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l . Introduction 

The purpose of this paper is to analyze the relationships between the value of informa-

tion provided by an information system (as developed, for example, in Marschak CIOl) and 

the amount of information provided by an information system (as defined in Lindley [81). 

The value is essentially defined as the expected ･increase of utility by having an information 
system and the amount is defined as the expected decrease of the degree of uncertainty of 

the states of nature, the degree of uncertainty of a probability distribution being measured 

by entropy. The exact expressions for the value and the amount are given below. 

Investigations in this paper are particularly concerned with the "consistency" of the 

rankings of information systems by the value and by the amount. Does an increase in the 

amount imply an increase in the value ? This question seems to be interesting at least on 

two grounds. First, it asks if an information system is like many commodities in economic 

analysis for which utility or value is often assumed or considered to be an increasing (or 

non-decreasing) function of their quantities.1 Secondly, the "consistency" of rankings will 

make it possible to use the amount of information (1) as a surrogate of the value of informa-

tion ( V) in information system selection.2 This possibility has a considerable appeal, at 

least in a practical sense, because of the practical difficulties of finding a suitable utility func-

tion and computing the optimal action and its associated utility which the computation of 

V requires. The computation of I is simple and free from these difficulties.3 

In the next section we indicate that there are several similar properties that both V and 

I have. Section 3 is mostly mathematical and obtains conditions for the two rankings of 

information systems, one by V and one by I, to be "consistent". In Section 4, we apply 

the results of Section 3 in a specific context of the investment model with state contingent 

claims. It is shown that the two rankings of information systems are identical if and only 

if the utility function is logarithmic. In Section 5, we show that there is a large class of 

information systems for which the ranking by I can never be reversed by the ranking by V. 

* Assistant Professor (Jokyo~'ju) of Management Science. The author thanks for the helpful comments 
to the ear]ier draft of this paper given at Stanford Summer Research Seminar in Accounting. 

* Of course, under the given definitions of the value and amount of information. 
' The reader should be reminded that cost aspects of information systems are not considered explicitly in 

this paper. 

* For more discussion on the introduction of the concept of the amount of information into the framework 
of information economics and accounting information evaluation in particular, see Itami [7]. The difficulties 
mentioned here ar~ especially acute for accounting information evaluation for which, in many instances, neither 

the utility function to be used and the decision situation to be considered are not given explicitly. 
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We show this by applying the results of Section 3. 

Let us now introduce several notations for the following discussions. 

S: the set of states of nature 
the i-th state of nature, i=1, . . . , n, an element of S 

A : the set of actions available to the decision maker 

a: an action, an element of A 
' utility function of the decision maker U(s, a). 

~p(si): a prior probability distribution over S held by the decision maker 

V: an information system 
Y: the set of messages from ~ 
yj: the j-th message, j= 1, . . . , m, an element of Y 

p(yjjsi): message generating probability given state si. This depends on ~ and 

sometimes denoted as p(yjjsi, V) 

P.' an information matrix (nXm), {p(yj/si)} of ~ 
p(yj): the probability of a message yj . ~ 40(si)P(yjlsi) 

p(si/yj): a posterior probability distribution over si given a message yj from v 

a(j) : the optimal (expected utility maximizing) action given a message yj 

Uo: the maximized expected utility under a prior distribution ~)(s). 
max ~~ ~(si)U(si, a) 

U(yi): the maximized expected utility under a posterior distribution p(si/yj). 

max ~~ ~(silyj) U(si, a) 

U(~): the expected utility under ~. ~p(yi)U(yj) 

the value of information of v. V(V)= U(V)- Uo 

I(~): the amount of information of v, defined below. 
To denote the value and amount of information, we use notations like V, V(~), V(P), 

I, I(V), I(P) quite freely. p(') for a probability distribution is also frequently used for different 

probability distributions as long as there would be no confusion. The following alterna-

tive expressions for V and I are also used sometimes in the following analysis. 

V=~~p(yj) max ~~ ~(silyj) U(si, a)- Uo 

= T:_ max ~ ~(si)P(yj/si)U(si, a)- Uo 

=~]p(yj) ~~ ~(si/yj)U(si, a(j))- Uo 

=~ ~] ~(si)P(yj/si)U(si, a(j))- Uo 

ij 
I = -_y] p(si) Iog ,~(s,)+~] p(yj) ~~ ~(silyj) Iog p(silyj) 

=~ ~ ~(si)P(yjlsi) Iog P(silyj) 

i j ~(si) 



14 HITOTSUBASHI JOURNAL OF OOMMERCE AND MANAGEMENT [ June 

2. Similar Properties of the Value and 

the Amount of Information 

Both the value and the amount of information depend on the prior distribution 9~ and 

the information matrix P. Furthermore, both are defined in terms of the expected difference 

of certain quantities (i.e. utility for the value and the degree of uncertainty for the amount) 

between the case with an information system P and the case without it. Therefore, it is 

perhaps natural to expect some similarities in their properties. Although much cannot 
be said without specifying the utility function and the decision situation of the decision maker, 

we shall see that some very basic properties of the value of information are also present in 

the amount of information. This is somewhat encouraging if one would want to use the 

amount of information (1) as a surrogate of the value of information ( V) in information 

systems selection. 

Now, Iet us start with an obvious similarity between V and I. 

Property 1. Both V and I are non-negative. I is zero if and only if p(y!s) does not 

depend on s. V is zero if p(y/s) does not depend on s. 
For proof, see Lindley C8] and Marschak [10]. 

Property 2. Both V an I are additive, or 

V(VIU v2)= V(V1)+ V(V2/vl) 

I(V IU v 2) =1(V 1) +1(~ 2i v 1) 

Remarks: 
Here vl and ~2 denote two information systems with the same state space and vlU~2 

denote the coupled information system in which one receives a pair of messages (yl, y2) 

simultaneously, yl from ~l and y2 from v2' V(V2ivl) denote the average additional value 

of information of ~2 after having received a message from vl' or 

V(V2i~l)=~ P(yl)V(V2i yl) 
y* 

where V(~2/yl) is the additional value of information of having information system v2 
after receiving a message yl. V(V2/yl) is computed as usual with ,,(s/yl, V1) as a prior and 

p(y2/s, yl, V2) as the message generating probability of v2' The definition of I(~2/vl) is 

just the same. It is the average of I(172iyl) which is defined similarly as V(~2/yl). 

Proof: By definition 
V(V 2/ v 1) = ~ P( yl) U(V 2! yl) _ ~ p( yl) U( yl) 

V(~ 1)= ~y, P(yl) U( yl) _ Uo 

By adding these two together and rewriting U(V2/yl), 

V(~ 1)+ V(V 2!~ 1)= ~ ~ p( yl) p( y2/ yl) U( y2/ yl) _ Uo 

y* y' 

=~ ~p(yl, y2)U(yl, y2)-Uo 
y* y' 

= V(~IU ~2) 

The proof for I is similar and given in Lindley [8). 

Property 3. Both V and I will never be increased by garbling of an information matrix. 
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More formally, 

V(~ 1)~: V(V2) 

I(~1);~I(V2) 

if there exists a Markov matrix G such that 

P2=GP1 
For proof, see Marschak and Miyasawa Cll]. Actually, the existence of garbling is also a 

necessary condition for V(V1);~V(V2) to be true regardless of the utility function and the 

prior. This is not the case for I. 

Property 4. Both V and I are convex functions of P. 
Proof: Convexity of I is proved in Lindley [8]. To prove convexity of V, take two 

information matrices P1' P2 and its convex combination P3=~P1+(1-;,)p2, O~;,~1. 
Clearly P3 satisfies the conditions for an information matrix (i.e. Markov matrix). 

V( P3)=~ max ~ ~(s)(~ pl(y/s)+ (1 - ~)p2(y/s)U(s, a)- Uo 

~_T] max I E ~)(s)pl(y/s)U(s, a)+~ max (1 -~) ~] ~(s)p2(yjs)U(s, a)- Uo 

= I V( Pl)+ (1 - ~) V( P2) Q.E.D. 
An interesting implication of this property would be about the effect of randomization 

among several alternative information systems. Suppose there are n alternative informa-

tion systems (Pi) one of which is actually used to emit a message the decision maker receives. 

Further suppose that he has a prior probability ~i that the i-th system will be used. Pro-

perty 4 implies that, both in terms of the value and the amount of information, disclosure 

of which information system is being used is never worse than non-disclosure on the average 

basis. Thus, for example, if we consider different accounting alternatives as alternative 

information systems, disclosure of accounting methods is never worse, on the ex ante basis. 

than non-disclosure for a single decision maker. 

The basic reason why V and I share some basic properties mentioned above is given in 

the following theorem. 

Theorem 1: All the properties which V has regardless of the utility function and the 

decision situation also hold for I. 

It is sufiicient to prove that there is at least one special combination of the utility func-

tion and the decision situation for which V and I are identical. Section 4 actually gives 

such an example in the context of investment in risky assets. This theorem is a strong in-

dication of similarity of the properties cf V and I as functions of an information matrix and 

a prior distribution. Note that the theorem holds not only for the four properties mentioned 

in this paper, but also to any property that Vhas independent of the utility function and the 

decision situation. 

3. Conditions for Consistency of Rankings by I and V 

An information system v which can be abstractly represented by an information matrix 

P may be considered to consist of several basic information system elements or inputs which 

can be varied by an information system designer. Concretely, he does not change the 
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message generating probability itself but manipulates some design parameters which even-

tually affect P. For example, in a sampling information system for statistical estimation 

the sample size and the sample precision are most likely design parameters. Then, in this 

light, the question of the consistency of ranking of information systems by V and I becomes 

a question of the consistency of the effects on V and I of changing design parameters. 

Now, supposing an information system is made up with K design parameters, ek(k=1, 

. . . , K), Iet us assume that every p(yjlsi) is a differentiable function of ek/s.4 Then, I is 

differentiable with respect to ek/s. For the differentiability of V, we first assume that U 

(s, a) is a differentiable function of a H-dimentional vector a. The constraint set of a is also 

assumed to be A= {a/tl(a)~O, l=1, . . . , L) where tl(a) is a differentiable function for all 

1. Then, the optimality condition (Kuhn-Tucker condition) of the decision maker's problem 

after receiving a message yj rs 

a U a tl (1) ~~ aahP(sijyj)=~11 for h=1, ..., H 

* I a ah for l=1, ..., (2) ;,Itl(a)=0 L
 

for l=1, ..., L
 

(3) tl(a)~O 
for l=1, ..., (4) ~l;~O L

 
Here ll is a Lagrangean multiplier. 

Now, we have the following lemma for the partial derivatives of V and I. To avoid 

being entangled with unnecessary mathematical subtleties, we just assume in the following 

a(j) is differentiable with respect to ek/s, where a(j) is the optimal decision after receiving 

a message yj. This assumption ensures the differentiability of V. 

Lemma 1: 
a p( yjls j) aV U(si, a(j)) =_T] ~ p(si) (5) 

aek ack i j 
al ap(yjjsi) p(sijyj) (6) =~ ~] ~(si) Iog ack i j aek ~(si) 

Proof･' Since V=~p(yj) ~;; U(si, a(j))p(si/yj)-Uo 

a
 ~] ~ (P(yj)p(si/yj)) U(si, a(j))+~ ~] p(yj)p(si/yj)-Tlh 

aek ji J' a p( yjlsi) aah( j) a tl =~ ~ ~(si) aek U(si, a(j))+~P(yj) ~ ae ~ Il aah 
ij 

Since either ll=0 or tl(a(j))=0 from (2), 

atl aah(j) _ 
~1'~h aah aek O 

Therefore, we obtain (5). 

Since I=~ ~ p(si)P(yjlsi) Iog "(silyj) 
~~~~rp si) ' 

ij 
ap(yjjsi) Iog ~(silyj) 

=~] ~ 9)(si) +~] ~ ~(si)P(yj) ~(si) ac* ij 
Furthermore, 

' Since ak can be related to p(yj/si) in any way, the differentiability condition should not be restrictive. 
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ap(yj/si) . ap(yjlsi) a~)(sl/y/) _ aek P(yi)- P(yj/sl) ~ ~)(s ) 
l ack 

17 

a8k P(yj)2 Therefore, 

~ ~ a 9(si/_vj) a p( yj/si) a p( yjjsi) f
 

p(si)P(yj) =_)~- ~ ¥~'(si) - ~'(silyj) ~~ ~)(si) } 
~ ~ ac 

a p( yjlsi) 

=_yl _y] ~(si) - _yl _y: ~)(si) a8k _y; ~(si/yj)=0 

. ae k j, Thus, we obtain (6). Q.E.D. 

Using this lemma, we can now derive a general condition for V and I to move in the 

same direction as ck/s change. That is, denoting the total differentials of V and I by dV 

and dl, the necessary and sufficient condition for dl and dV to be of the same sign or both 

to be zero. 

Theorem 2.･ The following two sets of statements are equivalent. 
(i) dl>0=~dV>0, dl=0=>dV=0 and dl
 dV(ii) The following K equations system (T) of ul' u2 and wi 

(1 1, ..., n) has a solution in which ul>0 and u2>0. 

(T) _~ -~ ~)(si) ap(yjlsi) (u U(s,, a(J)) u log p(s,/y])+wi)=0 for k=1, .... K 

' j aeh 
Proof.' By definition and Lemma l 

(7) dV=_)k_- aa8V dek=_T:k ~i -j~ ~(si) ap(yjlsi) U(si, a(j))dck 

ae al a p( yj/ksi) ,~(sij yj) 
(8) dl=_.~k aL: dek=_T:k ~, -y~J 90(s) i log de ack ~(si) k 

We have one condition on dck/s to keep P as a Markov matrix. 
a p( yjlsi) 

(9) -~ -y:k aek ack=0 for all i 
Now the statement (i) is equivalent to saying that none of the following four systems 

of inequalities of dck/s have a solution under the condition (9). 

(Tl) dl~O and dV>0 
(T2) dl>0 and dV~O 
(T3) dl=0 and dV
(T4) dl

Using Motzkin's theorem of the alternative in Mangasarian C9, p. 28], the infeasibility 

of (Tl) under (9) is equivalent to the feasibility of 

_T] _yl (ul'~(si)U(si, a(j))-u2~(si) Iog 9)(si/yj)+zi) ap{y_CJ/s,) O for all k 

in ul' u2, zi (i= l, . . . , n) with ul>0, u2~:O. Since zi can depend on anything but yj without 

any restriction, the feasibility of the above equation system is equivalent to the feasibility 

of (T) with ul>0 and u2;~O. 

By developing similar equivalence relations for the infeasibility of (T2), (T3) and (T4) 

through Motzkin's theorem, we obtain the desired result. Q.E.D. 

The above theorem gives us the necessary and sufficient condition for a local isomor-
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phism between the changes in I and V due to varying design parameters, Ck/s. Extending 

this into the conditions for global identity of rankings of information systems (or informa-

tion system changes under condideration manifest in ap(yjlsi) ), we have the following 

aek 

theorem:5 

Theorem 3: Given U. A, ~) and p(yJlsi) as functions of ek/s, for the rankings of infor-

mation systems by V and I to be identical the following two conditions are necessary and 

sufficient. 

(i) V is a function of I, 

(ii) Condition (ii) of Theorem 2 holds. 

Proof: Since V has to be a strictly increasing function of I for the two rankings to be 

identical and vice versa, the theorem easily follows. 

The condition (i) requires that I is a finer function of P and ~) than V, which is a rather 

strong requirement. There does not seem to exist any easy way to check (i). An obvious 

sufficient condition is that I as a function of ek/s has an inverse function. 

Since a requirement of the global identity of two rankings is rather strong, one may well 

be content with a milder requirement that the ranking by I will never be reversed by the 

ranking by V, or I(~1)>1(V2)=~V(V1);~V(V2)' Contrary to the requirement of identical 

rankings, we allow the case V(V1)= V(V2) when I(V1)>1(~2)' We also allow vl and ~2 can be 

ranked in any way when I(Vl)=1(V2)' This irreversibility requirement is especially meaning-

ful if one would want to use I as a surrogate criterion of information system choice when a 

utility function is not clearly known. The following theorem gives us a necessary condition 

for global irreversibility of the ranking by I and the necessary and sufficient condition for 

local irreversibility. By local irreversibility of the ranking by I, we mean dl>0=rdV;~O, 

and d[

Theorem 4: The following condition is the necessary and sufficient condition for 

dl>0=rdV~O and dl

irreversible globally by the ranking by V. 
n) has a sloution in which ul;~O,. (i) The equations system (T) of ul' u2 and wi (i=1, . . . , 

u2;~O and ul+u2>0. 
P,'oof: Since dl>0=rdV~~O and dl

(T5) dl>0 and dV
(T6) dl
0 under the condition (9), we can obtain the desired result by applying Motzkin's theorem of 

Q.E.D. the alternative as we did in Theorem 2. 

A simple sufficient condition to make the condition (i) in Theorem 4 the necessary and 

sufficient condition for global irreversibility is that we restrict ourselves for such a range and 

movement of 8k/s for which dl;~O. We formally state this as a corollary because it will be 

used in Section 5. 

Corollary to Theorem 4: 
If dl~~O for a range and rttovement of ek/s we are interested in, then the condition (i) of 

* Here, by "the identity of rankings", we exelude such cases in which ~* and ~･ are ranked same by V 
but differently by r We are concemed with strict identity ot two rankings. 



1978] oN THE RELATIONSHIPS BETWEEN THE VALUE AND THE AMOUNT OF INFORMATION 1 9 

Theorem 4 is necessary and sufficient condition for the ranking by I to be irreversible by the 

Tanking by V for the range and movement of ek/s. 

Theorem 3 and 4 are general results in the sense that they can be used to check the identity 

Or irreversibility of rankings for any given U, A, ~ and P. They can also be used to derive 

eonditions for identical or irreversible rankings on 

(a) classes of utility functions and decision situations when no or weak assumptions 

are made for information system changes, 

(b) classes of information systems (or their changes) when no or weak assumptions 

are made on U, A and others. 
In the following analysis, both questions (a) and (b) will be discussed. In the rest of this 

section and the next section, we will try to nail down the classes of the utility functions (and 

the decision situations) for which we can be assured of the identical rankings by V and I 

for an arbitrary set of information matrices. The next section treats this problem in a specific 

,context of securities investment (or more generally exchange economy under uncertainty). 

･Concerning (b), Section 5 shows that for a certain class of information systems, the irrevers-
ibility of the ranking by I exists under a mild assumption on the utility function and the deci-

sion situation. 

A requirement of identical rankings by V and I for any information system changes or 

any set of alternative information systems is very strong and is likely to be satisfied only 

for a rather restricted class ofutility functions and decision situations. The following theorem 

proves that this intuition is correct, but also shows some interesting cases are included in this 

restricted class of utility functions and decision situations. 

Theorem 5: The necessary and sufficient condition for the statement (ii) of Theorem 

2, and thus a necessary condition for the identical rankings of information systems by V and 

I for any set of information systems, is that the utility function and the decision situation 

are such that 

,(10) U(si, a(j))= a log p(si/yj)+ f(si) for all i and j 

where a is a positive number which does not depend on either si nor yj and f(si) is an 

arbitrary function of si which does not depend on yj' 

Remarks: Note that a andf(si) may depend on the value of design parameters as they 

change. 
a p( J'j/s,) 

Proof.' From the system (T), it is easy to see that for (T) to hold for any a5k , it 

-is necessary and sufficient that the terms in the parenthesis on the left-hand are identically 

zero for all i, j and k. Thus (10) is obtained. Due to Theorem 3, this is a necessary condi-

tion for the identical rankings by V and I. Q.E.D. 
A special case of interest which satisfies (lO) is a securities investment model of Arrow-

Debreu type contingent claims with logarithmic utility of income. It will be treated in depth 

in the next section. Another case of interest in which (10) holds is the case of quadratic loss 

,estimation of the mean of normal distribution with normal prior.6 Moreover, in this special 

case, V can be shown to be a function of I and therefore (10) becomes the necessary and 

* For example, see DeGroot C4, Ch. 1 I]. Also, see Itami [7] for a detailed analysis of the relationships 
between Vand I in this case. Although the results in this paper are developed in the discrete probability case, 

extension to the continuous case is immediate. 
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Sufficient condition for identical rankings. 

[ June 

4. [dentical Rankings in the Investment Model 
with State Contingent ClainlS 

In this section, we analyze the question of the identity of rankings of information systems 

by V and by I within the framework of the investment model with state contingent claims. 

The model was first proposed by Arrow Cl] and is now considered one of very general and 

basic frameworks of a pure exchange economy under uncertainty and investment in risky 

assets.7 Therefore, analysis of the identical ranking question in this particular framework 

is especially meaningful for accounting information evaluation. The relationship between 

V and I in this framework was first analyzed by Arrow C2]. 

Notationally, Iet xi be the odds on the occurrence of state si or the rate of return of the 

i-th state contingency claim. Let ai be the proportion of an investor's fixed total wealth 

to be bet on the i-th state contingency claim. The investor's decision model, when the pro-

bability distribution of states is, say ~(si), becomes 

max ~~ ~(si) U(aixi) 

s.t. ~ai

Obviously, the role of an information system in this framework is to help the investor revise 

the probability of occurrence of state si, however it may be defined in any particular case.8 

The major result of this section is presented in Theorem 6 below. It says, in short, 

that the rankings of information systems by V and I are identical over an arbitrary set of 

information systems If and only tf the utility of income is of logarithmic form. 

Theorem 6.･ Assume that an investor's utility function U(w) of income (w) is strictly 
increasing, twice differentiable, and its second derivative never vanishes. Assume further 

that an investor invests all the money in contingent claims and there will always be positive 

investment for all the state contingent claims at optimum. Then for the rankings ofinforma-

tion systems by V and I to be identical for any set of alternative information systems, it is 

necessary and sufficient that U(w) is of the form 

(ll) U(w)=10g(Lv+p), p~~O. 
Remarks: For an investor to invest all the money (i.e., ~] ai=1), it is sufficient that 

there exists a sure system of bets (i.e., ~ ~ ~ l). See Arrow C2]. Also note that P irL 

(11) is not restricted in any way except P ;~O. 

Proof.' The Kuhn-Tucker condition for optimality for the investor's problem after 
receiving a message yj are, under the assumptions of no savings and positive investment for 

each claim, 

(12) ~(si/yj)xiU/(ai(j)xi)=~(j) for all i 

(13) ~ai(j)=1, 

' The model is also known as the states of the world model. See, for example, Fama and Miller [5]. 
' For a view which considers one of the major roles of financial statements as, such for a richly definable 

states, see Beaver C3]. 
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where ai(j) is the optimal solution and 1(j) is a Lagrange multiplier. Let us first prove 

the sufficiency of (ll). From (12), it is easy to see 

(14) p(sjjyj)xi=).(j)(ai(j)xi+p). 

Therefore, 

10g (ai(j)xi+ p)=10g ,~(sj/yj)+10g xi-log ~(j) 

and, 

~~ ~)(si/y )U(a (J)x ) Iog ~(J)+~ ~(s,lyJ) Iog x +~ p(s,lyJ) Iog p(s,,lyJ) 
~. 

Similarly, for the case without an information system, 

U0=_log),0+~ p(si) Iogxi+ . ~)(si) Iog p(si). ~ ~ 
Thus, the value of information is 

V=- . p(yi) Iog 1(j)+10g 20+1. ~ ~ 
Actually, ;.(j) does not depend on j under our assumptions. We can see that by 

dividing (14) by xi and summing over i, 

1=2(j)+~(j)p_yl l 
i xi' 

which gives us 1(i) independent ofj. Thus, V is identical with I. 

To prove the necessity part, first observe from Theorem 5 that it is necessary 

(15) U(ai(j)xi)=alogp(si/yj)+f(si), a>0 
Substituting (12) into (15), we obtain 

(16) U(ai(j)xj)=-a log U/(ai(j)xi)+a log A(j)-a log xi+f(si) 

Let z=p(yj) for some j and differentiate (16) partially with respect to z. Since a and 

j(si) do not depend on j, 

U//(ai(j)xi) x aai(j)_ I a~(j) (17) {U/(ai(j)xi)+a , } 
U!(ai(j)x') i ~al(j) az az 

Now, for any i there exists such ai(j) as a differentiable function of z so that i(j) remains 

constant in (12) as z changes locally. This is seen by applying the implicit function theorem 

to (12) keeping ~(j) constant. Namely, (12) with constant ~(j) defines an implicit func-

tion of z and ai(j). From this implicit function, it is possible to find a differentiable func-

tion ai(j) of z if the partial derivative of LHS of (12) with respect to ai(j) is continuous in 

the neighborhood and does not vanish. This partial derivative is 

~(si/ yj)x, U//(ai( j)xi)xi 

and this is continuous and does not vanish because of our assumptions. Thus for some 

changes of z a;.(j)=0 

' az 
Furthermore we have, from (12) 

a,o(sil yj) 
x'U/(ai( j)xi) 

aai(j) ' az (18) = ~(si yj)xi2U//(ai(j)xi) az 

Since U(w) is assumed to be strictly increasing, (18) does not vanish. Thus, from (17) we 

a~( j) aai( j) 
see that for such a function ai(j) of z with =0 and ~ O, 

az az 
a U//(a (J)x )+ { U/(a (J)xi)} 2=0 
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Since we are concerned with freely changing information systems, this implies that U(w) 

has to satisfy the differential equation of the following form. 

(19) aUn(w)+{U/(w)}2=0 for w>0 
Solving this with a condition U/(w)>0 for w>0, we obtain 

U(w)=10g(aw+p), p;~O. 
Jt is clear that letting a= I is not a restriciton for U(w) and we obtain (1 l). Q.E.D. 

The sufficiency part of the proof was essentially indicated in Arrow [2]. The necessity 

part is a new result which seems to clarify the implication of using I as a criterion of informa-

tion systems selection, especially for financial accounting information systems whose major 

function is to provide information to the investors in securities markets. It means that 

to use I as an information choice criterion and rely on it completely implies the logarithmic 

utility function. The fact that only one specific utility function is compatible with the use 

Of I as a surrogate has certainly a negative connotation. Yet, the specific form, Iogarithmic, 

is somewhat encouraging because it is one of the simplest utility functions to display several 

intuitively appealing properties of risk aversion.9 Furthermore, Hakansson C6] shows in 

a multiperiod portfolio choice problem with a capital growth objective that in order to behave 

optimally in the long run the investor should act at each decision point as If he had a short-

run logarithmic utility function of the end of period wealth. Therefore, the static model 

with the logarithmic utility function, which is implied by the use of I for information choice, 

is quite appropriate in rather general circumstances. 

5. A Case of lrreversible Ranking by I : 

A Class of Information Systems 

In this section, we shall apply Theorem 4 and its Corollary developed in Section 3 and 

identify a class of information systems for which the ranking by I cannot be reversed by the 

ranking by V under a mild condition. First, Iet us start by describing the kind of informa-

tion system changes by which any two information systems in this class are related to each 

other. 

Consider a change in an information matrix that increases at most one e]ement of each 

row and decreases the same number (zero or one) of elements of the same row. That is, 

for each row i of P, we consider an increase of one p(yjlsi) and the associated decrease 

of another p(yjlsi) for the same i. Without loss of generality we can consider such changes 

as a result of an increase of a single design parameter, say ek. Denoting the index j of the 

increased p(yj/si) for each i byj(i) and that of the decreased p(yjjsi) by h(i), suppose further 

that for each i 

p(sij yj(i)) ~~ p(sij yh(i)). 

Or we consider such ap(yjlsi) that for each i 

ack 
(20) ap(yj(i)Isi) >0 

ack 

' See Pratt [121-
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a p( yh(i)Isi) 
(2 1 ) 

ack 
for such j(i) and h(i) that 

(22) ~(si/yj(i))~:~(si/y,,(i)). 

It is easy to see that for this kind of change in an information matrix, p(si/yj(i)) will increase 

and 9~(si/yh(i)) will decrease for each state i. Thus, it makes the divergence between 

~)(si/yj(,)) and ~(si/yh(i)) all the more greater. It also makes the posterior probabllity of 

the state i carry more weight than before in the posterior distribution given the message j(i), 

collecting this increased weight from the probability of other states. It also makes the pos-

terior probability of the state i carry less weight than before in the posterior distribution 

given the message h(i), spreading this reduced weight over other states. Thus, in a rough 

sense, the above kind of pair-wise changes makes the posterior distribution after receiving 

messages more different from each other and it makes the state i more associated with the 

message j(i) and less associated with the message h(i). Since the obviously least meaningful 

information system is the one which gives the same posterior distribution no matter what 

message is received, we may be somewhat justified to say that after the above kind of pair-

wrse changes the mformation system rs more meanmgful or "more accurate". This intui-

tive argument of "more accuracy" of an information system due to the above kind of change 

is supported by the following lemma. It is shown there that the change will never decrease 

the amount of information of an information system. For this and the above intuitive 

reasons, we say that one information system vl is preferred to another system ~2 by the 
Accuracy-ordering (or AC-ordering) if v2 can be constructed from 171 by a series of pair-wise 

changes of the avove kind. Alternatively, we may say vl rs AC-preferred to ~2' 

Lemma 2, Consider ap(y,/s,) 
ack of the above kmd Then for such mformatron system 

changes, 

(23) al >0 
ack -

Proof: Since we are considering a change of a single parameter only, the condition 

(9) reduces to, in our case here, 

(24) ap(yj(i)Isi) _ _ ap(yh(i)Isi) >0 for each i 

ack - aek 
Then, from (6) of Lemma l, we have 

al ~ ap(yj(i)Isi) ~)(silyj(i)) 
(25) ac =-~(si) Iog k ' aek P(si/yh(i)) 

Due to the assumption of the changes, we obtain (23). Q.E.D. 

Effectively, this lemma says that for a set of information systems which can be ordered 

by the AC-ordering, the ranking by I will never reverse the ranking by the AC-ordering. 

Note that like the ordering of information systems by "garbling" (Property 3 of Section 2), 

the AC-ordering here is a partial ordering of information systems. Unlike the ordenng 

by "garbling", the AC-ordering depends on the prior distribution. 

For a set of mformatron systems which can be ordered by "garbling", Property 3 implies 

that the ranking by I can never be reversed by the ranking V. This is true, under a mild 

condition, for a set of information systems which can be ordered by the AC-ordering given 



HITOTSUBASHI JOURNAL or COMMERCE AND MANAGEMENT 

a prior ~~(s). Theorem 7 proves this, thus identifying another class of information systems 

for which the ranking by I can never be reversed by the ranking by V. 

Theorem 7: Assume that the utility function and the decision situation is such that 

for two different probability distribution of si, ~)/(si) and ~n(si), the corresponding expected 

utility maximizing actions, a/ and d/ respectively, have a property 

(26) U(si, a!);~U(si, an) 

for all i such that p!(si)>pn(si). 

Then, given U, A, and p(s), the ranking of information systems by I will never be re-

versed by the ranking by V for any set of information systems which can be ordered by the 

AC-ordering. 
Rema,'ks.' Assumption (26) of this theorem may be considered a condition on the sensi-

tivity of the optimal action. Greater probability of si has to be accompanied by such a 

new optirnal sction that gives no less utility when si actually occurs. This seems. to be a 

mild condition. Note that (26) is satisfied if d=d/. 

P,'oof.' By definition, between any two information systems in the set of interest here. 

we can consider a series of design parameter changes as in (20). Take any ek in that 

series and we rove for the P(yjlsi) the equations system (T) has a solution in which uI~O. 

P ack , 
u2;~O and ul+u2>0. First, observing (24), the equations system (T) becomes 
(27) ul -T: ~(si) ap(yj(i)Isi) _ {U(si, a(j(i)))-U(si, a(h(i)))} 

i aek ap(yj(i)!si) p(si!yj(i)) 
-u2 _y~ p(si) ae log =0 k ~)(si/yh(i)) 

Suppose ~)(s,/yj(i))>~(si/yh(i;)･ The coefficient of ul is non-negative and the coefficient 

of u2 is positive. Then we can have a solution to (27) such that ul>0, u2~:O. Now 
suppose p(si/yj(i))=p(sijyh(i)). Since the coefficient of u2 is now zero, we can have a solu-

tion ul=0, u2>0 to (27). Since dl;~O for an increase of an ck as proved in Lemma 2. 

Corollary to Theorem 4 gives us the desired result. Q.E.D. 
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