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Abstract

In a seminal paper, Peleg-Yaari (1970) provides a theoretical foundation for the intertem-

poral resource allocation problem over discrete time. The authors illustrate the existence of a

competitive equilibrium in an economy with countably many periods. In this paper, we present

a far-reaching generalization that includes non-ordered preferences, externalities, no free

disposal and infinite dimensional spaces with empty interiority. Furthermore, we extend the

methodology that is developed in Florenzano (1991). For future applications of the model, the

existence of equilibrium under weaker conditions is important. (86 words)
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I . Introduction

In Peleg-Yaari (1970), the authors deal with an infinite horizon economy whose commod-

ity space is ��. The striking feature of the paper is that the equilibrium price functional does

not assign finite valuation to every commodity in the commodity space. Thus the equilibrium

price functional is not an element of the topological dual of the commodity space. Aliprantis-

Brown-Burkinshaw (1987) extend Peleg-Yaari (1970) to an economy whose commodity space

is a vector lattice or Riesz space, but their primary concerns are the existence of Edgeworth

equilibria and the equivalence of approximate quasi-equilibrium, extended Walrasian equilib-

rium and Edgeworth equilibrium. Following Peleg-Yaari (1970), Besada-Estevez-Herves

(1988) are concerned with a countably many periods exchange economy where they construct

the price space as a set of price functionals which give finite valuation to the total endowment.

The commodity space is defined as a set of commodities whose valuation with respect to the

price space is finite. They are then able to make apparent the dual relation of commodity and

price. Florenzano (1991) generalizes Besada-Estevez-Herves (1988) by assuming that the
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economy can have a di#erent Riesz space as its commodity space in di#ering periods. The

author first confines herself to a reduced economy on the principal ideal, where, by Mas-

Colell’s (1986) uniform properness, there exists a quasi-equilibrium for the reduced economy.

Using the Riesz decomposition theorem and the fact that the price space is a subspace of the

order continuous dual of the commodity space, she proves that the quasi-equilibrium for the

reduced economy is a quasi-equilibrium for the entire economy. Since she assumes that

preferences are monotonic, transitive, and complete, she can apply Mas-Colell’s (1986)

existence theorem to the economy defined on the principal ideal.

In this paper, we extend Florenzano (1991) to an economy with non-ordered preferences,

externalities and no free-disposal. Specifically, we consider an infinite horizon exchange

economy with a finite number of agents. In each period, we allow for di#ering vector lattice in

the representation of the commodity space. Furthermore, we represent preferences by a

correspondence which is assumed to be convex, open with respect to the relevant topology, and

a#ected by other agents’ consumption. With the assumption of non-ordered preferences, we

cannot appeal to Mas-Colell’s theorem as Florenzano (1991). Instead, we will appeal to the

properness of preferences which is applicable to non-ordered preferences. Similar to Floren-

zano (1991), we begin with a reduced economy on the principal ideal where we consider finite

dimensional subeconomies. In each subeconomy, we utilize Shafer (1976) to obtain a competi-

tive equilibrium and then, form a convergent net of the equilibria. Following Bewley (1972),

we take the limit and find an allocation and price functional which is an element of the

topological dual space of the principal ideal. However, the norm-topology on the principal

ideal is finer than the topology on the entire space. To make the price functional of the reduced

economy continuous with respect to the entire economy’s topology, we shall use the properness

of preference as modeled in Podczeck (1996). We then prove the existence of the equilibrium.

It is well known that infinite dimensional general equilibrium theory su#ers from some

technical di$culties.1 Empty-interior points in the better-than-set is one such di$culty. In the

finite dimensional model, the price supportability of individual preferred sets is a result of the

separating hyperplane theorem. The infinite dimensional version of the theorem requires not

only convexity but also interior points in the preferred sets. Since Mas-Colell (1986), several

types of properness of preferences have been introduced into the literature to guarantee

non-empty interior points. Podczeck (1996) obtains the existence of a competitive equilibrium

with no free-disposal and non-ordered preferences. He introduces E-proper preferences and

uses the properness to prove the existence result without the assumption that the principal ideal

is dense in the entire space. Furthermore, he shows the same result in the case where the ideal

is dense, using F-properness as first used by Yannelis-Zame (1986). Unlike other papers, he

does not assume uniform properness. Instead he requires preferences be proper at individually

rational and Pareto e$cient allocations. We will appeal to Podczeck (1996) to obtain the

existence of competitive equilibria, but we assume preferences are proper at individually

rational points since we allow externalities.

The paper is organized as follows. Section 2 is devoted to mathematical definitions. In

section 3, we present a model and some immediate results regarding the properties of the

1 The main difficulties are as follows: attainable sets may not be compact; preferred sets may not be supportable

by prices; budget(or wealth) may not be jointly continuous as a function of prices and quantities. For details,

readers are referred to Mas-Colell-Zame (1991).

[June=>IDIHJ76H=> ?DJGC6A D; :8DCDB>8H-*



commodity and price spaces. Section 4 contains results on the existence of a competitive

equilibrium. Proofs of our results are provided in Section 5.

II . Definitions

A partially ordered vector space E is said to be a Riesz space or vector lattice if for any x,

y�E, the supremum x�y and the minimum x�y of the set {x, y} exist. We denote by E� the

positive cone of E. For x, y�E, we say x�y if x�y�E� and �x��x�(�x).

A subset A of E is called a solid set if �x���y� and y�A imply x�A. A solid vector

subspace of E is called an ideal. Let x, y�E satisfy x�y. Then the set [x, y]�{z�E: x�z�
y} is called an order interval of E. Subsets of order intervals of E are referred to as order

bounded sets. For an element u�0, there exists a smallest (with respect to inclusion) ideal of

E that contains u. This ideal is called the ideal generated by u and is the set Au�{x�E: �l

	0 with �x��lu}. Any ideal of the form Au is referred to as a principal ideal.

A linear functional f : E
� is said to be order bounded if it maps order bounded subsets

of E onto order bounded subsets of �. The set of all order bounded linear functionals of E is

called the order dual of E and denoted by E�. A Riesz space E is said to be Dedekind complete

if every nonempty subset that is bounded from above has a supremum.

A Riesz dual system �E, E	 is a dual system such that: (i)E is a Riesz space; (ii)E is
an ideal of the order dual of E�; (iii)�x, x*	�x*�x holds for all x�E and all x*�E. A

Riesz dual system �E, E	 is symmetric whenever E is an ideal of E, the topological dual

of E.
A seminorm r on a Riesz space E is said to be a Riesz seminorm if �u���v� in E implies

r(u)� r(v). A complete normed Riesz space is called a Banach lattice.

III . The Model

We consider an infinite horizon exchange economy. Following Florenzano (1991), we

first model the commodity and price spaces.

1. Commodity and Price Spaces

Time is discrete and indexed by t�1,2,(. At each period t, we have a symmetric Riesz

dual system �Et, Et	.2 For xt�Et and pt�Et, we shall denote the evaluation as pt�xt. The

symmetric Riesz dual system �Et, Et	 can take any space above at each period. Thus

di#erent period can have various symmetric Riesz dual systems. There are m agents indexed

by i�I�{1,2,( ,m}. Each of them has an endowment wi�(wi
t)�P�

t�1E�t . Let w�S
m
i�1wi�

P�
t�1E�t be the aggregate endowment.

In the spirit of Peleg-Yaari (1970), the price space is a set of price functionals which

2 The following are some examples of symmetric Riesz dual systems: ��n, �n	; �lp, lq	, (1�p, q��), 1/p

�1/q�1; �Lp, Lq	, (1�p, q��), 1/p�1/q�1; �c0, l1	; ���, ��	; �ca(W), ca(W)	, where c0�{x�
��: lim

n
�
xn�0 } and ca(W) is the collection of all signed measures of bounded variation.
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provide the finite valuation to the total endowment. Our price space is given by

H�{p�P�
t�1E�t : S

�

t�1

�pt��wt���}

where wt�S
m
i�1wi

t. The commodity space is given by

L(H)�{x�P�
t�1Et: S

�

t�1

�pt���xt����,�p�H}.

Thus the commodity space rests on the price space. We say that for x, y�L(H), x�y if x	
y�P�t�1E

�
t and also define an order on H in a similar way. Obviously, L(H) and H are vector

lattices. We consider topologies on commodity and price spaces. Topology t on L(H) is

defined by a Riesz seminorm

rp(x)�S
�

t�1

�pt���xt�, where p�H and x�L(H)

and t�on H is defined by a Riesz seminorm

rx(x)�S
�

t�1

�pt���xt�, where x�L(H) and p�H.

Thus we are given two topological spaces (L(H), t) and (H, t�). For x�L(H), p�H, the

bilinear map is defined by �x, p
�p�x�S
�
t�1 pt�xt. Given two topological spaces with

their bilinear map, it is natural to ask whether they are a dual system. In this regard, we first

deal with the compactness of order intervals in the commodity space in Proposition 1. Then by

taking advantage of Proposition 1, we shall show that�L(H), H
 is a symmetric Riesz dual

system. The following two propositions are due to Florenzano (1991). Let s(L(H), H) be the

weak topology on L(H) and s(H, L(H)) is similarly defined.

Proposition 1 Every order interval of L(H) is s(L(H), H)-compact and every order interval of

H is s(H, L(H))-compact.

Proof. See Florenzano (1991)�

Proposition 1 shows that every order interval is compact in a weaker topology, which is

su$cient for the existence of an equilibrium if the preferences defined in the next section are

continuous with respect to the same weaker topology.

In the next section, we will study a reduced economy as described in the introduction. For

this we need a principal ideal generated by the aggregate endowment w. We will investigate

some properties of the ideal.

Suppose w�L(H)�. Let Aw be the principal ideal of L(H) generated by w;

Aw�{x�L(H): �l
0 such that �x��lw}.

On Aw, a lattice norm is defined by

�x���inf {l
0: �x��lw}, where x�Aw.
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Aw with the topology t� generated by the����-norm is locally convex-solid Riesz space.3 Let

A�w be a t�-topological dual of Aw. The following proposition shows that our commodity and

price spaces are a symmetric Riesz dual system.

Proposition 2 �L(H), H� is a symmetric Riesz dual system. The topologies t and t� are

Hausdor# locally convex-solid and consistent with the duality. L(H) is Dedekind complete and

H�A�w.

Proof. See Florenzano (1991) and Theorem 2.1 in Aliprantis-Brown-Burkinshaw (1987).

Proposition 2 shows that H is the t-dual of L(H) and L(H) is the t�-dual of H. The

topological dual space H is also the subspace of the order dual space of L(H) so that H�A�w.

This shows that p�A�w is not always continuous with respect to the topology t.

Since L(H) is Dedekind-complete, so is Aw. Then (Aw,����) is a Banach lattice.4 Thus

A�w is the same as the order dual of Aw, A�w . On the other hand, for each x�Aw we have 	x	�
�x���w. Then for all x�Aw, rp(x)�rp(w)�x�� holds. Thus the Riesz seminorm rp(�) on

L(H) is t�-continuous on Aw. In particular, the restrictions of the functionals of H to Aw

belongs to A�w. Clearly, the positive cone A
w�Aw�L(H)
 is t�-closed in Aw and w is a

t�-interior point of A
w .

2. Economy

An exchange economy � is an m-tuple (Xi, Pi, wi)m
i�1 where Xi is a consumption set, and

Pi : X2Xi is a preference map (X�P m
i�1Xi). We assume Xi�L(H)
,�i�I. It is clear that

L(H)
 is convex. As assumed in the previous section, agent i’s initial endowment wi is in E
t
so that wi�L(H)
. The aggregate endowment w�S

m
i�1 wi is, therefore, in the L(H)
. We

assume w�0. An allocation is x�X. An allocation x is feasible if S
m
i�1 xi�w and it is

individually rational if wi��Pi(x),�i�I. We make use of the following assumptions;

A.1 xi��Pi(x1,(, xm) for each agent i and each point (x1,(, xm)�X.

A.2 Pi(x1,(, xm) is convex for all x�X.

A.3 Pi has an open graph in X� Xi where X is endowed with the product topology and with

each constituent set being endowed with s(L(H), H) topology and Xi with t topology.

A.4 Pi (x)�Aw � 0� for all x�[0, w]m and for all i�I.

A.1 shows that preferences are irreflexive. By A.2 the convexity of preferences is assumed.

A.3 is about the continuity of preferences. The continuity shows that preferences is myopic. A.

4 implies that nonsatiation holds on the feasible sets in Aw.

An equilibrium for an exchange economy � is an (m
1)-tuple (x1,(, xm; p) where xi�
Xi and p�H�{0} such that

3 See Aliprantis-Brown-Burkinshaw (1987) p.1125.
4 See Aliprantis-Brown-Burkinshaw (1987) p.1125.
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(i) S
m
i�1 xi�S

m
i�1 wi,

(ii) p�xi�p�wi, �i�I,

(iii) yi�Pi(x) implies p�yi�p�wi.

A quasi-equilibrium is a (x, p)�(X�H) such that (i), (ii) above and the following hold:

(iii’) if yi�Pi(x), then p�yi�p�wi. A quasi-equilibrium (x, p) is said to be non-trivial if there

is i�I, such that inf {p�x: x�L(H)�}�p�wi.

IV . Results

We shall show the existence of a competitive equilibrium for e. Infinite dimensional

economic models have a well-known empty interior point problem. To avoid such problem, we

limit ourselves to a principal ideal by defining a reduced economy. Note that Aw contains all the

feasible allocations. Even though Aw is infinite dimensional, its positive cone A�w has non-empty

t�-interior points so that we can apply the Separating Hyperplane Theorem to obtain an

equilibrium price functional. Thus we first consider a reduced economy defined on the

principal ideal for the reduced economy.

Let �Aw be the economy ((Xi	Aw), P A
i

w, wi)m
i�1 where P A

i
w is the restriction of Pi to P m

i�1

(Xi	Aw) and such that for any point x in the domain P A
i

w(x)�Pi(x)	Aw. Let s(L(H), H)Aw

be the weak topology s(L(H), H) restricted to Aw.

Proposition 3 Suppose �Aw satisfies A.1-A.4. Then there exist an individually rational allocation

x̄ and a linear functional p̄: A w
�, p̄ �0 with p̄�w�0, inf { p̄�z: z�A�w }�p̄�wi for some i�I,

and for y�Pi(x̄)	A w, p̄�y�p̄�w i �i�I.

Proof. See Section 5.

We are now in a position to consider an equilibrium for the entire economy. Using (x̄, p̄)

of the reduced economy, we are going to derive an equilibrium. As discussed in the

introduction, p̄ is not t-continuous on Aw. To make it t-continuous, we appeal to properness of

preference. We will employ F-properness used first by Yannelis-Zame (1986) and E-properness

suggested by Podczeck (1996). Definitions of each type of properness are slightly modified to

accommodate externalities and are given below.

Definition 1 Let x�(x1,(,xm)�X. We say that Pi is F-proper at xi if there exists a vector vi�
L(H) and t-neighborhood Ui of zero such that

1. xi�vi�Xi ;

2. if u�Ui , then xi�avi�aui�L(H)� implies that xi�avi�aui�Pi(x) for every real number

a�0 which is su$ciently small.

The economic meaning of F-properness is as follows. An agent whose consumption

bundle xi gives up a portion of any su$ciently small ui for an additional increment of vi
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measured by a, and the resulting bundle belongs to the better-than set. In this sense vi is

extremely desirable as pointed out by Yannelis-Zame (1986).

Definition 2 Let x�(x1,(,xm)�X and K be a linear subspace of L(H) with xi�K. Pi is

E-proper at xi relative to K if there is some vi�Xi, some t-neighborhood of Ui of zero, and some

Ai�K which is radial at xi (in K) such that

1. xi�avi�Pi(x) for every su$ciently small real number a�0;

2. if x̃i�Ai�Xi and x̃i��Pi(x), then ui�Ui implies x̃i�avi�aui��Pi(x) for every real number a

�0.

The meaning of E-properness at xi relative to K is as follows. The commodity bundle vi is

desirable in the sense that adding any su$ciently small amounts of this bundle results in a

bundle in the better-than set of xi. The set Ai, radial at xi, reflects the idea of a set of su$ciently

close points of xi. Now consider an agent who starts at a consumption bundle x̃i in K which is

not in the better-than set of xi but su$ciently close to xi. If we take avi out of x̃i and substitute

some amount aui of any other su$ciently small commodity bundle ui, then the results of the

substitution cannot lie in the better-than set of xi� It is worth noting that we do not assume

uniform properness. Instead we apply properness of preferences only to individually rational

allocations.5

The following lemma is important in our proof of the theorem. It is from the separation

theorem. Podczeck (1996) uses a similar lemma to extend the price functional on the principal

ideal to the entire economy. But we take the lemma from Deghdak and Florenzano (1999)

which is easier to apply to our proof of the existence theorem than Podczeck’s.

Lemma 1 Let (Y, t) be an ordered topological vector space and M be a vector subspace of Y. Let

Z be an t-open and convex subset of Y such that Z�M�	0�. Let x�clZ�M� (clZ denotes the

t-closure of Z) and p be a linear functional on M. Suppose p�x�p�x
, �x
�Z�M� . Then

there exists a t-continuous linear functional p on Y such that p�p on M and p�x�p�x�p�x
,
�x
�Z.

Proof. See Lemma 6.1 in Deghdak and Florenzano (1999).

The proof of following theorem is a simple application of Lemma 4 in Podczeck (1996).

We shall show that for (x̄, p̄), competitive equilibrium for �Aw, we can extend p̄ to a continuous

linear functional on L(H).

Theorem 1 Let � be an exchange economy and satisfy A.1-A.4. suppose either

- Aw is t-dense in L(H) and if x�(x1,(, xm)�X is individually rational, then Pi(x) is

F-proper at xi, �i�I.

or,

- if x�(x1,(, xm)�X is individually rational, then for each i�I Pi is E-proper at xi relative

to Aw with a properness vector vi satisfying xi�vi�A�w .

Then there exist a x̄�X and a t-continuous price functional p̄ such that (x̄, p̄) is a non-trivial

5 For detailed discussion of properness, readers are refereed to Podczeck (1996).
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quasi-equilibrium of � .

Proof. See Section 5.

We shall say that the economy � is irreducible if x is any feasible allocation and if I1 and

I2 is a non-trivial partition of I, then there exists an allocation x̃ such that x̃i�Pi(x) for all i�
I1 with SI1

x̃i�SI1
xi�SI2

(wi�x̃i).

Proposition 4 Suppose that � satisfies A.1-A.4, and is irreducible. Then there exist an equilib-

rium (x̄, p̄)�(L(H))m�H, (p̄�0).

Proof. See Section 5.

V . Proofs

Proof of Proposition 3. Let � be the set of all finite dimensional subspaces of Aw containing wi

�i �I. � will be directed by incursion. From A.3 and A.4, there exists an F1�� such that

for x�[0, w]m, Pi(x)�F1�0� for all i�I. Let wi
n�(1�n)wi�n

1

m
w, where 0	n	1. Since w

is a t
-interior point of A�w , so is
1

m
w and, then, wi is also in A�w . Since A�w is convex, w i

n is a

t
-interior point of A�w . We take any F�� with F1�F. Let �Aw F be the economy (Xi�F, PA
i

w F,

wi
n)

m
i�1 where PA

i
w F is the restriction of Pi to P m

i�1(Xi�F). It is easy to verify that this restricted

economy satisfies the assumptions of Theorem 2 along with remark 3 in Shafer (1976). By

letting n go to zero and taking limits, we obtain a quasi-equilibrium (xi F,(, xm F, pF). Since w

is a t
-interior point of A�w and also lies in F, it belongs to F�. With the fact of pF�0, we have

pF�w�0 so that we can normalize pF to have norm one and to be pF�w�1. We appeal to the

Hahn-Banach Theorem to extend pF to p̄ F in Aw, the t
-dual of Aw, which agrees with pF on F

and has norm one. We now have a net (x1F,(, xmF, p̄F)�[0, w]m�Aw which satisfies the

following:

(i) S
m
i�1 xi F�w;

(ii) wi��Pi(xF), �i�I;

(iii) if y�Pi(xF)�F, then p̄F�y�p̄F�wi, �i�I.

The order interval [0, w] is s(L(H), H)Aw -compact and contains xi F for all i and for all

F�� with F1�F. For all i�I, xi F has a subnet which s(L(H), H)-converges to some x̄i�[0,

w]. We obtain x̄�(x̄1,(, x̄m) in [0, w]m. Since for all F, S
m
i�1x

i F�S
m
i�1wi and xi F converges to

x̄i F in the topology s(L(H), H), we can concludeS
m
i�1x̄

i�S
m
i�1wi.

By Alaoglu’s Theorem, {p�Aw : �	x, p���1, for all x�Aw} is s(H, L(H))Aw -compact,

where s(H, L(H))Aw is the restriction of s(H, L(H)) to Aw. So we can assume that p̄ F

converges in the topology s(H, L(H))Aw to some p̄�Aw,

We shall show that y�Pi(x̄)�Aw implies p̄�y�p̄�wi. Suppose for y�Pi(x̄)�Aw, p̄�y	p̄�
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w. Since Pi has an open graph in X�Xi, there exist yF for large enough F such that yF�Pi(xF)

where yF is in F� and t�-converges to y, and xF is in F�. Since all yF and xF are in F, we may

write yF�PF
i (xF) where PF

i (xF)�Pi(xF)�F. Note that yF converges to y in the topology t�, it

also converges to y in the topology t A�w , because the former is stronger than the latter. Since p̄F

converges to p̄ in the s(H, L(H))Aw for large enough F, we obtain p̄F�yF�p̄F�w (see Lemma A

in Yannelis-Zame (1986)). This contradicts the fact that (xF, p̄F) is a quasi-equilibrium for the

restricted economy. We establish the desired result: y�Pi(x̄)�Aw implies p̄�y�p̄�w.

The next step is to prove p̄	0. By Proposition 1, order interval [
w, w] is s(L(H), H)-

compact so that it is s(L(H), H)-bounded and thus also t-bounded. Since x�[0, w]m, by A.3,

we can take y�Pi(x̄)�A�w with y being a t�-interior point of A�w . Consider F�� containing

F1, y and [
w, w]. Since Pi has an open graph, and xi F converges to x̄i in the s(L(H), H)-

topology, there exist an e�0 such that {y }�e[
w, w]�Pi(xF). We can pick w�[
w, w] so

that p̄F�w�1. Therefore y
ew�Pi(xF). Note that (xF, p̄F) is a quasi-equilibrium for this F

dimensional restricted economy so that we have p̄F�y�p̄Fwi�e. We know that p̄Fconverges to

p̄ in the s(H, L(H))-topology. If p̄�0, then the last inequality becomes absurd. It follows p̄

	0. Since w is a t�-interior point of A�w and p̄	0, we can say p̄�w�0.

Finally, we shall show that inf { p̄�z: z�A�w }�p̄�wi. Suppose the opposite is true, i.e., for

every i�I, inf { p̄�z: z�A�w }�p̄�wi. Since

m

w is an interior point of A�w , there exists e�0 such

that p̄�(
w

m
�e[
w, w])�p̄�wi holds for every i�I. By summing over i, we obtain p̄�me

[
w, w]�0 which leads to p̄�0. This contracts to p̄	0.

Proof of Theorem 1. By Proposition 3, there exist (x̄, p̄)�((Aw)m�A�w) such that y�Pi(x̄)�
Aw implies p̄�y�p̄�wi �i�I. By properness of preferences, there are vi�L(H)� and a�0

such that x̄i�avi�Pi(x̄)�Aw. Thus p̄�(x̄i�avi)� p̄�wi. By continuity of p̄, we have p̄�x̄i�p̄�
wi,�i�I. By summing over i, p̄�(S

m
i�1 x̄i)�p̄�(S

m
i�1 wi). Then from the feasibility of x̄, we

have p̄�(S
m
i�1 x̄i)�p̄�(S

m
i�1 wi) and therefore, p̄�x̄i�p̄�wi, �i�I. Thus we conclude y�Pi

(x̄)�Aw implies p̄�y�p̄�wi�p̄�xi, �i�I. Now (x̄, p̄) satisfies all the requirements of a

quasi-equilibrium except for the continuity of p̄ in the t-topology on L(H). We shall show in

the below that p̄ can be extended to be an element of H using Lemma 1.

We now consider the first case where Aw is t-dense in L(H) and Pi is F-proper at x̄i. By

F-properness at x̄, there exists a t-open and convex cone Gi�{l(vi
u): u�Ui, l����} for

each i where vi and Ui are the properness vector and the t-neighborhood of zero, respectively.

Then it follows that { x̄i}�Gi is also t-open and convex. Since Aw is t-dense in L(H), A�w is

t-dense in L(H)� (by Lemma 3 in Podczeck (1996)). Thus we have

({x̄i}�Gi)�A�w	0�. (1)

Since { x̄i}�Gi is t-open and convex, and Gi is a cone, x̄i belongs to the t-closure of { x̄i}�
Gi. Again by F-properness, there is a g�Gi such that x̄i�g�L(H)� implies

x̄i�ag�Pi(x̄) (2)

for a su$ciently small positive real number a. Since x̄i�A�w , x̄i�g�A�w implies x̄i�ag�A�w if

0�a�1. Then it is clear
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x̄i�ag�({ x̄i}�Gi)�A�w . (3)

Obviously p̄�x̄i�p̄�(x̄i�ag) and we can conclude p̄�x̄i�p̄�y for all y�({ x̄i}�Gi)�A�w . Thus

we showed that the assumptions of Lemma 1 hold. Let Z�{ x̄i}�Gi, M��A�w , x�x̄i, and p�
p̄. Then by Lemma 1, there exists a pi�H such that pi�x̄i�pi�y, �y�{x̄i}�Gi for each i�I.

Let p̄��i�1,(, m pi. We shall show that p̄ is a quasi-equilibrium price functional. Since H is a

vector lattice space, p̄ is a t-continuous linear functional on L(H), i.e., p̄�H. From S i x̄i�w

we have p̄�w�S i p̄�x̄i�S i pi�x̄i�p̄�w. But on Aw, p̄�p̄ so that p̄�w�p̄�w. Therefore, p̄�
w�p̄�w. But we know that on Aw (p̄� p̄)�w�0 on Aw. Since w is positive in Aw, we get p̄�
p̄ on Aw. This implies that p̄ is an extension of p̄. Since for all i�I pi�x̄i�pi�y, �y�{ x̄i}�Gi,

we have p̄�xi�p̄�y �y�{ x̄i}�Gi or �y�Pi(x̄). Hence (x̄, p̄) is a quasi-equilibrium of �.
Next, we turn to the second case where Pi is E-proper at x̄i relative to Aw. From

E-properness, there exists a vi�A�w such that x̄i�vi�A�w and x̄i�avi�Pi(x̄), where a is a small

enough positive real number. We can also construct a t-open and convex cone Gi�{avi : a�0}.

We shall show that Pi(x̄)�Gi can be a set Z in Lemma 1. Since x̄i�vi can be rewritten as

x̄i�avi�(1�a)vi, we have x̄i�vi�(Pi(x̄)�Gi). It follows immediately that

(Pi(x̄)�Gi)�A�w	0�. (4)

From the fact that Pi is open and convex and that Gi is a open convex cone, Pi(x̄)�Gi is

t-open and convex. The next step is to show x̄i�cl(Pi(x̄)�Gi). Since x̄i�avi�Pi(x̄) for all a

�0, we have x̄i�clPi(x̄) and, thus, x̄i�cl(Pi(x̄)�Gi), where 
cl’ denotes t-closure of a

relevant set.

To apply Lemma 1, we need to verify one more condition:

p̄� x̄i�p̄�z, �z�(Pi(x̄)�Gi)�A�w .

We choose z�(Pi(x̄)�Gi)�A�w . Note that x̄i�A�w and that by E-properness there is Ai which

is radial at x̄i. Thus there exists l(0�l�1) such that zl�(1�l)x̄i�lz�Ai�A�w . Since z is

also in Pi(x̄)�Gi, it can be decomposed into z1�g where z1�Pi(x̄) and g�Gi. Thus zl�(1�
l)x̄i�l(z1�g). From the convexity of Pi(x̄) along with x̄i�clPi(x̄), we have (1�l)x̄i�lz1�
zl�lg�clPi(x̄). But zl�lg also belongs to the set {zl}�Gi. This implies that

({zl}�Gi)�clPi(x̄)	0�. (5)

From E-properness, we know that y�Ai�L(H)� but y��Pi(x̄) implies ({y}�Gi)�Pi(x̄)�0�.
Since Gi is open, this condition can be written as

y�Ai�(H)�, but y��Pi(x̄) implies ({y}�Gi)�clPi(x̄)�0�. (6)

Considering (6), we can say that (5) implies that zl�Pi(x̄) and therefore zl�Pi(x̄)�A�w . By

the property of (x̄, p̄) seen in Proposition 3, we have p̄� x̄i�p̄�zl, which implies that when

l�1, p̄� x̄i�p̄�z. This shows the desired result.

We are now ready to apply Lemma 1. Let Z�Pi(x̄)�Gi, M��A�w , x�x̄ i, p�p̄. Then by

the same argument as above, there exists an p̄�H which extends p̄ and (x̄, p̄) is a

quasi-equilibrium.

Proof of Proposition 4. Let I1�{ i�I: for z�L(H)�, inf p̄�z� p̄�wi} and I2�{ i�I: for z�L

(H)�, inf p̄�z �p̄�wi}. Then I1�I2�I, and I1�I2�0�. According to Theorem 1, � has a
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non-trivial quasi-equilibrium (x̄, p̄)�(L (H))m�H, where p̄�0 and inf {p̄�z: z�A�w }�p̄�wi

for some i�I. Thus I1 is not empty.

We shall first show that the equilibrium conditions are satisfied for each agent in I1. Fix

i�I1 and let y�Pi(x̄). Then p̄�y�p̄�wi. We need to show p̄�y�p̄�wi. Suppose p̄�y�p̄�wi. Let

k�inf p̄�z, where z�L(H)�. We know that p̄�w i�k. We can take l�1 to be su$ciently close

to 1 and then, by continuity of Pi , we have ly�Pi(x̄) with p̄�(ly)�l(p̄�y)� p̄�y�p̄�wi. This

contradicts the quasi-equilibrium conditions. We conclude that p̄�y�p̄�wi for all i in I1.

Now suppose I2 is non-empty. Then for i�I2, we have

p̄� x̄ i�p̄�w i�inf p̄�Xi

which implies for any z i�Xi,

p̄� (w i�z i)�0

and, in turn,

p̄�S
I2

(wi�z i)�0.

Since � is irreducible, we can have an allocation x̃ such that x̃i�Pi(x̄) 	i�I1 with

S
I1

x̃i�S
I1

x̄i�S
I2

(wi�x̃i).

Thus we have

p̄�S
I1

(x̃i�x̄i)�p̄�S
I2

(wi�x̃i)�0.

Then for all i�I1, we have

p̄� x̃i�p̄�wi

which is a contradiction to x̃i�Pi(x̄) 	i�I1. Hence I2 is empty and for all i�I, y�Pi(x̄)

implies p̄�y�p̄�wi. We conclude that (x̄, p̄) is an equilibrium.
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