
ON THE TIME OPTIMAL CONTROL OF SIMON HOMANS 
SYSTEM TO ITS DISSOLUTION+ 

By SETSUO OHNARI* 

l . Introductron 

How does a social group behave as a system? It is possible that there exist many solu-

tions for this problem according to the kind of the system. Namely many kinds of solutions 

shall be shown to us according as the system is an enterprise, a political party, a government 

or a state. On the other hand I make no question of the fact that we have something in com-

mon among a good many kinds of solutions. Namely we can consider the common behavior 
of systems which can be an enterprise, a political party, a government or a state. This com-

mon behavior of systems is the very problem that I will take up in this note. 

H. A. Simon showed a concrete model of system in his article [1]. He constructed the 

model on the basis of G. H. Homans' book [2], and he considered that his model systematized 

a substantial number of the important empirical relationships that had been observed in the 

behavior of human groups. I, also, consider that his concrete model of system represents 

some substantial parts of the common behavior of systems described above. 

For a short account of description let us call this model Simon-Homans system. The 

behavior of Simon-Homans system is characterized by four variables, which are all functions 

of time : 

I(t) = the intensity of interaction among the members, 

F(t) = the level of friendliness among the members, 

A(t) = the amount of activity carried on by members within the system, 

E(t) = the amount of activity imposed on the system by the external environment (the 

"external system"). 

The detailed explanation on Simon-Homans system shall be described in the next section. 

But here let us use these four variables for the explanation ofthe purpose of this note. Let us 

consider that I(t), F(t) and A(t) are state variables of Simon-Homans system, namely (1(t), 

F(t). A(t)) is a phase point of the state space of Simon-Homans system. And let us consider 

that E(t) is a control function from the external system. Let us put a definition on the dis-

solution of Simon-Homans system. Namely if and only if all of values of state variables, I(t), 

F(t) and A(t) vanish, the state ofthe system will be called DISSOLUTION. Now the purpose 
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of this note is to decide the region of state space whose point we can transfer to the dissolution 

by the optimal control E(t) in the meaning of minimum time, Using some control function 

E(t), perhaps we might transfer to the dissolution the phase points outside of our region which 

we are going to decide in this note, but the time interval neccessary to transfer the phase 

points to the dissolution is not minimum. We are going to decide the region of phase space 

which is constructed by points transferable to the dissolution, by some external pressure E(t), 

with minimum time interval. 

In section 2, we shall describe the detailed explanation on Simon-Homans system accord-

ing to H. A. Simon [1] and in section 3 we shall decide the region described above. 

2. Simon-Homans System 

Let us assume Simon-Homans system constructed by n members which are indicated by 
numbers from I to n. For i andj such that I ~ i ~~ j ~ n, Iet I,j(t) represent the intensity of 

interactions at time t ofthe ith member ofthe system with the jth member. Then we can define 

the intensity of interaction I(t) at time t of the system as 

I(t) = ~ I,j(t). 
. 1~i~Fj~~ 

-i ' Similarly for i and j'~uch that '1 ~:;~j~~', Iet F,j(t) represent the level of friendliness at 

ti~ne t of the ith member of th~ systbm with j, th member. Then we can define the level of 
friepdliness F(t) at tingeit of the systeril as ' - ~ .~ . 
i
,
 

.;' F(t) = ' ~ F,j(t)., 
, ' ' I~~i~Fj~^ 

For each i=1, 2. . :. ., ~, Iet Ai(t) rep;esent the amount of activity carried on by the ith 

member of the system and we can define the amount of activity A(t) at time t carried on by 

the system as 

A(t) = ~ Ai(t). 
l~i;~~ 

Finally E(t) is defined as the total amount of external pressures at time t. In section 3 

E(t) shall be construed in the meaning of a cbntrol function of the syst.em. 

H. A. Simon put the postulates in his article [1] which can be represented by the following 

three equations, where'al' a2, b, cl' c2, p and r are positive real constants. Namely , 

_ . ( I ). I(t) = alF(t)+a2A(t), 

, .,.,･ ( ~ ) , (t) = b(1(t)- pF(t)), 
dt 

.1. ( 3 ) dA (t) = cl(F(t)-rA(t))-c2(E(t)-A(t)) 
dt 

In these equations F(t) and A(t), accordingly I(t) too, are assumed to be differeriti~ble'~arid 

E(t) is assumed to be arcwise continuous. 
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For these equations the explanations by H. A. Simon are as follows. First, for the 

equation (1), the intensity of interaction depends upon, and increases with, the level of friendli-

ness and the amount of activity carried on within the system. In other words we postulate 

that the interaction is produced on the one hand by friendliness, and on the other hand by 

requirements of the activity pattern; and that these two causes of communication are additive 

in their effect. Secondly, for the equation (2), the level of system friendliness will increase 

if the actual level of interaction is higher than that "appropriate" to the existing level of friend-

liness. That is, if a system of members with little friendliness is induced to interact a great 

deal, the friendliness will grow; while, if a system with a great deal of friendliness seldom in-

teracts, the friendliness will weaken. Finally, for the equation (3), the amount ofactivity car-

ried on by the system will tend to increase if the actual level of friendliness is higher than 

that "appropriate" to the existing amount of activity, and if the amount of activity imposed 

externally on the system is higher than the existing amount of activity. 

On seven real positive constants in the equality from (1) to (3), the explanations by H. A. 

Simon are as follows. First, in the differential equation (2), .pF(t). may be regarded as the 

amount of mteractron "appropnate" to the level F(t) of fnendlmess. For if I(t)=PF(t), 
then F(t) will' have nb tendency either to increase or to decrease. The reciprocal of the co-

efficient p, that is, 1/P, might be called the "congeniality coefficient" since it measures the 

amount of friendline~s that will be gen'erated per unit of interaction. Secondly, from equation 

(1), alF(t) may be regarded as the amount of interaction generated by the level. F(t), of friend-

liness in the absence of any group activity. That is, if A(t)=0, then I(t)=alF(t). Further, 

the coefficient a2 'meas~res the amount of interaction generated per unit of system activity in 

the'absence offriendliness. Hence al and a2 might be called "coefficients ofinferdependence." 

Finally, from the differential equation (3) the reciprocal of the coefficient' / measures the 

amount of activity that is g~nerated per unit of friendliness, in the absence of external pressure. 

We may call l/r a coefficuent of "spontanerty." The remaining coefficiehts, b, cl and c2, 

determine how rapidly the system will adjust itself if it starts out from a position ofdisequilib-

rium. 

The above is the gist of explanation for Simon-Homans system by H. A. Simon [l]. In 

the next section we shall decide the controllability region of this system. 

3. The region controllable to the dissolution 

Using (1)let-us eliminate I(t) from (2) and (3) and replace E(t) with palameter E. Then 

we obtain lineat 'differeritial equation with constant coefficients; 

(4) 
l
 

dF (t) (a p)bF+ a2bA dt ~ 
dA 
dt (t) = ' clF- (clr+c2)A + c2E, 

where for simplicity the region of palameter E is a closed interval [- 1, 1]. Let us denote the 

coefficient matrix of (4) by M and then we obtain 
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d rF(t) /F~ (O (al~p)b a2b E and M dt ~A(t) M~A/+~c2 cl (clr+c2) 
The characteristic polynomial fM(x) of M is 

fM(x) = det (xE2-M) 

= x2 + {(clT+ c2) - (al ~ P)b}x- b{(al~ p)(clr + c2) + a2cl} ' 

and the discriminant D offM(x) is positive, since 

D = {(clr+ c2)- (al~ p)b}2+4b{(al~ p)(clr + c2)+a2cl} 

= {(clr+ c2) +(al~ p)b}2+4a2bcl' 

and a2, b and cl are positive real constants by our assumption. Therefore eigenvalues of M 

are two different real numbers. Let us denote them by e and v, namely 

1
 ~ = ~{ ~(c r+c )+(a P)b+~l{(c T+c )+(a p)b}2+4a2bcl}' 

and ~ = ~ { - (clr + c2) + (al ~ P)b - V{(clr + cz) + (al ~ p)b} 2 +4a2bcl} , 

So we can consider five cases: (i) 0

=0. Let us consider only one case (i) in this note. Now the necessary and sufficient condi-

tion that two eigenvalues of M are two positive real numbers, is by the relation of root and 

coefficient offM(x) 

(clT+c2)-(al~p)b>0, and -b{(al~p)(clr+c2)+a2cl}>0, 

which are equivalent to the following two inequalities, 

al {( p - al)(clT + c2)> a2cl' 

In Simon [1], the above two inequalities were dealed with a necessary and sufiicient condition 

for stability of the system. 

Now we seek two eigenspaces in a wide sense We and W7' Solving linear equations: 

(al~P)x+ a2by = ~x, and (al~P)x+ a2by = ~x, 
clx-(clr+c2)y = ~y, clx-(clr+c2)y = vy, 

we obtain that 

cr+c +e .1 {
(
 

WE e R2; I e R 1
 

clr+c2+v p {( p 
W7 eR2; I eR 

Then using an element of We with 1= I and an element of W7 with p= l, 

degree 2 is defined as follows ; 

square matrix P with 



19791　　　　　　　oN　THI…T［ME0PTlM＾L　c0NTR0L0F　sIM0N－H0M＾Ns　sYsTEM　T0ITs　DIss0LUτ10N　　　　　　　　　19

　　　　　　　　　　　　　　・一［㌣十ξ㌣十η／

・・一アii…一・i・・｛1・…t・i・・・・・・…

　　　　　　　榊一［；；い一［；：；：1算：l

　　M，lti．1．i㎎t・、1，ft，id、。f（・）・。・一・，。、‘。、。

　　　　　　　　　　アー・去（二）一・一・〃・・一・（ζ）・アー・（二）且

Acco「din・1・weint「oducetwonewva「iab1esx・andx・i一・laceofFanψsfo11ows；

（・）（ll）一小／11：㌻㌻

一一曲11・㍗㍗・↓■
　　　　　　　　　（1：）一か／lll㌻：∵

Then　system（5）beco㎎es
　　　　　　　　　　　＼、

（・）　・／‡lllll1

　　　　γ一H㌻トL阜榊・λ・十

　　。、丘、i㎎、w。。。i、、、州1・；二、。。ll．w、；



20 

(8) 

HITOTSUBASHI JOURNAL OF COMMERCE AND MANAGEMENT 

A(1) Al(1)) (
 

A2(1) 

(ilr + q2 + ~)c2 ~~.~ J 

(clr + c2 + ~)c2 

e-V 

A(2) Al(2) 
(
 
 
A2(2) 

[October 

(CIT + c2 + v)c2 ~-V J 
(cl r + c2 + e)c2 

~-V ' 
Vis a segment which is pictured in Figure I . So the condition of general position with respect 

to Vis fuffilled. Accordingly we can use the general theory of optimal control. 

Now using adjoint variables c1 and ip2 of the system (7), we get: the Hamiltonian of system 

(8) as follows; , : , 

H(ipl(t), c2(t) ; xl(t), x2(t) ; vl' v2) 

= ipl(t)(~xl(t) + vl) + ip2(t)(~x2(t) + v2) 

i { ~ipl(t)xl(t) + vip2(t)x2(t)} + { ipl(t)vl + c2(t)v2} ' 

By Pontrjagin's Maximum Principle, if vl(t) and v2(t) are the optimal control of the system (8) 

transfering initial phase point x(o) to the origin 02 with minimum time interval, vl(t) and v2(t) 

must satisfy the following condition: 

Max H(c1(t); ep2(t) ; xl(t), x2(t) ; vl' v2) ~ H(c1(t), c2(t) ; xl(t), x2(t) ; vl(t), v2(t)) 

(~*,~*)* v , 
at all time t. And the a'djoint differential equation of (7) is 

dc1 dip2 
(9) = -~epl' - ~Vep2 dt dt 

FIG. 1 
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and itS general SOlution is '. ' ' ･ ' ,･' 
( I O) epl(t) = Kle~at, c2(t)  K2e-7t 

21 

where Kl and k2 are integral constants. L9t us picture the integr~l curV~s for all initial con-
ditions. First, by (10) if epl(t*)>0 and ep2(t*)>0 for some time t~, epl(t)>0 and ep2(t)>0 for 

all time t. Similarly if ipl(t*)

0 for some time t*, epl(t)

0 for all 

time t, and if ipl(t*) 

if c1(t*)>0 and ep2(t*)

0 and ep2(t)if ipl(t*)=0 for some time t*, ip2(t)=0 for all tirne t and if ip2(t*)=0 for some time t*, ip2(t)=0 

for all time t. Secondly, since we get by (9) 

(11) 2 - c1~2-~lip2 _ (~_V) ip2 d (ip )
 dt ~ epl ~ epl2 ~ c1 ' 

with the increase in time t the tangent of the segment, which is constructed by combining the 

origin with the point (ipl(t), ep2(t)), increases when ipl(t) and ip2(t) have the same signature and 

decreases when ipl(t) and ip2(t) have the different signature. Therefore the point (c1(t), ip2(t)) 

turns as in Figure 2. Since by (lO) both functions epl and c2 are increasing functions, with the 

increase in time t the point on axis must move toward the origin as in Figure 2. Thirdly. 

since we get by (9) 

dip2 _ ~ _ 2 ~ ip2 (12) I ~r epl ' dipl ~ ip ~ 

FIG. 2 
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with the increase in c1' ip2 increases when c1(t) and c2(t) have the same signature and decreases 

when ipl(t) and c2(t) have the different signature. Finally, since we get by (9), (ll) and (12) 

iL ip2 (~ - V) 1 - d2ip2 = ~ ip _ _ ~(~-V) . ip2 d /dc _ 2 dt d rv c2 _ 
l dipl ' dt ~F epl ~ dc12 ~ dc1 ¥ dip ~ -~ipl ~ e2 ipl2' 

the integral curve of (9) is convex when ip2(t)>0, and concave when ep2(t)

all things described above we can picture the integral curves for all initial conditions as Figure 

3. ' In Figure I Iet I be a line which is orthogonal to the seginent A(1)A(2). Then if we lie 

Figure I upon Figure 2, we come to a conclusion that any one of integral curves cuts the line 

l in one time at most. The reason is as follows;-let a be the tangent of line I and let some inte-

gral curve (ipl(t), ip2(t)) cut the line I in two times, then for some different time tl and t2 

ip2(tl) = aipl(tl)' ip2(t2) = aepl(t2), 

therefore by (10), 

K2e~~t, = aKle~et, and K2e~vt. = aKle~~t, then e(a-7)t* = aKl/K2 = e(~~7)t. 

and then il=t2, this is a contradiction. Accordingly the optimal control transfering some 

initial phase point to the origin with minimum time interval is a step function which takes at 

most two value A(1) or A(2). Namely it is impossible that the optimal control could have any 

type without four types of Figure 4. 

FIG. 3 
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Now let us solYe the differential equation i (9) in the time interval in which the value of 

control function is a co~stant A (i). We can get an optimal trajectory by combining the above 

solutions for each type of control function from (a) to (d). Let us define B(1) and B(2) by the 

following relation : 

1
 [ -~ = (13) B(i) Bl(i) ~ ~ O A(o i 1, 2, ( ) O 

B2(i) l 
V
 

and then it is clear that Bl(1)>0, B2(1)

0. Using B(i) we can rewrite the equation (9) as follows; 

( 1 4)i 

d
 dt (XI ~ B1(')) = ~(Xl~Bl('))' 

d
 dt (X2-B2(i)) := v(X2-B2(i)) 
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As the solution ofthe above differential equation we obtain 

[October 

xl = Bl(i) + L1(oe~t {x2 = B2(o + L2(')e~t 

where L1(i) and L2(i) are integral constants. All integral curves of (14)1 for every initial phase 

point are pictured in Figure 5 and all integral curves of (14)2 for every initial phase point are 

pictured in Figure 6. 

Now let us decide the optimal trajectory with respect to each optimal control which has 

one of four kinds of type from (a) to (d) in Figure 4. First if an optimal control has type (a), 

a phase point (xl' x2) moves along the trajectory in Figure 5. In the trajectories of Figure 5 

the one which passes the origin is only B(1)O. Therefore the initial phase point, which we can 

transfer to the origin by the control of type (a) with minimum time interval, must belong to 

the arc B(1)Oin Figure 5. Similarly the initial phase point, which we can transfer to the origin 

by the control of type (b) with minimum time interval, must belong to the arc B(2)O in Figure 

6. Let us seek for the equations which indicate B(1)O and B(2)O. If (15)1 arrives at the 

origin at some time t*, we get 

{O = B1(1) + L1(1)eet' 

O = B2(1) + L2(1)evt* 

By the signature of Bl(1) and B2(1), it must be Ll(1) 

0, and therefore 
(-B (1))1/? (L (1))1!7 

(Bl(1))1/e (_Ll(1))1!~ ' 

FIG. 5 
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FIG. 6 

x2 

~
1
 
.
 

Conversely, it is clear that (17) concludes (16) for 

L2(1))1/v. Therefore the necessary and sufficient condition 

at the origin at some time, is (17), 

trajectory (15)2 arrives･at the origin at some time is 

(18) ' (B2(2))1!~ _ (_L2(2))1/7 
(-Bl(2))1/~ ~ (Ll(2))1/e ' 

where L2(2) 

0. By (15)1 and (16), we get 

DISSOLUTION 

一

月！〕

1
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t* = Io~ (Bl(;)/(-Ll(1)))1/~= Iog ((-B2(1))/ 

that the trajectory (15)1 arrives 

Similarly the necessary and sufficient condition that the 

Bl(1)_X =( 2 2 ) ll~ X -B(1) l/? ( l )
 

- Ll(1) L (1) 

(x2 - B2(1))1/v 

and (Bl(1)_~1)1/~ = 
But by (8) and (13) we get 

(L2(1))1!? ( - B2(1))1/7 

( - L1(1)) 1!a (B2(1))1!e ' 

( - B2(1)) 1/7 

(B1(1))1/e 

(_ ~l/? f I (cl +c2+e)c2 If7 1 A (1) _ ' 
V 2 / IV e-V 

}
 L I A (1)~1/~ S_,_1 . (clr+c2+~)c2 1/~ 

~=~r I / Ie e-7 
}
 {e(e -V)_}~/a{(clr+c2+e)c2}1/7 

{v(~ _ 7) } l/? { (clr + c2 + ~)c2 } 1/e 
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On the other side we get 

l (clr+c2+e)c2 Ih (x2 - B2(1)) 1/7 } 
.
{
 

x2+ - ' 
e-~ 

(Bl(1) _ xl)1/e ~ I (c r + c + v)c2 llE 

{ ･ 1 2 }
 

-xl e
 

~-V 
_ {~(~ -V)} l/~{~(~ _ V)x2+ (clr + c2 + e)c2} 1!7 

~ {v(~-V)}lh{(clr+c2+v)c2-e(e-V)xl}1!e 

Accordingly we get 

{~(e-V)x2+(clr+c2+~)c2}1/7 _ {(clr+c2+~)c2}1/? 
{(clr+c2+v)c2-~(~-~)xl}1la ~ {(clr+c2+~)c2}1/e ' 

Therefore we get 

(cl r + c2 + ~)c2 e(~ - V) [{ l} ~ ' 2' l 1
 x ~(~-7) ' ~ (clr+c2+v)c 

o ~ xl

~ ~-V ' 
This is the equation of arc B(1)O. Similarly we can obtain the equation of arc B(2)O as follows ; 

(21) (clr+c2+~)c2 [1-{ e(e~7) .xl+1} J, 
x2 = ~(~ - ~) (clr + c8 + ~)c2 

i . (clT+c2+v)c2 

- ~ ~-7 
Secondly let us consider the trajectory controlled by the function whiph has a type (c) in 

Figure 4. In this case the optimal trajectory moves aldng the curve in Figure 5 at first and 

then moves along the curve in Figure 6 and ultimately arrives at the origin. Accordingly we 

must discover the set of curves in Figure 5 which intersect with the arc B(2)O. It is clear that 

these curves exist between the arc B(1)O and the arc B(1)B(2) in Figure 7. Therefore let us 

consider the arc B(1)B(2). If (15)1 arrives at B(2) at some time t*, we get 

Bl(2) = Bl(1) + L1(1)eEr and ~ { ~ ~ , (22) . . B2(2) = ~'B2(1) +iL2(1)e7t* ~ 

(B2(2) - B2(1)) 1/7 (L2(1)) l!7 

' (Bl(1)_Bl(2))1!~ _._ (_Ll(1))1/~ . __ 

Conversely, it is clear that (23) concludes (22) for t*= Iog ((B (1) B (2))/( L (1)))1/e 

log ((B2(2)-B2(1))/L2(1))1/7. Therefore the necessary and s~fficient condition that the trajec-
tory (15)1 arrives at Bl(, ~)~~ at ~ome time, ,is (~, 3). By j(15)1 and (23), we get _ . 

_"_ Bl(})~xl }/~~ x2LB~(1) '~/~' 

f ): = ( : ･ _) { '( - . 
L (1) 2 .J ' _ Ll(1) 

and (x2-B2(1))1h __' (L2a))1/7 _ (B2(2)LB2(1))1/7 
(Bl(1) = xl)1/~ ~ ' ,(_Ll(1))1le ~ (Bl(1) _~Bl(2))lle 
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FIG. 7 
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But by (8) and (13), we get 

i. (clr+c2+~)c2 1/? 

(B2(2) - B2(1))1!7 { ~(~ _ V) } l/~ { 2(clr + c2 + e)c2} l/7 ~~ ~ V
 (Bl(1)_Bl(2))1/e ~ I (clr+c2+~)c2 1/~ ~ {v(~_V)}1/7 {2(clr+c2+v)c2}1/~ 

.e. e-~ 

Accordingly by (19), we get 

{r/(e~V)x2+(clr+c2+~)c2}1!7 _ {2(clr+c2+~)c2}1!7 
{(~lr +c2+~)c2-~(~-V)xl}1/~ ~ {2(clT+c2+7)c2}1/e ' 

Therefore we get 

(24) _ 2(clr+c2+~)c2 l} ~~]' _ e(~ - V) 
[
{
 

'x x2 ~ 7(~-V) ' 2 ~ 2(clr+c2+v)c2 2
 

1 (clr+c2+v)c2 

~~' e-7 = I ~' ~-~ ' 
Finally let us consider the trajectory controlled by the function which has a type (a) in 

Figure 4. In this case the optimal trajectory moves along the curve in Figure 6 at first and 

then move along the curve in Figure 5 and ultimately arrives at the origin. Accordingly we 

must discover the set of curves in Figure 6 which intersect with the arc B(1) O. It is clear that 

these curves exist between the arc B(2)O and the arc B(2)B(1) in Figure 8. Therefore let us 
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consider the arc B(2)B(1). The process of computation is the same as the case in which the 

type of control function is (c) in Figure 4. Therefore let us denote the conclusion; namely 

1 7!e (25) , 2(clr+q2+~)c2 1 ~} l' ~(~ - ~) ' . [-
-
{
 

' xl +' x 2 ~ .V(~~ V) 2(clr+c2t ~)c2 2
 

1 (clr+c2+v)c2 ' 1'~ (clT+c2+v)c2 
~ ~-~ 

(24) and (25) decide the region whose points can be transfered according to the equation 

of motion of the system by some optimal control. Namely , 

: 2(clr+c2+~)c2 1 ' 1 7l~ 
(26) (xl' x2) e R2 . ' ~(~-~) ' ~ 2(clT+c2+q)c2 2

 

2(clT + c2 + ~)c2 ~l~ 1 ~(~ - ~) 1
 
2, r 2(clr+c~+~)c2 

l (clr+:c2+:V)c2 '1 : ･ (clr +c2H'~)c2 , } and - - . 
, ~-V , ~-~ 

Figure 9, which is obtained by combining Figure 7 with Figure 8, is a rough map of this region. 

In Figure 9 the arc B(1)MB(2) is indicated by (24) and th~ arc B(2)NB(1) is indicated by (25). 

We can solve the synthesis problem for a control problem formulated by (7). Namely 

synthesis function v(xl' x2) is defined as follows; 

v(xl' x2) - A(1); if (xl' x2) e B(1)MB(2)O. {
 

~ A(2); if (xl' x2) e B(1)NB(2)O. 
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　　Fina11ylet　us　rewrite　the　region（26）using　the　origina1variab1es　Fandλin　Simon－Homans

Sy…tem．

　　　　　　　／（〃）1…去一／2（。ユ、蓋十、）。、・・一去・ノ・去1η’ξ

　　　　　C1η　　　　　　η＜一　　　　　　　　　　　　・11＋一・■4
　　2（o。γ十c。十ξ）c．　　2c。
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