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Abstract

Since the pioneering work of Black and Scholes the assumption of the complete market

has been used in the arbitrage pricing theory. The martingale approach by Harrison and Pliska

is one of the most powerful tools for determining security prices in the complete market. The

existence of such a market, however, may not be guaranteed in the real world, where the

martingale measure is not unique. Therefore, it is more natural to assume an incomplete

market. Motivated by a non-standard interpretation of the method of least squares, we

introduce the concept of an embedded complete market. We will give a new method to

determine the option prices. For simplicity, we mainly use a simple discrete time and state

model.

Key Words: Incomplete market, method of least squares, martingale measures, and embedded

complete markets.
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I . Introduction

In the last three decades, motivated by the seminal work of Black and Scholes (1973), the

arbitrage pricing theory has been a major tool of determining the derivative security prices.

The basic assumption of this beautiful method lies partially in the concept of the complete

market, where every contingent claim can be reproduced by the self financing portfolio of the

underlying basic assets in the market. However, it is not easy to tell if a given market is

complete, and we may question if there is a complete market in the real world. A more

practical method of pricing derivatives in an incomplete market is needed for the practitioners.

Indeed, many authors have addressed such a need [Du$e and Richardson (1991), Shweizer

(1992, 1995), and Berstimas, Kogan and Lo (1997), among others.] Our approach is basically

the same as these authors to the extent that the method of the least squares is the central tool.

We will supplement the previous results by introducing the embedded complete market in an
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incomplete market. A di#erent approach to this problem is discussed by Karatzas, Lehczky,

Shreve and Xu (1991), but we do not consider it here.

In this note we mainly assume the discrete time and state model, and we will propose a

new method of determining the prices of derivatives in an incomplete market. Our method is

reduced to the usual arbitrage pricing theory if the market is complete. Although some

generality may be lost by using the discrete models, they help us clarify the basic idea more

transparently. The discrete state and time incomplete market considered in this note may be

used to analyze the phenomenon when the prediction of future volatility in the stock market

and that in the option market diverge (cf. Takahashi (2000)).

If we suppose that the stock and the bond are the only basic assets in the market, the

trinomial model provides us the simplest incomplete market. We will first review the method

of pricing an option in a complete market in the rest of this section. We will employ single

period binomial stock price model.

Suppose the risk free bond {(1�r)t, t�0,1} and the stock {St, t�0,1} are the only assets

in the market, where r is the risk free interest rate and it is nonnegative. Let C0 be the price of

European call option on the stock with the exercise price K and the maturity at t�1. If the

stock price process follows a Bernoulli one period process, the market is complete and the price

of the option can be determined uniquely by the method of Harrison and Kreps (1979), and

Harrison and Pliska (1981). To be more specific, at t�0 we suppose the stock price is S0�S

for some S, and at day t�1, it either goes up to S1�uS or goes down to S1�dS with

probability q* or 1�q* respectively. We will also assume that

0�d�1�r�u (1)

to eliminate the arbitrage opportunity. The value of an option at the maturity t�1 equals

either C (u)
1 �max{uS�K,0} or C (d)

1 �max{dS�K,0}. Now, an equivalent portfolio (EP for

short) to this call option is the one whose value at t�1 is the same as the option price. If at

t�0 the EP price di#ers from the option price, there is an arbitrage opportunity. Therefore at

t�0 the option price C0 should equal the EP price at t�0. Suppose the equivalent portfolio

consists of B yen of the bond and a unit of the stock, then the following system of linear

equations must hold.

a(uS)�(1�r)B�C (u)
1 (2)

a(dS)�(1�r)B�C (d)
1 (3)

If u�d, then the above equations have the unique root (a, B) and the market becomes

complete. Of course, this simply follows from the fact that the number of distinctive equations

and unknowns (a, B) are the same. If u�d, equations (2) and (3) reduce to a single equation

and there is an arbitrage opportunity in the market unless the rate of return for the stock

(u�1�d�1) and the bond are both equal to r. If, on the other hand, there are more than two

equations; namely the possible states at t�1 are more than or equal to 3, we have an

incomplete market. We shall discuss the later case more extensively in the next section.

Now, by solving (2) and (3), we have

C0�
1

1�r
{qC (u)

1 �(1�q)C (d)
1 } (4)
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where,

q� 1�r�d

u�d
(5)

Note that under the condition (1), it follows that 0�q�1, and q can be interpreted as a

probability (see equation (6) below). With this in mind, C0 may be interpreted as the

(conditional) expectation of C1(given S0�S) discounted by the risk free interest rate r, where

the expectation is taken under the probability measure {q,1�q}, where

P{S1�uS}�q�1�P{S1�dS} (6)

It is also known that under this probability, the process {
St

(1�r)t , Ft, t�0,1} is a martingale,

where Ft�s{Su,0�u�t} is a sigma algebra of information carried by {Su} up to and including

time t. This is the simplest case of the general martingale method proposed by Harrison and

Kreps (1979) (also see Harrison and Pliska (1981)), who proved that the necessary and

su$cient condition for no arbitrage opportunity in a frictionless market is the existence of an

equivalent martingale measure P.

II . The Simplest Incomplete Market

Let us consider a problem of pricing derivatives in an incomplete market. We suppose that

there are two securities, the stock (risky asset) and the bond (riskless asset), in the market as

in Section 1. We will, however, assume that the stock price follows a trinomial process, where

the present and the maturity time are denoted by t�0 and t�1, respectively. Our problem is

to determine at t�0 the price C0 of the European call option on the stock with exercise price

K(�0) and with maturity at t�1. We also assume that the risk free interest rate is r(�0).

Let S0�S be the stock price at t�0 as in the previous section. We suppose that, at t�1,

the random variable S (�)
1 takes one of the following three values; S (u)

1 �uS, S (m)
1 �mS, or S (d)

1 �
dS with probabilities p*u, p*m, and p*d respectively, where p*y�0(y�u, m, d) and p*u�p*m�p*d�1.

The values of S (�)
1 are determined by the prediction of the future volatility of the stock return

in the market. Also we will assume that

d�m�u, d�1�r�u (7)

to exclude arbitrage opportunities in the market. We will call the probability measure P*�{p*u,
p*m, p*d} the real probability measure. Note that as far as we are concerned with the pricing of

derivatives, the measure P* may be quite arbitrary except that it assigns positive probabilities

to all the states in the space of S (�)
1 . Also note that at t�1, the value of the option becomes

either C (u)
1 �max{S (u)

1 �K,0}, C (m)
1 �max{S (m)

1 �K,0}, or C (d)
1 �max{S (d)

1 �K,0}, in accordance

with the realization of the stock price. We will denote the market with this trinomial process

by M�{S,(dS, mS, uS), r}.

Since the necessary and su$cient condition that there is no arbitrage opportunities in the

market is the existence of a martingale measure (cf. Harrison and Kreps (1979), and Harrison

and Pliska (1981)), our first step is a search of martingale measures. Here, in the following
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simple lemma, we will give the necessary and su$cient condition for martingale measures.

Lemma 1. Suppose {St, t�0,1} follows a single period trinomial process. Then a probability

measure P�{pu, pm, pd} is an equivalent martingale measure for {
St

(1�r)t , Ft, t�0,1}, if and

only if

py�0 for all y�u, m, d (8)

and

(u�d)pu�(m�d)pm�1�r�d (9)

Proof. If {
St

(1�r)t , Ft, t�0,1} is a martingale under P, we have

1

1�r
[uS�pu�mS�pm�dS�pu]�E{

S1

(1�r)1 �S0�S}� S0

(1�r)0 �S (10)

It follows that upu�mpm�dpu�(1�r), and (9) follows readily. Since py�0 for all y� u,

m,d, (8) is also true. The converse is proved in the same manner.

Since there are infinitely many P�{pu, pm, pd}�s that satisfy (8) and (9), the martingale

measure is not unique in the trinomial model. Therefore, it is not possible to determine the

arbitrage free value of C0 uniquely by the martingale method alone. This can be understood

more transparently by the following elementary argument.

There are only two basic assets in this economy: the stock and the riskless bond, and we

consider a portfolio PF formed at t�0 for t�1, which consists of a units of the stock and B

units of the risk free bond. The number of values C (�)
1 can take is, however, three. Then the

necessary condition for the portfolio PF to be an equivalent portfolio to C (�)
1 is given by the

following three equations,

a(uS)�(1�r)B�C (u)
1 (11)

a(mS)�(1�r)B�C (m)
1 (12)

a(dS)�(1�r)B�C (d)
1 (13)

Since, we have three equations and two unknowns, the method of the previous section

fails to give the unique price to the option value at t�0. Here, the simple geometric argument

gives us a clear picture of what is going on. The value vector C1�(C (u)
1 , C (m)

1 , C (d)
1 ) does not

lay in the space sp{S1, r} spanned by the vectors S1�(uS, mS, dS) and r�(1�r)1�(1�r,1�
r,1�r). The problem of finding an equivalent portfolio is to express the vector C1 by the

elements of sp{S1, r} which is to find constants (a, B) such that C1�aS1�(1�r)B1. Clearly

this is in no way possible in this case.

Although there are numerous ways to determine reasonable price in this circumstance, we

will propose a new way to solve the problem. Our method is based on the non-standard

interpretation of the method of least squares, and we will review the least squares from the

di#erent view point in the next section.
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III . The Method of Least Squares and Embedded Complete Markets

We digress briefly to discuss the classical method of OLS (ordinary least squares). We will

keep the notations of the previous sections and consider the regression problem of C1�aS1�
(1�r)B1�e onto sp{S1, r}, where e denotes an error vector. Let C«1 be the orthogonal

projection of C1 onto the space sp{S1, r} Then, we have,

C«1�àS1�(1�r)B«1 (14)

Here the OLS estimators (à, (1�r)B«) of a and (1�r)B are given by

à� (uS�S…)C (u)
1 �(mS�S…)C (m)

1 �(dS�S…) C (d)
1

(uS�S…)2�(mS�S…)2�(dS�S…)2

and,

(1�r)B«�C…�àS…

where,

C…� 1

3
(C (u)

1 �C (m)
1 �C (d)

1 )

and

S…� 1

3
(uS�mS�dS)

Then, in view of the modern derivative pricing theory, it is reasonable to define the OLS

option price at t�0 by,

C«(OLS)
0 �àS0�B« (15)

Now, the following representation of à and (1�r)B« is the key to our analysis (cf. Wu

(1986)). It follows from the straightforward algebra that

P>8IJG: 1

C1

(1�r)1

C«1

S1
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à� (uS�mS)(C (u)
1 �C (m)

1 )�(mS�dS)(C (m)
1 �C (d)

1 )�(dS�uS)(C (d)
1 �C (u)

1 )

(uS�mS)2�(mS�dS)2�(uS�dS)2

�w(OLS)(u, m)
(C (u)

1 �C (m)
1 )

(uS�mS)
�w(OLS)(m, d)

(C (m)
1 �C (d)

1 )

(mS�dS)

�w(OLS)(d, u)
(C (d)

1 �C (u)
1 )

(dS�uS)
(16)

(1�r)B«�w(OLS)(u, m)
(uC (m)

1 �mC (u)
1 )

(u�m)
�w(OLS)(m, d)

(mC (d)
1 �dC (m)

1 )

(m�d)

�w(OLS)(d, u)
(dC (d)

1 �uC (u)
1 )

(d�u)
(17)

where, the weights w(OLS)(x, y) are given by

w(OLS)(x, y)� (xS�yS)2

(uS�mS)2�(mS�dS)2�(uS�dS)2

(x, y)�{(u, m),(m, d),(d, u)} (18)

The interpretation of expressions (16) and (17) above are of interest. Note that,

a(x, y)� (C (x)
1 �C (y)

1 )

(xS�yS)
and (1�r)B(x, y)� (xC (y)

1 �yC (x)
1 )

(x�y)
(19)

are the slope and intercept of the line connecting the points (xS, C (x)) and (yS, C (y)), (x, y)�
{(u, m),(m, d),(d, u)}. Therefore, the over all OLS estimator (à,(1�r)B«) is a weighted

average of the slopes and the intercepts of the lines determined by every pair in the sample.

Note that in each pair {(xS, C (x)),(yS, C (y))}, a(x, y) and B(x, y) are determined without error

and this can be compared with equations (2) and (3) in the complete market model where the

stock takes the values xS and yS at time t�1.

Now, we go back to our original pricing problem in the incomplete market M�{S,(dS,

mS, uS),r}. First of all we will introduce a probability mass function g on a set Q�{(xS, yS),

(x, y)�{(u, m),(m, d),(d, u)}},

g{(xS, yS)}�w(OLS)(x, y), (x, y)�{(u, m), (m, d),(d, u)} (20)

Then, we choose a pair (xS, yS) from the set Q according to the probability g{(xS, yS)}.

After having chosen a pair, we can form a sub-market M(x, y)�{S,(xS, yS), r}�M. And this

is a basic building block of our method. Note that in the sub-market M(x,y),C1 takes only

(C (x)
1 , C (y)

1 ) at t�1. If the sub-market M(x, y) becomes a complete market, then it is called an

embedded complete market model inside the original incomplete market or an embedded

complete market for short. And we will assume every sub-market is complete in the rest of this

note. In the sub-market M(u, m), we can evaluate the option price by solving the system of

equation {(11),(12)}. Together with {(12),(13)}, and {(13),(11)}, we can altogether obtain

three embedded “complete markets”. Except for some technical problems which we will

discuss later, we obtain martingale measures in each of the three embedded markets as in
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Section 1.

From (11) and (12), we have,

a(u, m)(uS)�(1�r)B(u, m)�C (u)
1

a(u, m)(mS)�(1�r)B(u, m)�C (m)
1 (21)

It follows that the martingale measure in M(u, m) is given by

Q(u, m)�{p(u, m), q(u, m)�1�p(u, m)}

where,

p(u,m)�P (u, m){S1�uS�S0�S}� (1�r)�m

u�m
(22)

Then, at t�0 the price of the European call option in M(m, d) is given by

C (u, m)
0 � 1

1�r
{p(u, m)C (u)

1 �q(u, m)C (m)
1 } (23)

Next, (12) and (13) give us,

a(m, d)(mS)�(1�r)B(m, d)�C (m)
1

a(m, d)(dS)�(1�r)B(m, d)�C (d)
1 (24)

Then the martingale measure and the option price are

Q(m, d)�{p (m, d), q (m, d)�1�p (m, d)}, (25)

C (m, d)
0 � 1

1�r
{p(m, d)C (m)

1 �q(m, d)C (d)
1 }

where,

p(m, d)�P (m, d){S1�mS�S0�S}� (1�r)�d

m�d
(26)

Finally in M(d, u), by (13) and (11)

a(d, u)(dS)�(1�r)B(d, u)�C (d)
1

a(d, u)(uS)�(1�r)B(d, u)�C (u)
1 (27)

we have

Q(d, u)�{p(d, u), q(d, u)�1�p(d, u)} (28)

C (d, u)
0 � 1

1�r
{p(d, u)C (d)

1 �q(d, u)C (u)
1 }

where,

p(d, u)�P (d, u){S1�dS�S0�S}� (1�r)�u

d�u
(29)
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If d�m�1�r�u, then p (m, d)�1and q (m, d)�0. It follows that Q(m, d) is not a probabil-

ity measure. We will, however, consider a linear combination of these martingale measures, so

that the resulting measure becomes a probability.

Now, it follows from (15) that, the option price in the original market will be given by,

C«(OLS)
0 � �

(x, y)�{(u, m), (m, d), (d, u)}

{w(OLS)(x, y)a(x, y)S0�w(OLS)(x, y)B(x, y)}

� �
(x, y)�{(u, m), (m, d), (d, u)}

w(OLS)(x, y)C (x, y)
0 (30)

Namely the option price obtained from the method of least squares is represented by the

weighted average of the option prices in the embedded complete market. Since the weight

given by OLS is proportional to the volatilities in each sub-market, the above argument

suggests us to use the other weight as well. To close this section, we define a new class of

pricing options based on the embedded complete sub-market.

Definition 1. (Pricing via Embedded Complete Market) Let q(x, y) be any weight attached to

the embedded complete sub-market M(x, y), where

�
(x, y)�{(u, m), (m, d), (d, u)}

q(x, y)�1

and,

q(x, y)�0 for all (x, y)�{(u, m),(m, d),(d, u)}

Then,

C«(Q)
0 � �

(x, y)�{(u, m), (m, d), (d, u)}

q(x, y)C (x, y)
0 (31)

is an option price determined by the weight Q�{q(u, m), q(m, d), q(d, u)}

The weight obtained from OLS is proportional to the volatility of each sub-market. If we

use an arbitrary Q, this may be interpreted as the market’s prediction of the distribution of the

future volatilities. This observation may be fully utilized in the continuous model. The next

question is when our pricing method gives us an arbitrage free price. We will consider this

question in the next section.

IV . Martingale Measures

We will show that option prices obtained by the OLS method in the previous section is

arbitrage free. To start with, we rewrite equation (30). By the straightforward algebra, we

have,

C«(OLS)
0 � 1

1�r
{[w(OLS)(u, m)p(u, m)�w(OLS)(d, u)q(d, u)]C (u)

1

�[w(OLS)(m, d)p(m, d)�w(OLS)(u, m)q(u, m)]C (m)
1

�[w(OLS)(d, u)p(d, u)�w(OLS)(m, d)q(m, d)]C (d)
1 } (32)
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� 1

1�r
{p̂ (OLS)(u)C (u)

1 �p̂ (OLS)(m)C (m)
1 �p̂ (OLS)(d)C (d)

1 }

where,

p̂ (OLS)(u)�w(OLS)(u, m)p(u, m)�w(OLS)(d, u)q(d, u)�0

p̂ (OLS)(m)�w(OLS)(m, d)p(m, d)�w(OLS)(u, m)q(u, m)�0 (33)

p̂ (OLS)(d)�w(OLS)(d, u)p(d, u)�w(OLS)(m, d)q(m, d)�0

It is also shown that

p̂ (OLS)(u)�p̂ (OLS)(m)�p̂ (OLS)(d)�1 (34)

Thus, the OLS price can be viewed as the present value of the expected value of C1 under

the probability {p̂ (OLS)(u), p̂ (OLS)(m), p̂ (OLS)(d)}. We will show that this probability measure is

an equivalent martingale measure, so that the OLS price is an arbitrage free price. We will

discuss this under arbitrary weight functions.

Note that the martingale measures in sub-market, Q(u, m), Q(m, d), Q(d, u) are neither

equivalent to each other, nor they are equivalent to the original probability measure P*. We

can, however, obtain the equivalent martingale measure by considering their strong convex

combination. For this purpose, let Q� {q(u, m), q(m, d), q(d, u)} be as in the previous

section. We will define a strong convex combination Q(Q) of these measures {Q(u, m), Q(m,

d), Q(d, u)} where

Q(Q)�q(u, m)Q(u, m)�q(m, d)Q(m, d)�q(d, u)Q(d, u)

�{p̂ (Q)(u), p̂ (Q)(m), p̂ (Q)(d)} say (35)

and

p̂ (Q)(u)� q(u, m)p(u, m)�q(d, u)q(d, u)

p̂ (Q)(m)�q(m, d)p(m, d)�q(u, m)q(u, m)

p̂ (Q)(d)� q(d, u)p(d, u) �q(m, d)q(m, d) (36)

Then, by choosing appropriate Q, combined measure Q(Q) can be made a probability and is

equivalent to Q*. Moreover, in the next lemma, we will show that as long as it is a probability

measure, it is martingale measure.

Lemma 2. Suppose, q(x, y)�0 and�(x, y)�{(u, m),(m, d),(d, u)} q(x, y)�1. If Q(Q) is a probability

measure, then it is a martingale measure for {
St

(1�r)t , Ft, t�0,1}.

Proof. By the straightforward algebra, it follows that,

(u�m) p̂ (Q)(u)�(m�d) p̂ (Q)(m)�1�r�d (37)

holds. The lemma follows readily from Lemma 1.

Note that, for any martingale measure Q(Q)�{p̂ (Q)(u), p̂ (Q)(m), p̂ (Q)(d)}, an arbitrage

free price of the option will be given by
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C0(Q)�(
1

1�r
)[p̂ (Q)(u)C (u)

1 �p̂ (Q)(m)C (m)
1 �p̂ (Q)(d)C (d)

1 ] (38)

Hence, by taking Q�{w(OLS)(u, m), w(OLS)(m, d), w(OLS)(d, u)}, the OLS price is shown to be

an arbitrage free price. The option price is not unique in general, for there are infinitely many

weighs Q that makes Q(Q) a probability. The problem of which weight Q should be selected

has been considered by several authors. For example, Miyahara (1996) obtained the supre-

mum or infimum of C0(Q) over the all possible Q�s. Our method is not only compatible with

these method, but also gives us more general pricing schemes.

V . Multi-period Model

We will extend our trinomial two-period model to the multi-period model. The idea is the

same as the extension of the usual two period binomial option price model to the multi-period

models. For simplicity, we will consider the Markovian two-period trinomial model. The

model may be expressed in the following picture (See Picture 2). In order the model to be

Markov, it is necessary that m2�ud must hold.

In each node at t�1, we will assign the probability {p̂ (Q)(u), p̂ (Q)(m), p̂ (Q)(d)} which is

defined in (36). From the node B, for example, the process moves up to the node E with

probability p̂ (Q)(u). Hence the process reaches to the node E with probability p̂ (Q)(u)2. The

P>8IJG: 2

T67A: 1

Node A B C D E

State S uS mS dS u2S

Probability 1 p̂(w)(u) p̂(w)(m) p̂(w)(d) p̂(w)(u)2

F G H I

umS�muS m2S�udS�duS dmS�mdS d2S

p̂(w)(u) p̂(w)(m) p̂(w)(m)2�2p̂(w)(u) p̂(w)(d) 2p̂(w)(m) p̂(w)(d) p̂(w)(d)2
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node G will be reached either from the nodes B, C, or D, with probabilities p̂ (Q)(d), p̂ (Q)(m),

and p̂ (Q)(u) respectively. Hence the probability of getting the state G is given by p̂ (Q)(m)2�
2p̂ (Q)(u) p̂ (Q)(d) ,which complicates obtaining the whole tree structure and as we will see

below, makes it di$cult to present the general case. We summarize this three-period model in

Picture 2 and Table 1.

The general n-period model may be described as follows. The total number of states at the

nth stage is given by the number of terms in the expansion of (u�m�d)nS�(u��u�d�d)nS,

where we have set m2�ud. The typical state may be expressed as�u2n�k�dk, k�0,1, …,2n, and

the coe$cient of which gives us the number of routs leading to that state. The coe$cient is

proved to be

�
[k/3]

p�0

(�1) p
�
��
�

n

p

�
��
�

�
��
�

n�k�3p�1

n�1

�
��
�

(39)

(This formula was personally communicated to the author by Professors Nabeya and

Hayakawa, to whom the author expresses his deep appreciation). The associated probability,

however, is not easily calculated, for the probability of obtaining each route may di#er because

p̂ (Q)(d) p̂ (Q)(u) need not be equal to p̂ (Q)(m)2. Therefore, the numerical calculation will be

necessary to construct the general multi-period model.

VI . Continuous Time Model

In this section, we briefly discuss a pricing model in the following incomplete market. We

extend the Black-Sholes model to the simple stochastic volatility model. Let S(t) be the stock

price process given by the stochastic di#erential equation

dS(t)�mS(t)dt�sS(t)dW(t), S(0)�S and (40)

s�g(s) independent of S(t) for all t�0 (41)

where, W(t) is Standard Brownian Motion. Our interpretation of this model is that each trader

in the market has his/her own prediction on the future volatility. If we fix the value of the

volatility, the above extended Black-Sholes model becomes the complete market model and

every trader may be able to calculate their option prices from the Black-Scholes formula using

their volatility values. We will denote C0(s) the option price at t�0 with volatility s and we

will write its density function by hC0(c). After having obtained every C0(s), the market will

decide its option price C0. In view of Definition 1, it may be given by

C (M)
0 �	�

0
C0(s)g(s)ds (42)

The idea behind equation (42) is the method of least squares. If we use the mean absolute

deviations in stead of mean squares, we may use the median of hC0(c) as the price at t�0. On

the other hand, if we use a majority rule at t�0, we may claim that the option price is given

by the mode of hC0(c). Some empirical studies are now underway to see the validity of our

method in a slightly di#erent model. We will address empirical issues in the next paper as well.
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