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Abstract

To give a better understanding that, when the economy is caught up in a liquidity trap,

it returns quickly to the normal state by using the exchange rate channel of monetary policy,

we solved a central bank’s intertemporal optimization problem in the framework of a small

open economy. Given an adverse shock to aggregate demand, we computed the dynamic path

of a short-term nominal interest rate in both discretion and commitment. We discovered that

the timing to terminate a zero interest rate policy in the case of large openness would be earlier

than that in the case of small openness. We find that the economy in case of large openness

would be less overheated. Moreover, the di#erence between the optimal solution and discre-

tionary solution becomes proportionately smaller to the degree of openness. Some simulation

results reinforce these findings. Finally, this paper also suggests that the exchange rate peg

enables the central bank to quickly end the zero interest rate policy.
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I� Introduction

The Bank of Japan (BOJ) adopted the so-called zero interest rate policy (ZIRP) to

stimulate the Japanese economy from February 1999 to August 2000.1 On February 12, 1999,

the BOJ adopted this policy in order to avoid a possible intensification of deflationary pressure.

� I would like to thank Professors Koichiro Takaoka and Tsutomu Watanabe for their advice and encourage-

ment. I also wish to thank Takeshi Kudo and an anonymous refree for helpful comments.
1 Thereafter, the decision of the BOJ policy board was made on March 19, 2001 as follows: (1) The main

operating target for money market operations be changed from the current uncollateralized overnight call rate to

the outstanding balance of the current accounts at the Bank of Japan. (2) The new procedures for money market

operations continue to be in place until the consumer price index (excluding perishables, on nationwide statistics)

registers stably a zero percent or an increase year on year. (3) For the time being, the balance outstanding at the

Bank’s current accounts be increased to around 5 trillion yen, or 1 trillion yen increase from the average 4 trillion

yen outstanding in February 2001.
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Moreover, the BOJ announced on April 13, 1999 that the monetary policy board would keep

the overnight interest rate at zero until “deflationary concerns are dispelled.” This announce-

ment was intended to have the e#ect of lowering longer term interest rates by altering the

expectations of market participants. This policy to escape from a liquidity trap by a#ecting

market expectations has revived researchers’ interest in the zero bound on nominal interest

rates.

Krugman (1998) suggests that the BOJ should make a commitment to future monetary

expansion and proposes an inflation target whereby the Japanese economy needs four percent

per year for the next 15 years. When the nominal interest rate is bound at zero, an increase in

inflation expectations brings about a reduction in the real interest rate and thereby stimulates

the economy out of the liquidity trap. On the other hand, Woodford (1999) points out that,

even when the current overnight interest rate is close to zero, the long-term nominal interest

rate could be well above zero if future overnight rates are expected to be well above zero.

Expectations theory of the term structure of interest rates implies that, in this situation, a

central bank could lower the long-term nominal interest rate by committing itself to an

expansionary monetary policy in the future, thereby stimulating aggregate demand.

Many suggestions are also o#ered for escaping from the liquidity trap in the framework

of an open economy. Bernanke (2000) and Meltzer (2000) recommend that the BOJ lowers

the yen to increase net exports and stop deflation by large-scale intervention. Their arguments

rely on a portfolio-balance e#ect, whereby the relative supply of domestic and foreign currency

denominated assets a#ects the exchange rate. In contrast to the above recommendations to

manipulate the market rate by artificial intervention, Svensson (2000a) proposes to control

market expectations about the future values of the currency. His argument does not rely on a

portfolio-balance channel, but on a credible commitment to an expansionary policy. This

method emphasizes an operation mechanism to change the current exchange rate by a#ecting

market expectations of future exchange rates.

Since the ZIRP is adopted unavoidably to escape from an emergency situation, this policy

seems to be terminated at some point in the future. Under this environment, an important

point is the timing to end this policy. In other words, a central bank needs to specify and

announce a contingency plan describing how long the ZIRP would be continued, i.e., when

and under what circumstances the ZIRP should be terminated. The BOJ did this in its

commitment of April 13, 1999, but its termination condition was very ambiguous. In practice,

when the BOJ terminated a ZIRP on August 11, 2000, the government requested that the

Policy Board postpone a vote on the proposed change of the guideline for money market

operations until the next Monetary Policy Meeting.2 At that time, the Director General of the

Economic Planning Agency said that the BOJ had taken an optimistic view regarding the

Japanese economy and the BOJ should have postponed terminating the ZIRP because

deflationary concerns were not completely dispelled.

As stated above, we did not have a clear understanding of the definition of “deflationary

concerns,” which was a condition to end the ZIRP. More fundamentally, there was doubt as

to whether the BOJ’s termination condition was really appropriate. Many researchers and

practitioners have said that the BOJ’s policy might have been mistaken. Jung, et al. (2001)

2 Pursuant to Article 19, Section 3 of the Bank of Japan Law, the Policy Board took a vote on this request and

rejected it by majority vote.
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investigated this problem in order to evaluate the BOJ’s policy. Their main finding was that the

optimal path is characterized by monetary policy inertia: the ZIRP should be continued for

some time, even after the natural rate of interest returns to a positive level.

But Jung, et al. (2001) lacks the element of open economy, i.e., exchange rate

mechanism.3 The objective of this paper is to evaluate the ZIRP under the framework of a

small open economy. The commitment of keeping the nominal interest rate at zero is expected

to give rise to a weakening domestic currency and thereby lead to the improvement of output

gap and deflation. As a result, it is supposed that the period of the ZIRP would be reduced.

The rest of the paper is organized as follows. Section 2 presents the setting of the demand

and supply side under the framework of a small open economy, which is based on Gali and

Monacelli (2002).4 Section 3 and Section 4 characterize discretionary and commitment

solutions to the problem. Section 5 gives a numerical example. Section 6 concludes the paper.

II� The Model

1. Central bank’s loss function

The central bank chooses the path of the short-term nominal interest rates, starting from

period 0, {i0, i1 �} to minimize

E0 S
�

t�0

btLt, (2.1)

where b is the discount factor and L is the loss function. Denoting domestic inflation by pH,t,

which is defined as the rate of change in the index of domestic goods prices, and output gap

by xt, the loss in a given period is given by

Lt�(pH,t�p̄H)2�l(xt�x̄)2, (2.2)

where l is a positive parameter representing the weight assigned to output stability, p̄H denotes

the domestic inflation target and x̄ denotes the target level of the output gap. Denoting the real

exchange rate by qt and the share of domestic consumption allocated to imported goods, i.e.,

an index of openness by g, domestic inflation and CPI inflation are linked as

pt�pH,t�
g

1�g
Dqt, (2.3)

which makes the gap between two measures of inflation dependent on the change in the real

exchange rate and the coe$cient given by the index of openness.

3 Of course, Japan is not a small open economy. But the essence of investigation made here applies to the case

of a large open economy. Under existing environments where low and stable inflation has been achieved in many

countries, in cases where the economy is hit by a large-scale negative shock, most countries have the possibility of

being caught up in a liquidity trap like Japan.
4 The characteristic of Gali and Monacelli (2002) is that it is laid out as a small open economy with Calvo-type

staggered price-setting that is now common in the recent New Keynesian literatures. Another feature lies in the

modeling of the rest of the world as a limiting case of an economy whose degrees of openness are negligible. This

allows us to treat the rest of the world as if it were a closed economy.
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2. Small open economy

Following Gali and Monacelli (2002), the small open economy outside the central bank

is represented by two equations: an “IS curve” and an “AS curve.”

xt�Etxt�1�s�1(it�EtpH,t�1�rn
t )�

w�1

s(1�g)
EtDqt�1 (2.4)

pH,t�bEtpH,t�1�kxt (2.5)

where it is the short-term nominal interest rate, rn
t is the natural rate of interest, and s,

k� (1�ab)(1�a)

a
(*� s

w
) and w�1�g(2�g)(sh�1) are positive parameters. The natu-

ral rate of interest is an exogenous variable that could deviate from its steady-state level,

thereby giving rise to fluctuations in the output gap and the inflation rate.5 We also assume

that h, a and * are positive parameters.

Equation (2.4) states that output gap in period t is determined by the expected value of

the output gap in period t�1, the deviation of the short-term real interest rate from the natural

rate of interest in period t, and the expected change of the real exchange rate in period t�1.

Equation (2.4) can be iterated forward to obtain

xt��s�1 S
�

j�0

Et[(it�j�pH,t�j�1)�rn
t�j]�

w�1

s(1�g)
qt. (2.6)

According to the expectations theory of the term structure of interest rates, the expression

S
�

j�0

Et[(it�j�pt�j�1)�rn
t�j] stands for the deviation of the long-term real interest rate from the

corresponding natural rate of interest in period t, which implies that, given the path of the

natural rate of interest, the output gap depends negatively on the long-term real interest rate.

We find that the output gap would depend positively on the real exchange rate, assuming the

sign of w�1 is positive. This assumption is reasonable because depreciation of domestic

currency increases net export, and accordingly the output gap improves.

Equation (2.5) is the New Keynesian Phillips Curve (NKPC) in a small open economy,

which di#ers from a closed economy counterpart in that the coe$cient of the output gap

depends on the degree of openness and there is a domestic inflation rate instead of CPI

inflation. Note that for g�0, the slope coe$cient is absolutely identical to that of a closed

economy NKPC. The degree of openness has an influence on inflation dynamics by only the

size of the slope of the output gap.6

5 More concretely, * is the inverse of the elasticity of supplying goods, s is the inverse of the intertemporal

elasticity of substitution in consumption, h is the elasticity of substitution between domestic and foreign goods,

and a denotes stickiness of prices following Calvo (1983), which assumes that each firm resets its price in any

given period only with probability 1�a, independently of other firms and of the time that has elapsed since the

last adjustment.
6 The larger the degree of openness, the smaller the size of the slope of the output gap. This can be explained by

the following logic. Let us assume that the output gap of the rest of the world is constant. Under this assumption,

the increase in the domestic output gap means that the real exchange rate should depreciate in order for market

clearing conditions to hold. The point to note is that if the degree of openness is large, the small size of

depreciation of the real exchange rate is su$cient.
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3. Uncovered interest parity

Under the assumption of complete international financial markets, the exchange rate

fulfils the interest parity condition,

it�i*t�Etet�1�et, (2.7)

where i*t is the foreign short-term nominal interest rate and et is the nominal exchange rate

(the price of foreign currency in terms of home currency). Combining this condition with

equation (2.3) in order to incorporate the domestic inflation rate and the real exchange rate,

we obtain the following equation,

1

1�g
qt�

1

1�g
Etqt�1�(it�EtpH,t�1)�(i*t�Etp*t�1). (2.8)

Equation (2.8) says that the present real exchange rate depends on the expected value of itself

and the di#erence between the domestic real interest rate and a real interest rate of the rest of

the world.

4. Zero bound constraint and adverse demand shock

We explicitly introduce the non-negativity constraint on short-term nominal interest rates,

it � 0, (2.9)

like Jung, et al. (2001). In particular, this constraint is very important to an economy that is

under unfavorable circumstances such as that of recent Japan. Woodford (1999) adopts the

condition whereby the mean value of short-term nominal interest rates is no smaller than a

prespecified positive level. This treatment makes the analysis much simpler, but at the price of

losing reality. Therefore, this paper solves a dynamic optimization problem with explicit

treatment of the non-negativity constraint in a forward-looking model notwithstanding its

nonlinearity.7

Finally, it is assumed that a large negative demand shock to the natural interest rate in the

initial period, denoted by +n
0, occurs, so that the natural rate of interest takes a large negative

value in period 0. The natural rate of interest is assumed to converge to its steady state on and

after period 1, but only gradually. That is,

rn
t�rt+n

0�rn
� for t�0,� (2.10)

where rn
� is the steady-state value of the natural rate of interest, which is assumed to be

non-negative, and r is a parameter satisfying 0�r�1.8

7 Although a number of studies treat the non-negativity in an explicit way, or in an approximate way, they do

not satisfactorily present enough to investigate how long a central bank should continue a ZIRP. Fuhrer and

Madigan (1997) and Reifschneider and Williams (2000) do not solve an optimization problem, but just assume

Taylor-type policy rules for setting the nominal interest rate with alternative inflation targets. Orphanides and

Wieland (2000) solve a dynamic optimization problem with a non-negativity constraint in a backward-looking

model instead of a forward-looking model.
8 The assumption about the natural rate of interest like (2.10) is su$cient to fulfill the purpose of the present

paper, which is to specify the optimal path of nominal interest rate in case of the occurrence of a one-time large

negative demand shock.
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III� Optimization under Discretion

1. First-order conditions and steady-state values

The central bank minimizes equation (2.1) subject to (2.4), (2.5), (2.8) and (2.9). For

convenience, we assume that the short-term real interest rate of the rest of the world is

equivalent to the steady-state value of the natural rate of interest (i.e. rn
��i*t�Etp*t�1). The

Lagrangean to the optimization problem is,

L�S
�

t�0

bt
�
�
�

Lt�2f1t

�
�
�
xt�xt�1�

�
��
�

w
s

�
	

�

(it�pH,t�1)�s�1rn
t�
�
��
�

w�1

s

�
	

�

rn
�
�


�

�2f2t[pH,t�kxt�bpH,t�1]
�
�
�
, (3.1)

where f1t and f2t represent the Lagrange multipliers associated with the IS constraint and the

AS constraint, respectively. The first-order conditions with respect to pH,t, xt and it are

pH,t�p̄H�f2t�0 (3.2)

l(xt�x̄)�f1t�kf2t�0 (3.3)

itf1t�0; it�0; f1t�0 (3.4)

Equation (3.4) is the Kuhn-Tucker condition regarding the non-negativity constraint on the

nominal interest rate. If the non-negativity constraint is not binding, (L/(it is equal to zero, so

that f1t is zero also. On the other hand, if the constraint is binding, (L/(it is non-negative, and

so is f1t. The first-order conditions consist of equations (3.2)-(3.4), together with IS and AS

equations.

The steady-state value of the various variables under discretionary policy, x�, pH,�, i�,

f1�, and f2� are calculated by substituting constant values for each variable into the above

first-order conditions. For convenience, we assume that x̄�(1�b)k�1p̄H.9 The interior solu-

tion of steady state values is given by10

x��(1�b)k�1p̄H; pH,��p̄H; i��rn
��p̄H; f1��0; f2��0. (3.5)

2. Dynamic path

Given that the non-negativity constraint on nominal interest rates is not binding in the

interior steady-state solution, and the assumption that the natural rate of interest converges

monotonically to its steady-state value, it is straightforward to assume that the non-negativity

9 Without this assumption, the steady-state values take di#erent values, which are more complicated by the

dependence on x̄. However, this assumption does not change the results of our analysis below.
10 We can also calculate the corner solution of steady-state by substituting i��0, and thereby x� and p� are

given by x���(1�b)k�1rn
�; pH,�. It is assumed in this paper that rn

� and p̄H are su$ciently large, so that the

dynamic path of the endogenous variables converging to the interior solution is superior to that converging to the

corner solution. Moreover, it is important to note that the interior solution is the first-best outcome, in the sense

that the value of the central bank’s loss function, defined by (2.2), is equal to zero. Thus, the focus of our interest

is on the dynamic path that converges to the interior solution.

[December=>IDIHJ76H=> ?DJGC6A D; :8DCDB>8H+-.



constraint is binding until some period, denoted by period Td, but not binding afterwards.

In determining the responses of the path of the endogenous variables to shocks, it is

convenient to work in terms of deviations from steady-state values. Thus we define p̂H,t�pH,t

�pH,� and x̂t�xt�x� and rewrite IS and AS equations, together with first-order conditions.

And then, we substitute f1t into (3.2) and (3.3) so as to characterize the path of the

endogenous variables for the periods on and after Td�1 and eliminate f2t. This procedure

yields two first-order di#erence equations of the form,

lx̂t�kp̂H,t�0 for t�Td�1,�, (3.6)

p̂H,t�1�b�1(1�l�1 k2) p̂H,t for t�Td�1,�, (3.7)

combined with IS and AS equations. It is easy to see that equation (3.7) has a unique bounded

solution, which is given by p̂H,t�0, from the fact that the coe$cient of p̂H,t on the right-hand

side is greater than unity. Applying this to equation (3.6) and the IS equation, we obtain the

following unique bounded solution for t�Td�1,�

zt � 0 for t�Td�1,�, (3.8)

it �
1

w
rn

t�
w�1

w
rn
��p̄H for t�Td�1,�, (3.9)

where zt�[p̂H,t x̂H]�. Equation (3.9) seems to be complicated and strange at first glance.

However, noting that rn
� is the real interest rate in the rest of the world, we easily recognize

that the right-hand side of (3.9) is the weighted average of the natural rate of interest and the

world real interest rate. Substituting w�1 into (3.9), we obtain a familiar equation, which

often appears in a closed economy.11

Next, we substitute it�0 into IS and AS equations for the periods during which a ZIRP

is adopted. This substitution yields

zt�1�Qzt�X [rn
t rn

� p̄H]� for t�0, �, Td (3.10)

where

Q�
�
�
�

b�1 �b�1k

�s�1b�1w 1�s�1b�1kw

�
�
�

, X�
�
�
�

0 0 0

s�1 (w�1)s�1 ws�1

�
�
�

.

Combined with zT d�1�0 from (3.8), this di#erence equation has a unique bounded solution of

the form

zt�S
T d

k�t

Q�(k�t�1) X [rn
t rn

� p̄H]�. (3.11)

The remaining work is to confirm that f1t is positive for t�0,�, Td. It is easy to recognize that

rn
T d��(w�1) rn

��wp̄H. Otherwise, both p̂H,T d and p̂T d will be positive from the monotonic

structure of shocks and (3.11), so that f1t will be negative, contracting the Kuhn-Tucker

condition. Therefore, the positiveness of f1t is well satisfied for the periods of ZIRP. It is also

straightforward to find that rn
T d�1��(w�1) rn

��wp̄H by recalling (3.9). It is important to

11 It is also noted that if the central bank sets a nominal interest rate equal to the right-hand side of (3.9) at all

times, it can completely stabilize domestic inflation and the output gap, thereby achieving the minimized loss in

terms of the central bank’s preference.
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perceive that the choice of Td is di#erent from that of a closed economy, in which the criterion

for choosing Td is zero. But in this open economy, the choice of Td is taken in some negative

value of the demand shock, which is proportionate to the size of openness and domestic

inflation targeting

3. Implementation

Given the solution characterized in the previous subsection, the next issue we address is

how to implement it. To deal with the problem of indeterminacy which has been pointed out

by many economists, the central bank needs to adopt a feedback policy rule in which a policy

instrument depends on endogenous variables. As an example of such feedback rules, consider

it�max { idt�qp(p̂H,t�p̂ d
H,t)�qx(x̂t�x̂d

t ), 0 }, (3.12)

where idt , p̂d
H,t, and p̂d

t are the solution, which is characterized in the previous subsection, and qp

and qx are positive parameters representing the responsiveness of the short-term nominal

interest rate to the deviations of p̂H,t and p̂t from the solution. When the central bank

implements the feedback rule under the appropriate value of qp and qx, it observes { idt , p̂d
H,t, x̂d

t ,

p̂H,t, x̂t }, simultaneously with the choice of it. It is important to note that equation (3.12)

describes the “o#-equilibrium path” of the short-term nominal interest rate, in that it specifies

how the central bank behaves when the economy deviates from the solution.

Suppose there exists a path of it, p̂H,t, and x̂t which di#ers from idt , p̂d
H,t, and x̂d

t but converges

to the same interior steady-state value. Since it converges to rn
��p̄H, which is positive,

T�[0,�] must exist such that it�0 for t�T�1. Then, the system of equations consisting of

(3.12), the IS equation, and the AS equation can be rewritten as

zt�1�Rzt�F[ idt p̂d
H,t x̂d

t ]��X [ rn
t rn

� p̄H]�, for t�T�1 (3.13)

where

R�
�
�
�

b�1 �b�1k

s�1w(qp�b�1) 1�s�1w(qx�b�1k)

�
�
�

, F�
�
�
�

0 0 0

s�1w �s�1wqp �s�1wqx

�
�
�

.

Since p̂H,t and x̂t are both non-predetermined variables, this di#erence equation has a unique

bounded solution if the matrix R has two eigenvalues outside the unit circle, according to

proposition 1 in Blanchard and Kahn (1980). The condition for determinacy in the present

case is given by

k(qp�1)�(1�b)qx�0. (3.14)

Therefore, a unique bounded solution is obtained if qp�1 and qx�0. The satisfaction of these

conditions rules out the possibility that there exists a path of it, p̂H,t, and x̂t which di#ers from

idt , p̂d
H,t, and x̂d

t but converges to the same interior steady-state value.12

12 It is also noteworthy that the larger the degree of openness, the broader the region of parameters in which

the condition of determinacy holds. Condition (3.14) for determinacy is a simple reflection of NKPC in a small

open economy, which means that each unit permanent increase in the domestic inflation rate implies a permanent

increase in output gap by (1�b)/k units, and that the compensation in terms of output gap for the increase in the

domestic inflation rate decreases in accordance with the degree of openness.

[December=>IDIHJ76H=> ?DJGC6A D; :8DCDB>8H+-0



IV� Optimization under Commitment

1. First-order conditions and steady-state values

An optimal plan must satisfy the first-order conditions

p̂H,t�(bs)�1wf1t�1�f2t�f2t�1�0 (4.1)

lp̂t�f1t�b�1f1t�1�kf2t�0 (4.2)

itf1t�0; it�0; f1t�0 (4.3)

obtained by di#erentiating the Lagrangean, given by equation (3.1), with respect to pH,t, xt and

it respectively. Note that the lagged Lagrangean multipliers, f1t�1 and f2t�1, appear in the first

two equations out of the first-order conditions, which di#er sharply from those obtained in the

discretionary monetary policy.

In order to solve the optimization problem, we need to specify the values of the two

multipliers in the initial period, i.e., add the stipulation that

f1�1�0; f2�1�0. (4.4)

These initial conditions stem from the assumption that the economy is in the interior

steady-state before period 0. Therefore, the Lagrange multipliers in these periods should be

equal to zero.13

Next, we need to specify the steady-state values of the endogenous variables. The same

procedure as mentioned in the previous section allows us to obtain the interior solution given

by (3.5). In this case, however, the corner solution does not satisfy the requirement of the

steady-state values because f� is negative, which is inconsistent with the Kuhn-Tucker

conditions.14 Thus, the interior solution is a unique steady-state in the case of commitment.

2. Optimal dynamic path

We adopt the same method as in the previous section. It is assumed that the non-

negativity constraint on the nominal interest rate is binding until some period, denoted by Tc,

but not thereafter. To characterize the path of the endogenous variables for the periods on and

after Tc�2, we substitute f1T c�1�f1T c�2���0 into the first-order conditions. Then we

obtain a unique bounded solution that converges to the interior steady-state, which is given by15

13 It is also noticeable that time-inconsistency of the Barro-Gordon type that could arise in dynamic response to

shocks, which is emphasized in Woodford (1999) and Clarida et al. (1999), does not occur here. The reason is

that the assumption that x̄�(1�b) k�1p̄H, which is made in the previous section, holds. This can be shown as

follows. The optimal commitment plan is time-consistent only if f1t�0 and f2t�0 for all t. Substituting these

values into the above first-order conditions, together with the IS and AS equations, we see that p̂H,t�x̂�0 for all t

only if it is set as equation (3.9). Namely, the solution under commitment always coincides with the one under

discretion.
14 More concretely, f1���(bs) w�1(rn

��p̄H)�0.
15 Details on the derivation are provided in the Appendix A
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zt�bf2t�1

f2t�m1f2t�1

it�
1

w
rn

t�
w�1

w
rn
��p̄H�df2t�1 (4.7)

where m1 is a real eigenvalue of an associated matrix, satisfying �m1��1,b is a column vector

defined by b�[1�m1 km1l
�1]�, and g is a parameter defined by d�m1(1�m1)

(1�ksl�1wl�1). Note that we need the value of f2T c�1 as an initial condition in order to

complete the solution for t�Tc�2,	.

Next, we characterize the path of the endogenous variables for t�0,	,Tc. Substituting i

t�0 into the IS and AS equations yields

zt�S
T c

k�t

Q�(k�t�1) X [rn
t rn

� p̄H]��Q�(T c�t�1)zT c�1 (4.8)

ft�Cft�1�D
�
�
�

S
T c

k�t

Q�(k�t�1) X [rn
t rn

� p̄H]��Q�(T c�t�1)zT c�1

�
�
�

(4.9)

where ft�[f1t f2t]�, and C and D are 2
2 matrices given in Appendix A. Note that we need

the value of zT c�1 as a terminal condition, and the value of f�1 as an initial condition.

Finally, for t�Tc�1, we substitute f1T c�1�0 into the first-order conditions to obtain

�
�
�

zT c�1

f2T c�1

�
�
�
�F�1GzT c�2�F�1HfT c (4.10)

where F, G, and H are matrices given in the Appendix A. Note that we need the values of zT c�2

and fT c to complete the solution for t�Tc�1.

Equations (4.5)-(4.10), the Kuhn-Tucker conditions (i.e., it�0 for t�0,	,Tc, and f1t�0

for t�Tc�1,	), and the initial condition (4.5) are completely characterized by a unique

optimal path of the endogenous variables. It should be noted that the jumping variables, pt and

xt, depend on the current and past values of the Lagrange multipliers. This sharply contrasts

with the case of discretion in which the path of the jumping variables is determined solely by

the path of the natural rate of interest, which is exogenously given. An important implication

of this di#erence is that the timing to terminate a ZIRP is endogenously determined in the

commitment solution, while it is exogenously determined in the case of discretion.

The same argument as in Section 3.3 guarantees that the commitment solution character-

ized above can be implemented when the central bank follows a feedback policy rule of the

form

it�max { ict�qp (p̂H,t�p̂c
H,t)�qx(x̂t�x̂c

t), 0 }, (4.11)

where ict, p̂c
H,t, and x̂c

t represent the commitment solution, and qp and qx are parameters

satisfying qp�1 and qx�0.

3. Timing to terminate the ZIRP and degree of openness

To investigate the relation between timing to terminate a ZIRP and degree of openness,

we need to make a careful observation of equation (4.12). We eliminate f2t from equations
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(4.1) and (4.2) to obtain a second-order di#erence equation with respect to f1t.

f1t�[1�b�1�kw(bs)�1]f1t�1�b�1f1t�2��kp̂H,t�lx̂t�lx̂t�1

for t�0,�,Tc�1, (4.12)

where initial conditions are given by f1�1�f1�2�0. A unique solution to this di#erence

equation is given by

f1t��kA(L) p̂H,t�l(1�L)A(L) p̂t, (4.13)

where

A(L)� 1

h1�h2

(
h1

1�h1L
� h2

1�h2L
),

and L is a lag operator, and h1 and h2 are two real solutions to the characteristic equation,

satisfying h1�1 and 0�h2�1. Since h1 is greater than unity, f1t tends to explode once it

becomes positive, unless the right-hand side of equation (4.12) takes su$ciently large negative

values. In other words, inflation and the output gap must overshoot the steady-state values

(i.e., zero) after they take negative values in period 0 and subsequent periods. This condition

is satisfied if the central bank continues the ZIRP for a su$ciently long period. By adopting

such a policy, the output gap and inflation become su$ciently high, so that the expression on

the right-hand side of (4.12) takes su$ciently large negative values to guarantee that f1t

converges to zero within a finite period.

Noting that inflation and the output gap can be rewritten as a function of a sequence of

exogenous shocks, and that a ZIRP continues in these periods, we solve this di#erence

equation to obtain,16

A(L)�2 f1t�(bs)�1B(L) {�wit�1�rn
t�1�wp̄H�(w�1) rn

� }, (4.14)

where

A(L)�
�
�
�

1�
�
��
�

1� 1

b
� kw

bs

�
	

�

L� 1

b
L2
�


�
�1,

B(L)�
�
�
�

lb�(k2�l�lb) L�L2
�


�

.

Here, we find the following result,17

(f1t

(g
�0, (4.15)

which means that inflation and the output gap in the small openness case overshoot the

steady-state values more than in the large openness case. Therefore, a ZIRP in the case of small

openness continues longer than that in the case of large openness, i.e.,

0�Tc
l�Tc

s��, (4.16)

16 The definition of A(L) is exactly equivalent to that of (4.13)
17 See Appendix B for more details on the derivation of (4.14) and (4.15)
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where Tc
l and Tc

s indicate the timing to terminate a ZIRP in the case of large and small

openness, respectively.

V� Numerical Example

In this section, we present some quantitative results, in particular, the optimal path of the

short-term nominal interest rates, using the parameter values shown in Table 1. These

parameters are borrowed from Woodford (1999), except the values of rn
� and h. The

steady-state value of the natural rate of interest (rn
�) is calculated under the assumption that

the growth rate of potential output is three percent per year.18 The value of h is set equal to

9 so as to satisfy the sign condition of w�1. As another candidate in the parameters, we set

s equal to 1, which corresponds to a log utility specification, and h�3 reasonably. The value

of a, which is consistent with Buchi and Watanabe (2001) and Gali and Gertler (1999), is set

equal to 0.826 in order to make the value of k equal to that in Jung, et al. (2001). The values

of parameters are adjusted so that the length of a period in our model is interpreted as a

quarter.

Figure 1 shows the responses of endogenous variables to an adverse demand shock to the

natural rate of interest under discretion. The solid line and dashed line represent the impulse

responses in the case of g�0.7 (large openness) and g�0.1 (small openness), respectively. In

the baseline case, shown in this figure, we assume that the initial shock to the natural rate of

interest, +n
0 in equation (2.10), is equal to -0.15, which means a 60 percent decline in the

annualized natural rate of interest. In addition, we assume that the persistence of the shock,

which is represented by r in equation (2.10), is 0.5 per quarter. The path of the natural rate

of interest is shown at the bottom of Figure 1.19 As concretely seen by Figure 1, the short-term

nominal interest rate in the case of large openness is set to zero for the first three periods until

period 2, while, in the case of small openness, it is set to zero for the longer periods by a

quarter. It is noteworthy that, before the natural rate of interest turns positive, the nominal

interest rate is positive, which is in sharp contrast to that in a closed economy. By recalling

equation (3.9), understanding is straightforward.

Figure 2 plots the corresponding impulse response functions of endogenous variables

18 The definition of rn
� is made as rn

t�sEt[(y p
t�1�y p

t)�(gt�1�gt)]�(1�b)/b, where y p
t is the natural rate of

output or potential output and gt is a disturbance that fluctuates independently of changes in the real interest rate.

See Jung et al. (2001) for more details.
19 The path of it is denoted by a sequence of circles in Figure 1.

T67A: 1. P6G6B:I:G V6AJ:H

l�0.048/42

b�0.990

a�0.826

s�0.157

*�0.470

h�9.000

p̄H�0.000

gn
��0.011

[December=>IDIHJ76H=> ?DJGC6A D; :8DCDB>8H+.*



F><. 1. OEI>B6A R:HEDCH:H JC9:G D>H8G:I>DC

2004] I=: O:GD->CI:G:HI-G6I: 7DJC9 6C9 DEI>B6A BDC:I6GN EDA>8N >C 6 HB6AA DE:C :8DCDBN +.+



F><. 2. OEI>B6A R:HEDCH:H JC9:G CDBB>IB:CI

[December=>IDIHJ76H=> ?DJGC6A D; :8DCDB>8H+.,



under commitment.20 The main features in the case of commitment are as follows. First, an

important di#erence from the case of discretion is that a ZIRP is continued longer. This result

comes from a historical dependent property of commitment, which means that a ZIRP is

continued until the cumulative sum of deviation of the short-term real interest rate from the

natural rate of interest is zero. This prolonged ZIRP lowers the long-term interest rate and

heightens expected inflation, thereby stimulating aggregate demand.

20 A key part in computing the commitment solution is how to find the timing to terminate a zero interest rate

policy, T c. We search T c as follows: (1) We set T c at a su$ciently high value, say 50, under which f1T c is

supposed to be negative, and compute the path of the variables; (2) If f1T c is negative, we try T c�49; and

(3) We repeat this until f1T c becomes non-negative.

T67A: 2. V6G>DJH S>O:H D; ICI>I>6A S=D8@

T d

+n
0��0.05 �0.10 �0.15 �0.20 �0.30

g�0.7 1 2 2 3 3

0.5 1 2 2 3 3

0.3 1 2 2 3 3

0.1 1 2 3 3 4

0.0 1 2 3 3 4

T c

+n
0��0.05 �0.10 �0.15 �0.20 �0.30

g�0.7 1 3 4 5 6

0.5 2 3 4 5 6

0.3 2 4 5 5 6

0.1 2 4 5 6 7

0.0 2 4 5 6 7

Note: r�0.5, s�0.157, h�9.

T67A: 3. V6G>DJH P:GH>HI:C8: D; S=D8@

T d

r�0.0 0.1 0.3 0.5 0.7

g�0.7 0 0 1 2 5

0.5 0 0 1 2 5

0.3 0 0 1 2 5

0.1 0 0 1 3 6

0.0 0 0 1 3 6

T c

r�0.0 0.1 0.3 0.5 0.7

g�0.7 1 2 3 4 7

0.5 2 2 3 4 7

0.3 2 2 3 5 8

0.1 2 2 3 5 8

0.0 2 2 4 5 9

Note: +n
0��0.15, s�0.157, h�9.
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Secondly, inflation and the output gap in the case of large openness are more improved for

the first few periods and subsequently less overheated than those in the case of small openness.

By making a closer observation of the NKPC and the IS equation, this result is easily

understood. Note that the larger the degree of openness, the weaker the demand shock to the

natural rate of interest. Then, at the initial period, inflation and the output gap to demand

shock in the case of large openness decrease less than those in the other case. Since a ZIRP

persists for a while and the trade-o# between inflation and the output gap becomes favorable

according to the degree of openness, the dynamic path of inflation and the output gap goes into

reverse at some time or other.

Thirdly, a ZIRP in the case of small openness is continued longer than that in the case of

large openness as under discretion. The short-term nominal interest rate in the case of large

T67A: 4. V6G>DJH S>O:H D; IC>I>6A S=D8@

T d

+n
0��0.05 �0.10 �0.15 �0.20 �0.30

g�0.7 0 0 1 1 2

0.5 0 0 1 1 2

0.3 0 1 1 2 2

0.1 0 1 2 2 3

0.0 0 2 2 3 3

T c

+n
0��0.05 �0.10 �0.15 �0.20 �0.30

g�0.7 0 1 2 3 4

0.5 0 1 2 3 4

0.3 0 2 3 4 5

0.1 1 3 4 5 7

0.0 2 4 5 6 8

Note: r�0.5, s�1, h�3.

T67A: 5. V6G>DJH P:GH>HI:C8: D; S=D8@

T d

r�0.0 0.1 0.3 0.5 0.7

g�0.7 0 0 0 1 2

0.5 0 0 0 1 2

0.3 0 0 0 1 3

0.1 0 0 1 2 4

0.0 0 0 1 2 5

T c

r�0.0 0.1 0.3 0.5 0.7

g�0.7 0 0 1 2 4

0.5 0 1 1 3 4

0.3 1 1 2 3 5

0.1 1 2 2 4 8

0.0 2 2 3 5 10

Note: +n
0��0.15, s�1, h�3.
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openness is set to zero for the first five periods until period 4, while, in the other case, it is set

to zero for the longer periods by a quarter. It is important to note that the cumulative sum of

the deviation of the short-term nominal interest rate from the weighted average of the natural

rate of interest and the world real interest rate becomes proportionately smaller to the degree

of openness through the foreign e#ect. This also justifies the fact that, in the case of large

openness, the short-term nominal interest rate is positive in period 5 when the natural rate of

interest turns positive, which is inconsistent with Jung et al. (2001).

Table 2 presents Td and Tc for various combination of the degree of openness(g) and

initial shock (+n
0) in the case of r�0.5, s�0.157 and h�9. Given the value of g, both Td and

Tc become larger with the absolute value of +n
0. And both Td and Tc become smaller with g,

given the value of +n
0. The response of Td and Tc to g is not as sensitive. In particular, when +n

0

is�0.05,�0.10 or�0.20, Td is constant, independent of the degree of openness. The reason

for the lesser sensitivity to g is that w is small under the parameter configuration of s and h.

Likewise, Table 3 presents Td and Tc for various combination of the degree of openness

(g) and persistence of shock(r) in the case of +n
0��0.15, s�0.157 and h�9. Given the value

of g, both Td and Tc become larger with the value of r. And both Td and Tc become smaller

with g, given the value of r. If a shock to the natural rate of interest is non-persistent, the

responses of Td and Tc to g are insensitive. On the other hand, in the case of large persistence,

the di#erence in the responses is clear to some extent. Table 4 and Table 5 present Td and T
c of r�1 and h�3, ceteris paribus. It is easy to see the same pattern of Td and Tc as Table 2

and Table 3. However, in this case, since the value of w is large, the responses of Td and Tc to

the degree of openness become somewhat distinct, except Td in the case of r�0.0 and 0.1,

shown in Table 5. In particular, if a shock to the natural rate of interest has great persistence

or has such a large negative initial value, the change of Tc to g becomes distinct.

Moreover, we find that the di#erence between Td and Tc becomes proportionately smaller

to the degree of openness from Table 2-5. While the di#erence between Td and Tc is about 0-3

quarters in the case of g�0.7, it ranges between 1 and 4 in the case of g�0.1. Table 4, for

example, shows that as g becomes larger from 0 until 7 in the case of +n
0, the di#erence between

Td and Tc decreases gradually from 5 until 2.

VI� Comparison with Svensson’s Foolproof Way

In this section we discuss the proposal of pegging the exchange rate by Svensson (2000)

within the framework of the present model. Svensson (2000) recommends that a central bank

in a liquidity trap should announce an upward-sloping price-level target path with a small

positive long-run inflation target and, simultaneously, announce that the home currency will be

devalued and that the exchange rate will be pegged to a crawling exchange-rate target until the

price-target path has been reached. That is, the central bank makes a commitment to buy and

sell unlimited amounts of foreign currency at the exchange rate target.

Assuming that uncovered interest parity holds exactly, we can rewrite the proposal of

Svensson (2000) as the following equation,

1

1�g
qt�

1

1�g
Etqt�1�EtpH,t�1�p̄H. (6.1)

2004] I=: O:GD->CI:G:HI-G6I: 7DJC9 6C9 DEI>B6A BDC:I6GN EDA>8N >C 6 HB6AA DE:C :8DCDBN +./



Under the proposal of Svensson (2000), i.e., equation (6.1), we can construct a Lagrangean

for solving an optimization problem and obtain the first-order conditions, which are the same

as those in the case of commitment. By making the same simulation with earlier analysis, we

find that the timing to terminate the ZIRP (Tc) is always zero, independent of the size of the

demand shock. As required by the UIP condition, the nominal interest rate jumps to a positive

level immediately upon the start of the crawling peg, which is the so-called foolproof way. This

result can be easily proved without solving the optimization problem. Combining equation

(6.1) with the UIP condition, we obtain the equation of the form, it�p̄H�i*t�p* (in the

present paper, it�p̄H�rn
�). This implies that, from the initial period, the zero bound on the

nominal interest rate is not binding under the assumption of p̄H�0 and rn
��0.21 Therefore, the

ZIRP is quickly ended and the nominal interest rate remains well in the positive by taking the

crawling peg, which needs its credibility to be absolutely essential.22

VII� Conclusion

To address the question of how long the ZIRP would be continued in the framework of

a small open economy, we solved a central bank’s intertemporal optimization problem. Given

an adverse shock to aggregate demand, we have computed the dynamic path of the short-term

nominal interest rate in both discretion and commitment. We found that the timing to

terminate a ZIRP in the case of large openness would be earlier than that in the case of small

openness. We also found that the economy in the case of large openness would be less

overheated.

Notwithstanding the use of the exchange rate channel of monetary policy, the solution is

that the ZIRP should be continued until the cumulative sum of deviation of the short-term real

interest rate from the natural rate of interest is zero. This shows that the BOJ’s announcement

still lacks the element of history dependence because it focuses only on a forward looking

stance. However, the di#erence between the optimal solution and the BOJ’s policy in

termination timing becomes proportionately smaller to the degree of openness. Nevertheless,

noting that Japan’s exports and imports were about 11 and 10 percent of the GDP in 2001

respectively, the BOJ’s termination timing might be premature, even though it had taken the

exchange rate channel into account.

This paper also suggests that the exchange rate peg enables the central bank to quickly end

the ZIRP and a positive nominal interest rate to be an equilibrium, under the condition that

the credibility of the peg is absolutely established. This implies that, if the termination of the

ZIRP is accompanied by the exchange rate peg, its e#ect is intensified. However, the BOJ was

skeptical about the exchange rate peg in spite of its perception that the transmission mecha-

nism of the interest rate to the exchange rate would be limited.

21 Combining it�p̄H�i*t�p* with the IS equation and establishing a new Lagrangean, we easily find that

Kuhn-Tucker conditions are excluded from the first-order conditions.
22 Svensson (2003) says that the exchange peg can induce private-sector expectations of a higher future price

level because the present exchange rate is directly related to the expected future exchange rate, which is also

related to private-sector expectations of the future price level. Another important thing to note is that the peg may

have a negative e#ect on the trading partners, which must be discussed in more detail.
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A Optimal path under commitment

This section characterizes the optimal path under commitment. We start by characteriz-

ing the path of the endogenous variables for the periods on and after Tc�2. Substituting f1T c�1

�f1T c�2���0 into (4.1) and (4.2) yields a system of a di#erence equation of the form

p̂H,t�f2t�f2t�1�0 (A.1)

lx̂t�kf2t�0. (A.2)

Eliminating x̂t using the AS equation, we have a di#erence equation with respect to p̂H,t and f2t

of the form

�
�
�

p̂H,t�1

f2t

�
�
�
�
�
�
�

b�1(1�k2/l) �b�1k2/l
�1 1

�
�
�

�
�
�

p̂H,t

f2t�1

�
�
�

for t�Tc�2,�, (A.3)

where f2T c�1 is given as an initial condition. This di#erence equation system has one

predetermined variable, f2, and one non-predetermined variable, p̂H, and the two-by-two

matrix on the right-hand side of the equation has two real eigenvalues, which are denoted by

�m1��1 and �m2��1. Since the number of eigenvalues outside the unit circle is equal to the

number of non-predetermined variables, a unique bounded solution exists that converges to the

interior steady-state, whose dynamic path is given by

p̂H,t�(1�m1)f2t�1, (A.4)

f2t�m1f2t�1. (A.5)

We obtain the optimal path of p̂t in the corresponding periods by substituting this solution into

(4.5), and the optimal path of it in the corresponding periods by substituting it into the IS

equation. Equations (4.5)-(4.7) follow from this.

Next, we characterize the path of the endogenous variables for t�0,�,Tc�1. As for

t�0,�,Tc, we substitute it�0 into (2.4) to obtain

x̂t�x̂t�1�
w
s

(p̂H,t�1�p̄H)� 1

s
rn

t�
w�1

s
rn
��0. (A.6)

This equation, and equations (4.1), (4.2), and (2.5) characterize the optimal path for

t�0,�,Tc, which is given by

zt�S
T c

k�t

Q�(k�t�1) X [rn
t rn

� p̄H]	�Q�(T c�t�1) zT c�1, (A.7)

ft�Cft�1�D
�
�
�

S
T c

k�t

Q�(k�t�1) X [rn
t rn

� p̄H]	�Q�(T c�t�1) zT c�1

�
�
�

, (A.8)

where

C

�
�
�

b�1�k(bs)�1w k
(bs)�1w 1

�
�
�

, D

�
�
�

k l
1 0

�
�
�

.

As for t�Tc�1, we substitute f1T c�1�0 into (4.1) and (4.2) to obtain

p̂H,Tc�1�(bs)�1wf1T c�f2T c�1�f2T c�0, (A.9)
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lx̂T c�1�b�1f1T c�kf2T c�1�0. (A.10)

Rearranging (A.9), (A.10), and (2.5) yields

�
�
�

zT c�1

f2T c�1

�
�
�
�F�1GzT c�2�F�1HfT c, (A.11)

where

F�
�
�
��
�

1 �k 0

1 0 1

0 l �k

�
�
��
�

, G�
�
�
��
�

b 0

0 0

0 0

�
�
��
�

, H�
�
�
��
�

0 0

(bs)�1w 1

b�1 0

�
�
��
�

.

B Derivation of (4.14) and (4.15)

The AS equation can be expressed as

p̂H,t�(1�bL�1�b2L�2��) kx̂t (B.1)

where L is the lag operator, p̂H,t�pH,t�pH,� and x̂t�xt�x�. Similarly, we can rewrite the IS

equation as

x̂t�x̂t�1�
	

�
�

w
s



��
�

p̂H,t�1�Lt

�
	

�
�

w
s



��
�

(1�bL�1�b2L�2��) kx̂t�1�Lt , (B.2)

where

Lt�
1

s
{�wit�rn

t�wpH�(w�1) rn
�}.

Rearranging (A.2) yields

C(L) x̂t�Lt , (B.3)

where

C(L)�
�
�
�
1�
	

�
�
1� wk

s



��
�

L�1�
	

�
�

wkb
s



��
�

L�2�
	

�
�

wkb
s



��
�

2

L�3��
�
�
�
.

We substitute (A.3) into (A.1) to obtain

C(L)(1�bL�1) p̂H,t�kLt. (B.4)

Multiplying both sides of (4.12) by C(L)(1�bL�1)L2p̂H,t yields

C(L)(1�bL�1) L2A(L)�1ft�C(L)(1�bL�1) L2 {�kp̂H,t�l(1�L) x̂t }

�{�k2L�l(1�bL�1) L(1�L)}Lt�1

�B(L)Lt�1. (B.5)

Substituting C(L)(1�bL�1) L2�bA(L)�1 into (A.5) yields equation (4.14).

We di#erentiate (4.14) with respect to w to obtain
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� 2k
bs

A(L)�1f1t�1�A(L)�2 (f1t

(w
�(bs)�1B(L)(�it�1�p̄H�rn

�). (B.6)

Rearranging (A.6) yields

(f1t

(w
� 2k

bs
A(L)f1t�1�

1

bs
A(L)2B(L) it�1�

1

bs
A(L)2B(L)(p̄H�rn

�). (B.7)

The first term of RHS in (A.7) is

2k
bs

A(L)f1t�1�
2k
bs

1

1�h1L
(1�h2L�h2L

2��)f1t�1

�� 2k
bs

h�1
1

�
��
�

S
�

i�0

h�j
1 L�j

�
��
�

�
��
�

S
�

i�0

hj
2 Lj
�
��
�

f1t�0. (B.8)

Similarly, the third term of RHS in (A.7) is

1

bs
A(L)2 B(L)(p̄H�rn

�)�� bs

w2 (p̄H�rn
�)�0. (B.9)

Noting both (A.8) and (A.9) have postive values, together with the fact that the second term

of RHS in (A.7) is zero by the ZIRP, we obtain the following result,

(f1t

(w
�0. (B.10)

Noting that (w/(g�0, we obtain

(f1t

(g
� (f1t

(w
(w
(g
�0, (B.11)

which proves (4.15).
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