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Abstract

This paper is concerned with the Wald test statistic of general restriction in dynamic
regression models with possibly integrated regressors. We try to improve the size and power of
the Wald statistic through the extended lag augmentation (LA) in the regression model and
the bias correction of the OLS estimator. This combination of the extended LA approach and
the bias correction is called the modified lag augmented (MLA) approach. We investigate the
finite sample properties of the MLA estimator. We find that the MLA estimator is superior to
the usual LA approach in view of empirical size and power.
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1. Introduction

Regressions with integrated and/or cointegrated regressors have been widely discussed.
The asymptotic distributions of the OLS estimator and of the Wald statistic to test the
hypothesis of restrictions on coefficients have been discussed in Phillips and Durlauf (1986),
and Park and Phillips (1988, 1989). It has been shown that they do not necessarily have the
standard distributions, namely, normal and chi-square ditributions.

There have been several attempts to modified the model and/or statistics so that the Wald
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statistic has an asymptotic chi-squre distribution or can be approximated by it. See, for
example, Phillips and Hansen (1990), Park (1992), Phillips (1995), and more recently,
Kitamura and Phillips (1997).

In the case of the vector autoregressive (VAR) model, Toda and Yamamoto (1995)
proposed estimating it with one or two intentionally augmented lags. More precisely, if we
knew the true lag length of the VAR model to be equal to k and the order of integration to be
zero or one, we estimate the (k1 1)-th order VAR model. Then, the Wald statistic to test the
hypothesis has an asymptotic chi-square distribution, i.e., the standard statistical inference can
be valid, irrespective of the order of integration and the cointegrating rank. This lag
augmented (LA) approach is useful in the sense that we do not have to decide the order of
integration, but it suffers from inefficiency because of the artificially augmented lag.Simulation
experiments by Yamamda and Toda (1998) confirm that the LA approach is less powerful
than those based upon the error correction model (ECM) by Johansen (1988,1991) and the
fully modified VAR by Phillips (1995).

Recently, Kurozumi and Yamamoto (2000) proposed a bias correction method for the
OLS estimator in the LA approach, which reduces its bias related to terms of O,(T"). The bias
corrected OLS estimator based on the LA approach has been called the modified LA (MLA)
estimator. By finite sample experiments, the ML A approach was shown to be quite effective in
reducing the size distortion of the Wald test statistic.

In this paper, we propose a method to improve the power of the Wald test in the MLA
approach. Actually, in order to achieve this, we propose an extended lag aumentation in the
OLS estimation. The conventional MLA approach suggests intentionally augmenting the
(k+1)-th lagged variable in the model, when the true model model contains the k-th lagged
variable. Here, we propose to intentionally augment the (k+p)-th (p=2) lagged variable.
Further, we apply the MLA approach to the usual regression models, which includes a VAR
model as a special case, whose regressors are possibly non-stationary, not necessarily special-
ising to a VAR model.

This paper proceeds as follows: In Section 2 we present the model and fundamental
assumptions and propose the extended lag augmented (LA(p) (p=2)) approach. The
asymptotic theory of this approach is obtained through the transformed model that partitions
variables into stationary and nonstationary parts. Section 3 investigates the efficiency of the
extended LA(p) approach, while section 4 develops the bias correction theory. The whole
sample is divided into two parts and the bias corrected estimator, which is called the modified
lag augmented (MLA(p)) estimator, is constructed by estimators in three periods, the whole,
the first, and the second periods, respectively. Section 5 investigates the finite sample properties
of the MLA(p) approach through the Monte Carlo simulation. Section 6 concludes the paper
and its main results.

A summary word on notation. We use vec(4) to stack the rows of a matrix 4 into a
column vector, [x] to denote the largest integer <x, and the inequality ” >0" to denote
positive definiteness when applied to matrices. The symbols » L P and V=7 signify
convergence in distribution, convergence in probability, and equality in distribution, respec-
tively. We use BM(Q2) to denote a vector Brownian motion with covariance matrix Q and we
write integrals like /' B(s)dB(s)" as simply /' BdB’ to achieve notational economy. Also, all
integrals are from O to 1 except where otherwise stated. All limits in the paper are taken as the
sample size T tending to ©o.
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II. The Model, Assumptions, and LA (p) Approach

1. The Basic Model

Consider the n-vector time series {y.} generated by the following model.
y: :Jlxrfl +--- +Jk-xrfk +ut,
Ax,=C(L)v,,

where {x,} is an m-variate process, and C(L) =X,2,C,L’ (Co=1I,), and with X2 || C; || < oo,
Suppose we know the true lag length k. The basic assumption for u,= [u:, v/]’ is as follows, but
we will impose further restrictions later.

(1)

Assumption 1 :

(i) {u.} is independently identically distributed with mean zero and covariance matrix X'.

u,=Lid.(0, X%,
0 0 — Z0 2Ol
where X' >0, and ¥X°—= {210 s, }

(ii) Each element of u, has a finite 2+ 6-th moment with 6>0.
Elu.|*"°< oo for some 6>0 (i=1, ---, T).

We also assume that {x.} is I(0) or I(1) and may be CI(1, 1).
Suppose our interest is in testing the hypothesis of restrictions on the parameters.
We formulate the hypothesis as

H, : Rvec =q,

where R is an ¢ Xkmn matrix with rank(R)=g and J=[J,, ‘-, Ji].

2. The LA(p) Approach

Here, we present the LA(p) approach. This is a generalization of Toda and Yamamoto
(1995) in two respects. Firstly, as a data generating process, we consider a general regression
model which includes a VAR (k) process as a special case. Secondly, as a regression model for
estimation, we propose the extended lag augmentation. Namely, we intentionally include the
k+p-th (p=2) lagged variable rather than the k+ 1-th lagged variable, which is denoted as
LA(p). We rewrite D.G.P. (1) with the k +p-th lagged variable and a constant.

(2) Ve — Jlxt—1+"'+kat—k+Jk+1Xr—k—p+ﬂ c 1+u,
- lxlt+Jk—1xt—k—p+ﬂ ° 1+u,,
= Jxiu+ [Jk+1, /J]xﬁf’)-ﬁ-u,,

where J,-1=0, £ =0, x, = [x/-1, ***, x/«] ", and x{” =[x/, 1]’, and in the matrix form,



162 HITOTSUBASHI JOURNAL OF ECONOMICS [December

Y = JX\+ [, u]X + U
= [J Jk*h ﬂ]X(p)/+U/5

where Y'= [y, =, yr], Xi=[xXu, =, Xir], X' =[x40, -, xP], X' =[X,, X", and U’ =
[ui, -*+, ur]. Though the constant term is superfluous, it will have an important role in bias
correction in the later section and thus we include it here. The OLS estimator of J is

JO=Y Q¥X . (X:0%X)

where Q¥ =1;— X (X' X{”) X,

If {x} is I(0), the OLS estimator of J is well knowun to be asymptotically normally
distributed, and the standard Wald statistic is asymptotically chi-square distributed. Therefore,
we will consider for a while {x.} is I(1) and may be CI(1,1) with the cointegrating rank r.

Let 5 be the m Xr cointegrating matrix and 5. be the m X (m —r) full rank matrix such
that 8’3, =0. Then define a km X km matrix H, and a (k+1)m X (k+1)m matrix H as

L —I, 0 0
0 I 2o
Hli .m . Hﬁ —Im ,
. _Im B/
0 0 I, 0---0 /
5
and their inverse matrices are given by
7 -1
ooy H'é® {g,
Hi'= . " . U H'= ,87:’1 ,
. . . . O ,
O 0 Im ,8,7
where ¢*=[1, -:-, 1]’ is a k X1 vector. Using H 'H=1, we rewrite model (2) as
xt*l
A3) yo= Wy o JonlH H) e 1,
t—k
Xi—k—p
= JIAX, + - +J:+1Ax:—k+1+=]1f(xz—k _xz—k—p)
+AB Xy AL Xkt 1,
= [J* 4]z + A2 +u + 1+u,
= [J*, Az + [A4a, 1]z Fu,,
where J} =X/_\J; (=1, -+, k), J*=JH, ' = [J}, -+, JF], [, A1 =2\ T[B, 8.1 ', A and 4, are
nXr and n><(n—r) matrices, respectively, z’=[Ax/., -, AX/ i, (x, e Xik)

B'xi—) 1, 20 =B"Xi—x—p, and z= [z, 1]". Let w” = (u, v, "', Az{”")" and define

2(17)—Ew(p) (p)’ A(p)—EEw(p)wt(pz” Q(p)zz(p)+A(p)+A(p)’_

(p)

We partition ?, A’ and Q©” comformably with w{”. For example,
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% T IP IR
Zo % ZP I®
B TP IP 3o |
5 TP I 5

Then, we have the following lemma.

2(17) —

Lemma 1 : 2
s n
L sm,m BOE :
=iW; 1 S) m
) J17 4| B¥(s) | km+r ,
T T (e ®zi) BY(s) | m—r

£n (km-+r)n

where B(s)” = (Bo(s)’, Bi(s)’, B:(s)"’, Bs(s)”") is a n+ (k+2)m-vector Brownian
motion with covariance matrix Q(p), £? is a (km +r)n-dimensional normal random vector
with mean zero and covariance matrix Yo @ X7, and B(s)” and £ are independent.

(@ii) Qo=2X0, X1, 2, and QP are positive definite.
1 T
(iii) T DzPzp L 3,
t=1
. 1 L / d
() 7? ; u.z¥" —— N, where vecN{” =E7.
1 L 7 d ’
v — 2 zPul —~— | B:dB;.
T
t=1
1 I d ’
vi) - Yapap [B.aBi+50+AY.
t=1
T
(vii) % X2z f B;B..

Proof: The proofs are obtained as a straightforward generalization of Toda and Phillips (1993)
and are omitted.

The OLS estimator of [J*, 4.] is
“4) [j*(p) AEP)}:Y/Qgp)ZV)(ng)/Qgp)ng)) 1

’ ’ ’ ’
where Qgp):Iszgp)(ng ng)) lzgp) , ng) — [ZH’), ey ng;):l’ and ng) — [ng)’ ey 251;)]' Though
our interest is in J, it is easier to derive the limiting distribution of J*? with A{”. By Lemma
1, we have

~1
ﬁ[j*(p) *J*, A‘}p) —A 1} — <1T U/Qgp)ng)> <; ng)’Qgp)ng)>

d N(gp)(zgp))fl'



164 HITOTSUBASHI JOURNAL OF ECONOMICS [December

We partition X{” comformably with z{”,

) Y1)

(P, (1) ] =S (P) — 2 2

E[zizi" ]| =X = { YAP YA }’
2 2

. . . B .
where X} is a covariance matrix of [Ax, i, ***, AX/xi1, (X —X:—+—,) ]" and X3 is that of

B'y.—«—. The limiting distribution of \/7 (J*” —J*) is the distribution of the first km columns
of N{”’(2$”) " and then it is represented as Ni”(X§”) 'S, where S = [Lin, 0]  is a (km +r) Xkm
matrix. Then,

(5) vec (NS (2) 'S)=N(0, T'(p)),

where I'(p) =2, ® §'(Z”) 'S, and we can easily check that §'(Z{”) 'S=(Z¢)) ' and X3 =
2;([’) _Zéz(ﬂ)(zg(ﬁ))*lzgl(ﬂ). Then,

(6) ﬁ [j*(m,l*} 4, Nx»,
where vecNi” =N (0, X, ® (X$3) ). Noting a relation J*” =J”H,", and following the argu-
ment in Toda and Yamamoto (1995), we can establish the next proposition.

Proposition 1 (The LA(p) Approach):
The Wald statistic to test the hypothesis H, has a chi-square distribution with g degrees of
freedom.

W = {ﬁ(R vecf")*q>}/ {R(io ® T(X10%X)) ’)R’}f1 {ﬁ(R vecj“’)*q>}

d 2
> Xe»

1 o . . .
where $,= 7Z,T:1u,u,’ and i,’s are residuals of the regression.

By this proposition, we can test the hypothesis #, without estimating the order of
integration and the cointegrating rank in {x.}.

III. Efficiency of the LA(p) Approach

In this section, we consider the possibility of enhancing the efficiency of the LA(p)
estimator when we increase p. In subsection 3.1, we present the case in which the efficiency
always increases as p increases. Alternatively, in subsection 3.2, we present two cases where the
efficiency of the LA (p) estimator does not necessarily increase with p.

1. Efficient Case

In this subsection, we present a case in which the efficiency of the OLS estimator J*
increases with p.

Proposition 2 (Efficiency of the LA(p) Approach):
Let {x.} be a m-variate VMA (1, h) process. Then we have

IF'e+H<I'(p) ((P=h+t+1).
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Proof: By assumption, we do not have cointegration among {x.}. Thus, we have ¥{” =%, and

S=1I,,. It is sufficient to evaluate 2 =E{z{"z{""} against X", where 2" =[Ax/ 1, ***, AX/—x+1,
’ ’
(xrfk_xrfk—p) ] .
We can decompose z{/ ' as

z¢"=zP+MAx——,,
where M= [0, I.]' (mp Xm). Then we have
YO = SO+ EZPAXx )M +ME{Ax, 2}
+ME{AX, « ,AX]  IM.

Since E(Ax.Ax/))=0 when i >h +1, the first k — 1 elements of the second and third terms of
the right-hand-side vanish. We have

TeHD = ng)—‘l_M':E{Axt—kprxt/*k*p}
+E{(xrfk _xtfkfp)Axtlfkfp}
—‘v‘E{Axﬁk—p(Xz—k _xt*k*p)/ﬂM/
= ng)+M< .i 1“;>M’,

where I=E (Ax.Ax/;) (m Xm). Noting that ?-_, T} is proportional to the spectral density
matrix of {x;} at frequency 0, which is always positive definite. Thus, we have

TPV >EP,
Consequently, I'(p+ 1) <T'(p). Q.E.D.

2. Inefficient Case

In this subsection, we present two illustratrative examples which show that the variance
of the LA(p) estimator does not necessarily decrease with p.
First, consider the following simplest case where m=n=p=1:
Yo = Bixitu,

Ax, - antfl—i_vt, ‘a‘ < 17

| _ .. 0 0. 00,0,
where LJ =jid. N <{0} {,OGuGV e D

Suppose that we estimate the LA (p) model :
Ve=Bixi 1+ Buxi 1, T u (p=1),

where 8,=0. In this case, we have z{’=2X", Ax,, (p=1, 2, --*). Let n=E(Ax.Ax.—) =a'7,
(=0, 1,2, :-+). Then, it is easily seen that 25" =7,, £ =7,(2+2a), X =7,(3 +4a +2a?), ¥
=7r0(4+6a+4a’+2a’), 2P =7r.(5+ 8a + 6a’+4a’ +2a*), and so forth. Suppose that 0<<a <1.
Then, X§” is an increasing function of p. On the other hand, if —1<a <0, X§” fluctuates with
p. If, for example, @ = — 0.9, we have X" =7,, X’ =0.27,, 2 =1.027,, £’ =0.3827,, and X =
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1.05627,, and so forth. Thus, in this case, I'(p) fluctuates with p.
Secondly, consider a little more general model as follows:
y:zﬁlxt—1+/32xz—z+uz,

and the rest of the model specification are the same as before. The model for estimation is given
as

yr:/glxr—l+,82xz—2+,83xt—2—p+ut (p > 1),
where 3;=0. It is easily derived that

(2422 1+a
a1 —
D }
so — [ 3+4a+20? 2+3a+a2}
DT 24304 2422 |
so — [4+6a+4a’+22° 3+5a+3+a
DT 3450430+ 3+dat2a’ |

and so forth. When @ =0.9, we have det (X{”) =0.197,, det (25?) =0.8759, det (X5) =3.68 and
increasing with p. When ¢ = —0.9, det (25) =0.19, det (£{”)=0.1919, det (25”) =0.5656, and
so forth. Thus, in these cases det (X$”) always increases with p. However, we do not find a case
where X" —X§” is positive semi-definite. Actually, X " —X{” is indefinite in most cases.
These examples show that the variance of the LA(p) estimator does not necessarily decrease
with p.

IV. The Modified LA(p) Approach

1. Motivation

We have proposed the LA(p) approach in section 2. and discussed its relative efficiency
with variable p in section 3. In this section, we propose modifying the LA(p) approach by
correcting a bias in the OLS estimator and constructing the Wald test statistic with more
accurate empirical size. The argument in this section closely follows that of Kurozumi and
Yamamoto (2000).

2. The Bias Correction
At first we expand the OLS estimator (4) as
1 1

. A 1 !
*(p) ®» | __rr* e —— &y 40O NNy {018y 407
@ [0, 4] [J*, 41] E<EUZI><TZI zl>

— L (Uze) (ze'ze) ' (29720) (2

+o,(T ).



2005] LAG AUGMENTATION IN REGRESSION MODELS WITH POSSIBLY INTEGRATED REGRESSORS 167

We wish to take the expectation of the expanded terms of (7) and, according to
Yamamoto and Kunitomo (1984), the expectation of the first term can be expressed explicitly
up to O(T ). However, the second term include the products of the unit root processes with
dependent innovation and it is difficult to derive the explicit expression of its expectation.
Alternatively, following Kurozumi and Yamamoto (2000), we approximate the distribution of
the second term by its limiting distribution and define the “quasi-asymptotic bias” as the
expectation of the first term up to O(T ') plus the expectation of the limiting distribution of
the second term. We have the following result. The quasi-asymptotic bias, QBIAS[J*?, 4{"],
is expressed as

(8) QBIAS[I*<p), A”gp)] — %SB(P)_ %NB(M’

where both SB” and NB” are finite valued matrices independent of T, they do not depend on
the sample size T and then they are constant for any 7. See Kurozumi and Yamamoto (1998)
for further detail.

Now we construct the modified lag augmented (MLA) estimator, which can eliminate the
quasi-asymptotic bias. Suppose we analyze the regression model with a sample size 7', which is
an even integer, and regress y, on x, 1, ***, X,—«, X.—x—», and 1 for the whole period (=1, -+, T).

Yy = j(")X{-l-[j;ﬁ‘l)l,/)“’)] X+ 0"
= [j(p) J®, /2“’)] X 0w
— [j*(p) /ﬁp)} ZE")/-F[A?) /2“’)} Z® + gw

For the first period (t=1, :-*, T/2) and the second period (t=T7/2+1, -+, T), we write, with
subscripts f, s, respectively,

Y, = L+ T2y, 0] X+ 0

= [jf(m, J, ﬁf(")} X+ 0

— [j}w)’ /ﬁ;)] zp +[A§;>’ ,[Z;p)} ZY + 0%,
Y, = JOX\ 4 [T, 2] X+ 0P

= [, Jo., o] X+ 0
[js*m’ /ﬁf)] Zw + [fi({), mm} Ze 4+ 00,

where, e.g., Y, = [y, ***, yr»] and Yi = [yras1, =+, yrl.
Using (8), we obtain the following results about the quasi-asymptotic bias in each period.

. . 1 1
*(p) | = - = () = (p)
9) QBIAS [J*, 4| =~ ~ SB”— ~- NB",
(10) QBIAS [j*(p) A‘gp)]: _ ASB“’)— ANB(P)
Jfoy lf T T .
T*(p) ()| — __ l () _ i (»)
(11) OBIAS [J:?, A¥|=— = SB NB®.

T T
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Using the estimator in each period, we define the modified estimator of [J* , 4,], which
we call the MLA(p) estimator, as

(12) [j:?f),Agﬁ)m} 2 Lf*(p), AAY’)} — %(Ljf*(m, A§jg>]+[‘j§<<p), /ﬁsp)D'

We can easily check that this estimator has no quasi-asymptotic bias by substituting the hand
side of (12) with (9), (10) and (11).

The MLA(p) estimator of J is easily obtained through the relation J” =J*"H,.
(13) o =

= ij_ 7 (jf“’) +i§p)>.

We can also show that the asymptotic distribution of this estimator is the same as that of
the estimator for the LA(p) approach. We summarize the main results.

(i) The MLA(p) estimator (13) has no quasi-asymptotic bias, irrespective of the order of
integration of {x.}.

(ii) The MLA(p) estimator (13) is asymptotically normally distributed, irrespective of
the order of integration of {x.}.

We have the following proposition, which is a direct consequence of the above result.

Proposition 3 :

The Wald statistic to test for the hypothesis H, constructed from the MLA(p) estimator,
Wi, is asymptotically chi-square distributed with g degrees of freedom irrespective of the order
of integration of {x.}.

W = T<Rvec ﬁj}ﬁ—q) R(S“’) (Rvech,,‘}?,—q
d
- Xg )
where

1 ! ,
(14) B=5P ® <T Xi Q;?Xl) +T (B—B") (Bn—B"),

2[()11)— i i ﬁ(p)ﬁ(p)’

T = b

where 11"’ s are residuals of regression for the whole sample, B =vecJ%), and B =vecJ®.

The construction of the covariance matrix ) is explained in what follows: In theory, we
can use any consistent estimator of ¥, ® ¥,,; and have tried several consistent estimators in
Monte Carlo simulations. However, the test statistic using £ has consistently shown the
smallest size distortion among them in the small sample. Thus, we decided to adopt X as the
estimator of ¥, ® ¥,,. We can justify 3% by the following argument.

We have

T (BR—8) (BR—B)
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=T {(B’(n;;; _B(p>)_|_<8<p) _,3>} {(Bfn‘?ﬁ _B<p>>+<lg(p) _B>}/
=T (Br(nl;t)z _Bu)) (B%z _I@(p))/ 4T (B(p) _:8) <B(p) —,8>/
+T (Bfn‘}g _B(p)> (B(p) _B>/ 4T (B(p) _/8> (Bfn‘}g _Ig(p))’,

where 8=vecJ.
The third term in the hand side of the last equality is given by

T (Bfﬁ_g(m) (B(p)_f)))/ =T {(B(p>_5>_ % (Bf(p)_ﬁ>_ % (BS@)_B)} (B(p)_l@/

T (B(m_/g) (B(p)_/g)/ _ % (B}p)_ﬁ) (B(p)_/@/

T ~ ,
- (BSu)_B) (Ig(p)_lg) ,
where A% =vecJ”, and B{” =vec. It is easily seen that

T(B7—B) (B9 —B) 2> 3, ® %,

% (B"—8) (B —B) —— % % ® %7, and

T (g0 —5) (37 2~ Lz o5

Thus, we have

T (Bfn‘}g _B(p)> (B(p) _B>/ P .

The fourth term is the transpose of the third and also vanishes. Then,

T (Bn—8) (Bn—B) = T (BR—B) (BR—B») +T (B»—B) (B —B) +o,(1).

We may construct 3. as

-1
B=T (BR—B") (B&%;—B(w)#%“@(;x{ 1% > :

V. Simulation Experiment

1. Experimental Design

In the following simulations, we assume an univariate process {y.} generated by

yt:BIxt—l +,82x,72+u,, and
(15)

X — 01 X—1 +052xz—z+vr+61vz—1,

U | _ .. 0 O’i 00.0,
where {vl } iid.N QO} s LOGMGV o D

169
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The various specific values of a,, a., 81, 52, 01, 0., 0, and p will be given in each experiment.
The regression models for the LA (p) approach and MLA(p) approach are given by

Y =B +BPx, %, 2B x, 0, 0
(16) V=B +BPx 1+ BPX AT BPx 2, T,

=B +BOx, 1 +BEx, 2+ BPx, 5, + AP,
The MLA(p) estimator is given by

) — 2B(p> _ 4 (Bm +B(p>)
where /8(”7[18(’)) B(p)} (P)—[Bgfg), 5}”} and B:(p):[/ggsp), A(zf)}/.

The estimator of its covariance matrix is

1 o ,
(17) B=0 <T XiQﬁ;?Xl) +T(Bn—B") (Bh—B") .
The null hypothesis to test is given by

HO : B:B(J’
where S=[81, B:]" and Bo=[Bu, B»] . Then, the test statistic is given by

(18) wa=HTBa—8)} { s} {T(Bn-8.),

and W) is asymptotically chi-square distributed with two degrees of freedom.

2. Simulation Results

In the following simulation experiments, the level of significance is set equal to 5% or
10%. The sample size is set to 100, and the number of replications is 5,000 in all experiments.
Computations are performed by the GAUSS matrix programming language.

The Bias and Bias Correction When p=1

Tables 1a-1b show the bias of LA(1) and MLA (1) estimators when 7=100. The detailed
model specification is given immediately below the header of the table. The generating process
of the {x.} is assumed to be a random walk process. Table 1a shows the bias of the LA(1) and
MLA(1) estimators for various values of o when 0,=o0,= 1. It indicates that the finite sample
bias is larger when p is larger in absolute value. It also shows that the MLA (1) approach has
a uniformly smaller bias than the LA (1) approach, indicating that the bias correction method
described in section 4 is quite effective.

Table 1b shows the bias of the LA(1) and MLA(1) estimators for various combinations
of 0, and 0, when p = 1. It shows that the bias is larger in absolute value when the the ratio 0./0,
is larger. Again, it shows that the MLA approach has a uniformly smaller bias than the LA
approach, indicating that the bias correction method described in section 4 is quite effective in
reducing the bias in the LA estimator.
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TABLE 1. Bias orF LA(1) aAND MLA(1) (T=100)

DGP: y,=8ix. 1t 5% 2+ u,, and x,=a1x, 1+ X, 2+, +6v, 4,
where a,=1.0, 2,=0.0, ,=0.0, 8,=0.7 and 5,=0.3, and

u\ .. 0 0. 00,0,
<vt> iid. N <{0} , Loauav e D

Regression Model: y,=Bo+B1x, 1 +Box, >+ Bsx, s +il..

TABLE la. CASE OF 0,—=0,—1
LA(1) MLA(1)
BI_BI 32_62 Bl_,gl 82_52
0=-09 0.040  0.008 -0.000 -0.002
-0.6 0.028  0.003  0.001 —0.004
-0.3 0.016 —0.000 0.003 —0.004
0.0 0.003 -0.004  0.003 —0.004
0.3 —0.010 -0.007 0.004 —0.004
0.6 -0.024 -0.010 0.004 -0.003
0.9 -0.038 -0.012 0.003 -0.002

TABLE 1b. CASE oF p=0.9
LA(1) MLA(1)
Bi—B BB BB BB

0,=10 o=1 -0.376 -0.115 0.032 -0.015
=5 o=1 -0.188 -0.058 0.016 —0.008
=1 o=1 -0038 -0.012 0.003 —-0.002
o=1 o0=35 -0.008 -0.002 -0.001 —0.000
g=1 0,=10 -0.004 -0.001 0.000 —0.000

The Effect of Bias Correction on the Empirical Size When p=1

Tables 2a-2b show the effect of the bias correction on the empirical size when p=1. For
the illustrative purposes, the simulation model considered here is exactly the same as in Tables
la-1b. These tables show that the empirical size of the MLA approach is much closer to the
corresponding nominal size than the LA approach. This indicates that the bias correction
described in section 4 is also effective in reducing the size distortion in the LA approach.

The Effect of Bias Correction on the Empirical Size When p >2

Tables 3a-3c show the effect of the bias correction method in reducing the size distortion
in the the extended lag augamented LA(p) (p =2) approach. These three tables differ only in
the generation process of the {x.}. These tables show that the size distortion of the LA(p)
approach increases with the order of the extended lag p, and this size distortion is effectively
eliminated in the MLA(p) approach.
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TaBLE 2. EMPIRICAL Si1ZE OF LA (1) aAND MLA(1) (T=100)

DGP: y,=ix. 1t 5% 2+ u,, and x,=a1x, 1+ X, 2 v, +6v, 4,
where a,=1.0, 2,=0.0, ,=0.0, 8,=0.7 and 5,=0.3, and

u\ .. 0 0. 00,0,
(o) sie ~ (5] [0 7))
Regression Model: y,=Bo+B1x, 1 +Box, >+ Bsx, s +il..

H,: 5,=0.7 and 5,=0.3.

Hypothesis: {H I otherwise.

TABLE 2a. CASE OF 0,—0,=1

LA(1) MLA(1)
Nominal Size 5% 10% 5% 10%
0=-09 7.8 13.9 5.3 10.3
-0.6 6.5 12.1 5.5 10.5
-0.3 6.2 11.2 5.6 10.6
0.0 5.8 10.8 5.6 10.7
0.3 6.1 11.1 5.7 10.2
0.6 6.5 11.6 5.4 10.4
0.9 7.6 13.6 5.3 9.7

TABLE 2b. CASE oF p=0.9

LA(1) MLA(1)

5% 10% 5% 10%
0,=10 o=1 16 136 53 9.7
=5 o=1 16 136 53 9.7
=1 o=1 16 136 53 9.7
o=1 =5 76 136 53 9.7
o.=1 0=10 76 136 53 9.7

The Size Adjusted Power of LA(1) and MLA(p)

Tables 4a-4c show the size adjusted power of LA(1) and MLA(p) for various values of
p. The simulation models are exactly the same as in Tables 3a-3c. While the pattern of the
empirical power of MLA (p) differs for each model, we can find a general pattern. That is, the
empirical power of MLA (p) generally increases with p, and then starts to decrease in some
cases. It means that by resorting to the MLA(p) approach, we can generally obtain a statistic
that is more powerful than the MLA (1) approach.

VI. Conclusion

This paper has developed an asymptotic theory for extended lag augmentation for the
regression model whose regressors are possibly non-stationary. Theoretically, the extended lag
augmentation may or may not improve the efficiency of the estimator. However, the Monte
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TABLE 3. EMPIRICAL S1ZE OF LA(p) AND MLA(p) (T=100)
DGP: y,=8ix. 1t 5% 2+ u,, and x,=a1x, 1+ X, 2+, +6v, 4,

B w\ .. 0 1 0.9
where 3,=0.3, and <vt> iid. N <[0} ’ {0.9 1 D

Regression Model: y, =By +B1x, 1+ Boxi 2+ BsXi 2, +il.

H,: $5,=0.7 and 8,=0.3.

Hypothesis: {H - otherwise.

TABLE 3a. CASE OF a;=1.0, 2,=0.0, and 6,=0.0

LA(p) MLA(p)
Nominal Size 5% 10% 5% 10%
p=1 7.6 13.6 5.3 9.7
2 9.9 15.9 5.8 10.7
3 10.8 18.0 5.5 10.4
5 13.1 20.8 5.8 10.5
8 15.5 29.4 6.2 10.6

TABLE 3b. CASE OF a;=1.8, @,=-0.8, and 6,=0.0

LA(p) MLA(p)
Nominal Size 5% 10% 5% 10%
p=1 99 172 53 10.1
2 11.5 18.7 5.5 9.6
3 12.7 20.4 5.3 9.3
5 15.0 234 5.5 9.4
8 18.1 27.8 6.0 10.6

TABLE 3c. CASE OF a,=0.2, ,=0.8, and 6,=0.0

LA(p) MLA(p)
Nominal Size 5% 10% 5% 10%
p=1 10.4 17.3 5.7 9.8
2 10.8 17.9 6.8 11.3
3 11.7 19.8 5.5 10.3
5 13.6 21.7 6.2 10.7
8 15.3 24.8 6.0 10.8

Carlo simulation revealed that the extended lag augmenttation generally improves the
efficiency of the estimator. In particular, when coupled with the bias correction method, the
MLA (p) approach is superior to the conventional LA (1) approach in terms of empirical size.
Further, the MLA (p) (p =2) estimator is superior to the MLA(1) in terms fo power. In other
words, the MLA(p) is quite useful in small samples (say, for example, 7= 100). However, the
optimal choice of the order p in the extended lag augmentation is not easy to find and will be
left for the future research.
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TABLE 4. SiZE ADJUSTED EMPIRICAL POWER OF LA(1) AND MLA(p) (T=100)

DGP: y,=8ix. 1t 5% 2+ u,, and x,=a1x, 1+ X, 2+, +6v, 4,

where 8,=0.3, and <

u;
V:

> iid. N<{

0
0

1 09
7109 1

Regression Model: y, =By +B1x, 1+ Boxi 2+ BsXi 2, +il.

Hypothesis: {

otherwise.

H,: $5,=0.7 and 8,=0.3.
Hl .

)

TABLE 4a. CASE OF a;:=1.0, ,=0.0, and 6,=0.0
(Significance Level =5%)
Biin DGP 0.5 06 065 07 075 08 0.9
LA(1) 772 283 122 5.0 33 7.1 381
MLA(1) 521 188 9.1 5.0 51 115 477
MLA(2) 59.6 21.9 10.3 5.0 5.2 12.7 55.2
MLA(3) 620 254 117 5.0 56 146  60.6
MLA(5) 60.5 276 125 5.0 42 144 601
MLA(8) 55.7 28.6 13.5 5.0 3.9 12.6 56.4
TABLE 4b. CASE OF a;=1.8, @,=-0.8, and 6,=0.0
(Significance Level =5%)
Biin DGP 0.5 06 065 07 075 08 0.9
LA(D) 1000 894 312 5.0 83 394 921
MLA(1) 842 496  19.1 50 117 423 930
MLA(2) 922 649  28.8 50 194 666  99.1
MLA(3) 949 729 385 50 290 817  99.8
MLA(S) 95.9 78.3 47.4 5.0 41.3 92.6  100.0
MLA(8) 959 775 492 50 499 938 999
TABLE 4c. CASE OF a,;=0.2, ,=0.8, and 6,=0.0
(Significance Level =5%)
f1in DGP 0.5 0.6 0.65 0.7 0.75 0.8 0.9
LA(1) 451  15.6 8.9 5.0 37 46 175
MLA(1) 375 140 7.4 5.0 4.8 8.1 283
MLA(2) 554 231 105 5.0 4.1 9.2 476
MLA(3) 518  19.8 9.5 5.0 4.7 93 397
MLA(S) 54.3 21.3 10.5 5.0 3.9 8.4 41.7
MLA(8) 551 248 121 5.0 4.2 8.3 437
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