaxV H(1(D), P28); x1(8), x2(8);5 01, v2) 2= H(P1(0), (D)5 x1(2), x2(2); v1(2), vo(0))

(v1.,05)€

atall time £. And the adjoint differential equation of (7) is
dé, dge

(9) L= g, L=y,
Fic. 1
Y,
1
A
/l
7
v
7
Ve
Vv
e
~
v 7
Ayl
b
- U
// v
e
e
e
-
e
)'/ |
<
7 t
| i
A
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and its general solution is
(10) i) = Kie %, Po(t) = Koe— ™,

where K and k, are integral constants. Let us picture the integral curves for all initial con-
ditions. First, by (10) if ¢,(#*)>0 and ¢2(t*)>0 for some time ¢*, ¢1(t;>0 and ¢()>0 for
all time ¢, Similarly if ¢,(#*)<<0 and ¢q(#*)>0 for some time ¢*, ¢;(£)<<0 and ¢5(£)>0 for all
time ¢, and if ¢,(¢*) <O and ¢,(¢*) <O for some time #*, ¢(#) <0 and ¢(#) <0 for all time ¢, and
if $1(*)>0 and ¢o(*) <0 for some time ¥, ¢1(#)>0 and ¢,(£) <0 for all time z. Furthermore
if ¢,(r*)=0 for some time ¥, ¢o(¢)=0 for all time ¢ and if P(¢*)=0 for some time t*, ¢5(£)=0
for all time 7. Secondly, since we get by (9)

an _Z_{(%) _ ¢1¢2¢—1;/J1¢2 _ (5—77)%, '

with the increase in time # the tangent of the segment, which is constructed by combining the
origin with the point (¢:(f), ¢(f)), increases when ¢,(f) and ¢,(¢) have the same signature and
decreases when ¢;(f) and ¢,(¢) have the different signature. Therefore the point (¢1(¢), ¢2(2))
turns as in Figure 2. Since by (10) both functions ¢; and ¢, are increasing functions, with the
increase in time ¢ the point on axis must move toward the origin as in Figure 2. Thirdly,
since we get by (9)

dps _ s _ 1 ¢o
(12) 7 A
FiG. 2
¢
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with the increase in ¢, ¢, increases when ¢,(z) and ¢,(¢) have the same signature and decreases
when ¢,(2) and ¢5(f) have the different signature. Finally, since we get by (9), (11) and (12)

a2, _ d <d¢2)_ dr _d_(v ¢2)_ %“"”% _ -0 ¢

a2 ~ dg \dp, ) dy dENE ¢1) T —&¢y g g2

the integral curve of (9) is convex when ¢.(£)>0, and concave when ¢5(r)<0. Synthesizing
all things described above we can picture the integral curves for all initial conditions as Figure
3.

In Figure 1 let / be a line which is orthogonal to the segment AW A®, Then if we lie
Figure 1 upon Figure 2, we come to a conclusion that any one of integral curves cuts the line
lin one time at most. The reason is as follows;.let & be the tangent of line / and let some inte-
gral curve (¢1(2), ¢o(#)) cut the line / in two times, then for some different time ¢, and ¢,

Po(t) = agu(t),  Pu(te) = aga(ts),
therefore by (10),
Koe=™ = aKje~*n and Kee=": = aKe—é, then e¢-" = aK /Ky = eté—"ta

and then # =1, this is a contradiction. Accordingly the optimal control transfering some
initial phase point to the origin with minimum time interval is a step function which takes at
most two value AV or 4. Namely it is impossible that the optimal control could have any
type without four types of Figure 4.

Fic. 3

2

[0
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FiG. 4
- (@ . - {b)
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Now let us solve the differential equation:(9) in the time interval in which the value of
control function is a constant A®, We can get an optimal trajectory by combining the above
solutions for each type of control function from (a) to (d). Let us define B® and B® by the
following relation:

1
—_—— 0
S (B® § .
(i) — = ' - @ 7 =
(13) B (Bz(i)> 0 _ 1 A 5 1 1, 23
)

and then it is clear that B;(V>0, B,V <0 and B, <0, B,®>0. Using B%) we can rewrite
the equation (9) as follows;

2 (0—-BO) = £0a—BO),
(14 | \

d i NS
7(’52"—32(')) = 9(x2— BxP).
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As the solution of the above differential equation we obtain

x;1 = B (i).+.L (i)efl’
(15)' { 1 1 1

Xo = By Loert,

where L;® and L,® are integral constants. All integral curves of (14), for every initial phase
point are pictured in Figure 5 and all integral curves of (14), for every initial phase point are
pictured in Figure 6.
Now let us decide the optimal trajectory with respect to each optimal control which has
one of four kinds of type from (a) to (d) in Figure 4. First if an optimal control has type (a),
a phase point (x,, x) moves along the trajectory in Figure 5. In the trajectories of Figure 5
the one which passes the origin is only B{0. Therefore the initial phase point, which we can
transfer to the origin by the control of type (a) with minimum time interval, must belong to
the arc BVO in Figure 5.  Similarly the initial phase point, which we can transfer to the origin
by the control of type (b) with minimum time interval, must belong to the arc B2 0 in Figure
6. Let us seek for the equations which indicate B0 and B®0. If (15), arrives at the
origin at some time r*, we get
= B.Q Dgbe*
a6 {0 = B4 L, Wete*,
0 = B+ L,MWer*,
By the signature of B, and B,™), it must be L,V <0 and L,®>0, and therefore

(=B V)l (L)l
(17) B.O)E T (= Ly -

FiG. 5

X1

N

B

NV
7
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FiG. 6

=

-1

Conversely, it is clear that (17) concludes (16) for r*=log (B,V/(—L,W))é= log ((—B.W)/
L,(M)ln,  Therefore the necessary and sufficient condition that the trajectory (15), arrives
at the origin at some time, is (17). Similarly the necessary and sufficient condition that the
trajectory (15), arrives-at the origin at some time is

18‘) A : (B (= L)l
( : - CB@E = (o)

where L, <0 and L;®>0.
By (15); and (16), we get

Bl(l)_xl /¢ xz_Bz(l) 1y
o) -(F )

(X2 — Bl (LYW (=Bl
BOZx)E ~ (=LOIE T T (W)L

But by (8) and (13) we get

and

(Law)" (L lrtetonp

(=B _ §—7
BONE — (__ 1 Al(l))llg = {i. (clr+Cz+77)c2}1/e
' ¢ §~7

_ {EG=n)¥{(crp +cat§)ea) i
=} (crr + catpe}1E




26 HITOTSUBASHI JOURNAL OF COMMERCE AND MANAGEMENT [October

On the other side we get

{x +L, (ar+eat8E)es }1/”
(19) (xp— By D) Ty £—7
(Bl(l)_xl)llf {—l— . (Clr+c2+77)c2 —x }1/5
3 g—p !

_ {EE - R{EE Dot (cry+ ot E)ea} i
{7 =} (crr +catn)ea—E(E —pxy }1E

Accordingly we get

{§¢—nxa+(arteatOes}lls _ {(cip+catE)es}il
{(ery +catn)ca—E(E—n)x1 }1E {(ear +catpea} it

Therefore we get
(cartca+8)ce ) _ R () ] r;IE_
@0 Y2 = 2E—n) [{1 (ar+cet+7n)es xl} I:I’
1 (artetne

0=

SUSE T iy
This is the equation of arc BWO. Similarly we can obtain the equation of arc B0 as follows;
(i +cat8)ee [ { §¢-n }v/e]
21 el [ B B ) 1 ,
@h T E- (e +etpes T

_1 (artetne <x 0. -

§ §—1p

Secondly let us consider the trajectory controlled by the function which has a type (c) in
Figure 4. In this case the optimal trajectory moves along the curve in Figure 5 at first and
then moves along the curve in Figure 6 and ultimately arrives at the origin. Accordingly we
must discover the set of curves in Figure 5 which intersect with the arc B®0. It is clear that
these curves exist between the arc BWO and the arc BOB® in Figure 7. Therefore let us
consider the arc BMWB@), If (15), arrives at B at some time *, we get

22) {31@) = B4 L,Wett,
T By® =B LM, A
and '\‘ a - /‘ k . o ""
(23) (B2(2) — Bz(l))l/ﬂ (Lz(l))lh)

(BiO—B,®)1E T (—Lm)FE".
Conversely, it is clear that (23) concludes (22) for *= log ((B,\{1'—B,@)/(—L,W))Lé=
log ((B;®@ _32(1))/1:2(1))1/:; Therefore the necessary and sufficient condition that the trajec-
tory (15), arrives at B(Z) at some time, .is (23) By (15)1 and (23), we get
o 131(1)_351 1/e Xo— 32(1) U
' ( —L,® )s - ( Lo ) ’
(xa— B . (L)l (By®— BD)lln
(BO=x)E ~ (=L OWE ~ (BO-B,@)Ik

]

1

and
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FiG. 7

X2

—_

B@

N\ m

B
But by (8) and (13), we get
{Llﬂﬁﬂigiggym
(BO—BOowh 7y &y _ [8E=)¥ | (ar et fe)t
(BO—B®)IF ~ {2.i. w}l/e = E—1 " (2err +est e}
3 E—q

Accordingly by (19), we get

{7 —n)xot(cry+cat+ e} _ {2Aeiy+cat§)ea}tln
{lar+ete—EE—nx} — {2Aewy +eatp)ea}t”

Therefore we get

_derteiBe [ SCmp 1)
I ke rrr e |
1 (ar+eatye: 1 (ar+etne
B R A =

Finally let us consider the trajectory controlled by the function which has a type (a) in
Figure 4. 1In this case the optimal trajectory moves along the curve in Figure 6 at first and
then move along the curve in Figure 5 and ultimately arrives at the origin. Accordingly we
must discover the set of curves in Figure 6 which intersect with the arc BDQ. 1t is clear that
these curves exist between the arc B® O and the arc B®B®M in Figure 8. Therefore let us
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Fi1G.: 8
X2

|
B®

= X1

B

consider the arc BB, The process of computation is the same as the case in which the
type of control function is (c) in Figure 4. Therefore let us denote the conclusion; namely

_ Aartete [L _ &(&—7) L q/e]
O N 2(E=n) 2 {j 2err Feat 1) xt— } ,
_ 1 (artetne 1 (ar+etiye
J §—g B S & E—p

(24) and (25) decide the region whose points can be transfered according to the equation
of motion of the system by some optimal control. Namely l

(26) {(xl, X2) € Rz;: Aew + cat+E)es . [.1__ {M_ otk Vﬁ]

/E—n) 2 2(ciy +cat e 2
2cry + ca+€)ce [ 1 §(E—7) ) ’7/5__1_]
< X<~ 77(5_77) { 2 g 2(617-'_62,-*_\ 77)02 xl} 27
_ 1 (artetne 10 erte+nes)
and £ ‘ iy <x; < z . ,5—77 }

Figure 9, which is obtained by combining Figure 7 with Figure 8, is a rough map of this region.
In Figure 9 the arc B{UMB® js indicated by (24) and the arc BANBW js indicated by (25).

We can solve the synthesis problem for a control problem formulated by (7). Namely
synthesis function v(x;, xp) is defined as follows; .

AD; i (xy, x5) € BOMB®O,

Yo ) = {Aw; if (1, x3) € BONB®O.
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FiG. 9

X2

M

B

-t

Finally let us rewrite the region (26) using the original variables F and A in Simon-Homans
system.

[ o

{(A F)e R ; {2(017":i+7])62 F— 2‘; -A+%}”'E - "
- 2(c1r+62727+4:‘)c2 P ed
<{%_ 2(c17'-!-c::§+$)c2 Ft+ Ziz ’A}vle—%, and
_CTZ<—?T:|'CC'12T7—.F_A<—C§2—}'
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