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Abstract

This paper compares the direct and indirect methods of predicting the velocity of

circulation in the Japanese economy. Forecasts are generated using the autoregressive (AR)

model and Harvey’s structural time series model. In addition to point forecasts, prediction

intervals (calculated by using the recently proposed bootstrap-after-bootstrap) are used as a

criterion for evaluating forecasting accuracy. The results indicate the superiority of the direct

method. While this result is not consistent with the theoretical appeal of the indirect method,

it can be explained on the grounds that the pooling of time series reduces the noise associated

with individual time series.

Key Words: Monetary Velocity, Forecasting, Bootstrapping, Harvey’s Structural Time Series

Modelling
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I . Introduction

The velocity of circulation is a concept that monetary economists have been preoccupied

with for a long time. The variable is important from a theoretical as well as a policy perspective

as it plays a crucial role in the economy (see, for example, Bordo, 1989).

Accurate forecasting of the velocity of circulation (defined as the ratio of nominal output

to the money supply) is useful for policy purposes. One important issue involved in the choice

of a monetary aggregate for policy purposes is the predicability of the relationship between the

� We are grateful to an anonymous referee for some useful comments.
�� The corresponding author. Fax: (03) 9479 1654. E-mail: i.moosa@latrobe.edu.au.

Hitotsubashi Journal of Economics 45 (2004), pp.1-14. � Hitotsubashi University



aggregate and nominal GDP, where the velocity is the link. If we take the ability to achieve a

desired level of the money supply as given, the success in achieving a nominal GDP target is

based on the precision with which velocity can be forecast. Moreover, the stability of the

velocity is crucial for the monetarist model of inflation as portrayed by the quantity theory of

money. For a stable relationship to exist between the general price level and the money supply

per unit of real output, velocity must be stable. Hence, accurate forecasting of velocity is

required to predict (with precision) the inflationary e#ect of a monetary expansion.

Some attempts have been made to devise accurate forecasting models of the velocity of

circulation, invariably using U.S. data. For example, Hein and Veugelers (1983) examined the

predicability of velocity using several time series methods. The results show that velocity

fluctuates randomly about a fixed mean. Hence, they concluded that forecasting velocity using

average values over some extended period of time is as e#ective as any other more sophisti-

cated forecasting technique. They also found that the accuracy of average velocity forecasts

improved with the time horizon over which the forecast is made.

Other studies have been concerned with the issue of forecasting the velocity as a defined

variable, which is a variable that is defined in terms of, or constructed from, other variables.

The velocity is a defined variable because it can be defined in terms of, or calculated from, the

general price level, real output and the money supply. Defined variables can be forecast either

directly, by estimating a model from historical data on the whole series, or indirectly by

estimating separate models for the components. Specifically, indirect forecasting of the velocity

as a defined variable involves the following steps: (i) estimation of models for the price level,

real output and the money supply (the components); (ii) using the estimated model to generate

forecasts for these variables; and (iii) using its definition to generate forecasts for the velocity,

given the forecasts of the components.1 Kang (1986) made such an attempt and found mixed

results for the velocity of circulation as the direct method turned out to be superior according

to some criteria and inferior according to others. He attributed the inconclusiveness of the

results to the U.S. monetary policy shift to monetary targeting in October 1979. Still, he

maintained that the indirect method makes more sense, and should be more powerful.

One may suggest an analytical comparison of the accuracy of direct and indirect methods,

but it should be extremely di$cult or even impossible. This is mainly because the velocity is a

complicated non-linear function of other variables. In the simpler case of aggregation, there

have been theoretical studies that provided the analytical conditions under which one method

performs better than the other. They include Grunfeld and Griliches (1960), Orcutt et al.

(1968), Edwards and Orcutt (1969), Rose (1977), Tiao and Guttman (1980), Wei and

Abraham (1981), Kohn (1982), Lütkepohl (1984) and Clark (2000). However, these condi-

tions are so restrictive and unrealistic that the choice should be made entirely on an empirical

basis.

1 It is arguable that the terms “direct” and “indirect” may be inadequate here. Alternatively, this issue can be

considered in terms of the error term of the predicted values, specifically, whether they are constrained or

unconstrained (or whether they are dependent or independent). In this case, the constraint arises from the need to

satisfy the identity that the logarithm of the velocity is equal to the logarithm of the price level plus the logarithm

of income minus the logarithm of the money supply. Since this identity has to be satisfied, the error term of the

predicted value cannot vary freely. For example, if velocity is stationary, then the three right-hand-side variables

of the identity must be cointegrated in a specific way. Having said that, however, we will still use the terms

“direct” and “indirect”, as is normally done in the literature.
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Whereas the superiority of either method over the other is a purely empirical matter,

indirect forecasting may sound more appealing because definitions can embrace variables of

diverse characters. The components of a defined variable are heterogenous with respect to the

time series properties and the units of measurement. It is the objective of this paper to compare

the ability of the direct and indirect methods to forecast the velocity of circulation in the

Japanese economy.

II . An Informal Examination of the Data

The velocity of circulation is defined as nominal GDP (or real GDP multiplied by the

GDP deflator) divided by the money supply. The data sample, obtained from Datastream,

consists of quarterly observations covering the period 1970:1-1999:1 and four variables: money

supply (M1 and M2), real GDP (Y) and GDP deflator (P). The observations up to 1995:4 are

used for model identification and estimation, and the remaining 13 observations are held out

for forecast accuracy evaluation. We consider M1 and M2 velocities, which are defined as V

1�PY/M1 and V2�PY/M2 respectively. Note that M1, M2, Y and P are transformed into

natural logarithms for testing, estimation and forecasting. However, their forecasts are

transformed back into the original scales to generate indirect forecasts. Figure 1 shows time

plots of the components (M1, M2, Y and P) and the defined variables (V1 and V2). It can be

seen that all component variables show strong upward trends. Furthermore, it appears that the

defined variable V1 shows random fluctuations around the fixed mean, whereas V2 shows a

downward trend.

In the following two sections we present an outline of the methodology employed for

forecasting the two velocities using the direct and indirect methods. Forecasts are generated

based on univariate autoregressive modelling and Harvey’s structural time series modelling. In

the former case, prediction interval (calculated by using the bootstrap-after-bootstrap) is

employed to compare the direct and indirect forecasting methods. Note that we fit the two

models to all time series in levels without considering the presence of unit roots. This modelling

strategy, which is widely used for forecasting time series with a possible unit root, has been

found to provide reasonably accurate forecasts (see, for example, Diebold and Kilian, 2000).

For this reason, we do not attempt to conduct unit root testing in this paper. This may be

justified on the grounds that unit root testing as applied to small samples is subject to

widespread scepticism (see, for example, Rudenbusch, 1993).

III . Methodology: Autoregression and the Bootstrap

Consider an autoregressive (AR) model with a linear time trend of the form

Yt�a0�a1Yt�1�…�apYt�p�ap�1 t�ut (1)

where ut is a white noise process and t�1, …., n. In this paper, we attempt to fit equation (1)

to all time series in levels. This modelling strategy is popularly adopted in practice for

forecasting, although it can yield severely biased parameter estimates in small samples,

especially when the model is a unit root or a near-unit root process. To generate bias-corrected
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point and interval forecasts, we resort to the bootstrap method of Efron and Tibshirani

(1993).

The unknown parameters are estimated using the least-squares (LS) method, such that

the LS estimators are denoted (â0, â1, …, âp, âp�1). The AR order, p, is determined using

Akaike’s (1974) information criterion, combined with the residual diagnostics and over-fitting

tests. The latter include the Ljung-Box test for white noise errors and the over-fitting test on

AR coe$cients using the asymptotic-t test. The time trend coe$cient, ap�1, is restricted to zero

when there is no global trend or when the coe$cient is found to be statistically no di#erent

from zero. The forecasts for Yn�h at time n can be generated using the estimated coe$cients

as

Yn(h)�â0�â1Yn(h�1)�…�âpYn(h�p)�âp�1(n�h), (2)

where Yn( j)�Yn�j for j�0. Suppose that Yt is a defined variable, say Yt�X1t X2t/X3t, which is

the definition of the velocity if X1, X2, and X3 are the price level, GDP and the money supply

respectively. Obviously, Yn(h) is the direct forecast for Yn�h. Equation (1) can be fitted to the

Xit’s, and forecasts can be generated as in (2) to yield X1, n(h), X2, n(h) and X3, n(h). The

indirect forecast for Yn�h is generated as

Zn(h)�X1, n(h)X2, n(h)/ X3, n(h) (3)

We also use interval forecasts to compare the forecasting performance of the direct and

indirect methods. Past studies compared forecast accuracy between the two methods based

only on point forecasts. This can be restrictive, as point forecasts carry no information as to

how much uncertainty is associated with forecasting (Chatfield, 1993). Comparison based on

interval forecasts is more useful because of richer information content. Prediction intervals

based on the direct and indirect methods can be constructed by using the bootstrap method.

Past studies that proposed the use of bootstrap prediction intervals for AR models include,

inter alia, Thombs and Schucany (1990) and Kim (1999). The bootstrap adopted by these

authors generates pseudo-data sets based on the backward AR model associated with the

forward model (1). This procedure is used to incorporate the conditionality of AR forecasts

on past observations into bootstrap replicates.

To construct bias-corrected bootstrap prediction intervals for AR models, we use the

bootstrap-after-bootstrap recently proposed by Kilian (1998a, 1998b). It involves two succes-

sive applications of the standard (non-parametric) bootstrap detailed in Efron and Tibshirani

(1993, p 96). In a recent study, Kim (2001) extended the work of Thombs and Schucany

(1990) and Kim (1999) by applying the bootstrap-after-bootstrap to prediction intervals for

AR models. Kim (2001) simulated a wide range of univariate and bivariate AR models with

or without linear time trend, under normal and non-normal innovations including Student t

and ARCH. It was found that bootstrap-after-bootstrap prediction intervals perform much

better than other asymptotic and standard bootstrap alternatives in small samples, particularly

when the AR model has characteristic roots that are equal or close to 1. The asymptotic

validity of the bootstrap for autoregressive models with a possible unit root can be found in

Inoue and Kilian (2001).

The bootstrap-after-bootstrap prediction intervals for AR forecasts (2) can be con-

structed by following a three-stage procedure (further details can be found in Kim, 2001). In

stage 1, equation (1) is fitted to observed data realisations (Y1, …, Yn) to obtain (â0, â1, …,
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âp, âp�1) and residuals {ût}
n
t�p�1. The LS residuals are centred and scaled as in Thombs and

Schucany (1990). In stage 2, the standard bootstrap for AR models is conducted, using âi’s

and {ût} obtained in stage 1, to estimate bias of parameter estimates denoted as Bias(âi). For

this purpose, the pseudo-data sets are generated as

Y*t�â0�â1Y*t�1�…�âpY*t�p�âp�1 t�u*t (4)

where u*t is a random draw with replacement from {ût}. Adapting the procedure proposed by

Kilian (1998a), the bias-corrected estimators âc
i ’s are calculated using Bias(âi).

Stage 3 is concerned with the generation of the pseudo-data sets using âc
i ’s based on the

backward model as

Y*t�âc
0�âc

1Y*t�1�…�âc
pY*t�p�âc

p�1 t�u*t (5)

where u*t is a random draw with replacement from {ût}. Using this bias-corrected pseudo-data

set, the unknown parameters are estimated using the LS method, which are denoted as (ã0, ã1,

…, ãp, ãp�1). By adapting the bias-correction procedure of Kilian (1998a), biases of ãi’s are

corrected using the Bias(âi’s) as a proxy for Bias(ãi’s). These bias-corrected estimates are

denoted as ãc
i ’s. The bootstrap replicates of forecasts are generated recursively as

Y*n(h)�ãc
0�ãc

1Y*n(h�1)�…�ãc
pY*n(h�p)�ãc

p�1(n�h)�u*n (6)

where Y*n( j)�Yn�j for j�0 and u*n�h is a random draw with replacement from {ût}.

By repeating (6) su$ciently many times, say B times, the bootstrap distribution of Yn(h)

can be obtained and denoted as {Y*n(h; i)}B
i�1. From this distribution, the 100(1�a) per cent

prediction interval for Yn�h based on the direct method can be obtained by resorting to the

percentile method of Efron and Tibshirani (1993), which gives [Y*n(h, t), Y*n(h, 1�t)], where

Y*n(h, t) is the 100tth percentile of the bootstrap distribution {Y*n(h; i)}B
i�1 and t�0.5a. For

example, for 95% prediction interval with a�0.05 and t�0.025, and the end points of the

prediction interval are the 2.5th percentile and 97.5th percentile of the bootstrap distribution.

In (4), (5) and (6), the same set of residuals are resampled for di#erent purposes. The

idea is that the empirical distribution function of the residuals is used as an approximation to

the true distribution of error term. Since the resampling is done with replacement, there is no

loss of e$ciency in approximating the true distribution, even when it is done a number of times

for di#erent purposes.

Recalling that Yt�X1t(X2t/X3t), the bootstrap prediction interval based on the indirect

method can be obtained by applying the above bootstrap procedures to individual Xit’s and

generating bootstrap replicates of indirect forecasts as

{Z*n(h, i)}B
i�1�

�
�
�

X*1, n(h, i)
*
*

X2, n(h, i)

X3, n(h, i)

�
�
�

B

i�1

(7)

The 100(1-a) per cent bootstrap prediction interval for Yn�h based on the indirect method

is [Z*n(h, t), Z*n(h, 1�t)], where Z*n(h, t) is the 100tth percentile of the bootstrap distribution

{Z*n(h, i)}B
i�1.

For bias-corrected point forecasting, the bias-corrected parameter estimators âc
i ’s ob-

tained in stage 2 can be used instead of âi’s in equation (2). This provides direct point

forecasts, generated from parameter estimates adjusted for small sample biases. This idea can
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also be applied to Zn(h) in (3) to obtain bias-corrected indirect point forecasts.

IV . Methodology: Harvey’s Structural Time Series Modelling

The structural time series model of Harvey (1989) is used to decompose an observed time

series into unobserved components. These components can be forecast individually and

combined to produce a forecast for the total series. This model arguably represents the main

features of a time series by considering its various constituent components. The univariate

version of the model may be written as

Yt�mt�ft�gt�et (8)

where Yt is the observed time series, mt is the trend, ft is the cyclical component, gt is the

seasonal component and et is the random component. This model postulates general specific-

ations for the processes generating the components, thus allowing for any possibility such as

the presence of stochastic (rather than deterministic) trend and seasonality. The trend, cyclical

and seasonal components are assumed to be uncorrelated while et is assumed to be white noise.

The trend, which represents the long-term movement in a series, can be represented by

mt�mt�1�bt�1�ht (9)

bt�bt�1�zt (10)

where ht� NID(0, s2
h), and zt� NID(0, s2

z). mt is a random walk with a drift factor, bt, which

follows a first order autoregressive process as represented by equation (10). This process

collapses to a simple random walk with drift if s2
z�0, and to a deterministic linear trend if

s2
h�0 as well. If, on the other hand, s2

h�0 while s2
z�0, the process will have a trend that

changes relatively smoothly.

The cyclical component, which is assumed to be a stationary linear process, may be

represented by

ft�a cos(qt)�b sin(qt) (11)

where t is time and the amplitude of the cycle is given by (a2�b2)0.5. In order to make the cycle

stochastic, the parameters a and b are allowed to evolve over time, while preserving continuity

is achieved by writing down a recursion for constructing f before introducing the stochastic

elements. By introducing disturbances and a damping factor we obtain

ft�r(ft�1 cosq�f*t�1 sinq)�wt (12)

f*t�r(�ft�1 sinq�f*t�1 cosq)�w*t (13)

where f*t appears by construction such that wt and w*t are uncorrelated white noise disturbances

with variances s2
w and s2

w* respectively. The parameters 0�q�p and 0�r�1 are the frequency

of the cycle and the damping factor on the amplitude respectively. The period of the cycle,

which is the time taken by the cycle to go through its complete sequence of values, is 2p/q

(Harvey, 1989, p 38). The stochastic cycle in equations (12) and (13) collapses to AR(1)

process when q�0 or p. In order to make numerical optimisation easier, the constraint s2
w�s2

w*

is imposed.
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While there are a number of di#erent specifications for seasonality (see Harvey, 1989,

Chapter 2), the trigonometric specification is the most preferred. For an even s, where s is the

number of seasons per year (four for quarterly data), the seasonal component is written as

gt�S
s/2

j�1

gj, t (14)

gj, t is given by

gj, t�gj, t�1 cos lj�g*j, t�1 sin lj�kj, t (15)

g*j, t��gj, t�1 sin lj�g*j, t�1 cos lj�k*j, t (16)

with j�1, …, (s/2) �1, lj�2pj/s and

gj, t��gj, t�kj, t, j�s/2 (17)

where kj, t� NID(0, s2
k) and k*j, t� NID(0, s2

k*). Again, the assumption s2
k�s2

k* is imposed. One

advantage of this specification is that it allows for smoother changes in the seasonals.

The extent to which the trend, seasonal and cyclical components evolve over time depends

on the values of s2
h, s2

z, s2
k, s2

w, q and r which are known as the hyperparameters. These

parameters can be estimated by maximum likelihood in the time or frequency domain once the

model has been written in a state space form (Harvey, 1989, Chapter 4). The frequency

domain estimation is much faster but it provides slightly di#erent results because the procedure

is based on an approximation to the frequency domain likelihood function. When these

parameters have been estimated via the Kalman filter, it is possible to obtain estimates of the

unobserved components. For details, see Harvey (1989) and Koopman et al. (1995).

In order to induce more dynamics in the model, which may be necessary to remove serial

correlation, the model is modified by including a lagged dependent variable. Hence, the model

that we estimate takes the form

Yt�mt�ft�gt�dYt�1�et (18)

In equation (18) the components should turn out to be insignificant if the explanatory

variable is capable of fully explaining the variation in the dependent variable, which would

otherwise be explained by the components. This would be the case if the dependent variable is

generated by a pure autoregressive process of order 1.

V . Empirical Results

Table 1 reports selected diagnostics for the estimated AR models of all time series along

with selected diagnostics. The linear time trend is included for M1, Y and V2. AR models of

orders in the range 1-4 are fitted. For all fitted models, the residuals are found to mimic a white

noise process. It can also be seen that the estimated AR coe$cients yield characteristic roots

fairly close to the unit circle for all time series, suggesting the possibility of unit or near-unit

root AR models. The Bera-Jarque (BJ) test for non-normality and the LM test for ARCH

innovations are also reported. It is evident that some time series show strong evidence for

non-normality and conditional heteroskedasticity in their residuals. Simulations conducted by
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Kilian (1998a, 1998b) and Kim (2001) provide evidence suggesting that the bootstrap-after-

bootstrap is a highly e#ective tool for obtaining bias-corrected bootstrap replicates in small

samples, especially for the AR models whose characteristic roots are equal to or close to 1.

Moreover, Kim (2001) found that bootstrap-after-bootstrap prediction intervals perform

reasonably well in the presence of non-normal innovations including ARCH processes.

Now, we turn to the estimation results of the structural time series models. The following

goodness-of-fit and statistical adequacy measures are presented: s̃ is the standard error of the

estimate; H is a heteroskedasticity test statistic calculated as the ratio of the sum of squares of

the last h residuals to that of the first h residuals where h is the closest integer to one third of

the sample size; DW is the Durbin-Watson statistic; Q is the Ljung-Box test statistic for serial

correlation; and R2
s is the modified coe$cient of determination. Finally, two structural stability

test statistics are reported: the CUSUM test (which has a t distribution) and the PF test (which

has a X2 distribution). Further details of these diagnostic tests and goodness-of-fit measures are

given in Harvey (1989) and in Koopman et al. (1995). The results reported in Table 2 show

that the estimated models are well determined in terms of goodness of fit measures and that

they pass the diagnostics tests.

We consider both updated and multi-step forecasts. The updated forecasts are one-step-

ahead forecasts generated by updating the data sample and re-estimating the unknown

coe$cients over the forecast period. To compare the accuracy of point forecasts, we use

cumulative root mean squared error (CRMSE) over the forecast period.

T67A: 1. D>6<CDHI>8H D; I=: AR MD9:AH

p Trend Q(12) BJ LM Root

M1 1 Yes 12.33 (.42) 8.82 8.34 1.06

M2 3 No 11.70 (.47) 1.08 7.08 1.02

Y 4 Yes 19.53 (.08) 50.07 0.11 1.17

P 4 No 9.87 (.62) 1.41 7.17 1.02

V1 3 No 9.13 (.69) 1.77 5.01 1.11

V2 3 Yes 13.93 (.31) 4.65 13.23 1.28

p: the order of the autoregressive process.

Q: the Ljung-Box test statistic for the joint significance of the residual SACF’s up to lag 12. The p-values are

given in parentheses.

LM: test statistic for ARCH(4) errors, which asymptotically follows chi-squared distribution with 4 degrees

of freedom.

BJ: Bera-Jarque test statistic for normality, asymptotically following chi-squared distribution with 2 degrees of

freedom.

“Root” indicates the modulus of the smallest characteristic root from AR coe$cients.

T67A: 2. GDD9C:HH D; F>I M:6HJG:H 6C9 D>6<CDHI>8H D; H6GK:N’H MD9:AH

s̃ H DW Q R2
S CUSUM PF

M1 0.02 0.99 1.99 7.79 0.29 0.067 3.25

M2 0.01 0.74 2.00 13.03 0.77 0.27 9.64

Y 0.01 0.28 2.12 11.69 0.05 �0.98 20.36

P 0.01 0.42 1.90 12.72 0.50 0.03 21.47

V1 0.07 1.09 1.94 4.48 0.01 �0.24 3.67

V2 0.01 0.14 2.00 8.41 0.08 �0.22 14.95

H is distributed as F(33,33), Q as X2(7), CUSUM as t(101) and PF as X2(13).
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Figure 2 reports the case of V1 when forecasts are generated from AR models. It is

evident that V1 can be forecast more accurately by the direct method, for both updated and

multi-step forecasts. In particular, the direct AR forecasts with bias-corrected coe$cients

show the smallest CRMSE values. In the second panel of Figure 2, the 95 per cent

bootstrap-after-bootstrap prediction intervals generated from the direct and indirect methods

are reported. In the case of updated forecasts, prediction intervals from the direct and indirect

methods are quite similar, indicating that the degrees of uncertainty associated with the two

methods are nearly the same. In the case of multi-step forecasts, the prediction intervals from

F><. 4. D>G:8I 6C9 IC9>G:8I FDG:86HIH: H6GK:N’H MD9:A
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the direct method are much narrower than those from the indirect method, indicating that less

uncertainty is associated with the direct method. The evidence from point and interval

forecasting suggests that the direct method provides more accurate forecasts for V1.

Figure 3 reports the case of V2. For updated forecasts, the two methods perform

similarly, although there is tendency for the direct method to perform better. For multi-step

forecasts, it is evident that the direct method performs much better than the direct method. As

before, the gain in accuracy due to bias-correction is evident. In the case of prediction

intervals, those based on the direct method are slightly wider than those based on the indirect

method. For updated forecasts, the mean width of prediction intervals from the direct method

is 0.07, and that from the indirect method is 0.04. For multi-step forecasts, the mean widths

of prediction intervals from the direct and indirect methods are 0.31 and 0.29 respectively.

Finally, Figure 4 compares the CRMSE values of the forecasts for V1 and V2, when

forecasts are generated from Harvey’s model based on the direct and indirect methods. For all

cases, it is evident that the direct method generates more accurate forecasts than the indirect

method. Thus, the evidence points to the superiority of the direct forecasting method.

VI . Conclusion

In this paper we examined the forecastibility of the velocity of circulation in the Japanese

economy by employing two models and two forecasting methods: the direct method and the

indirect method. This choice is available because the velocity is a defined variable, which

means that it can be measured residually from its constituent components.

We compared the accuracy of direct and indirect forecasting of the velocity of circulation

of two monetary aggregates: M1 and M2. For forecasts derived from AR models, we used two

criteria: the cumulative mean square error and the bootstrap prediction intervals. Only the first

criterion was used in conjunction with the forecasts derived from Harvey’s structural time

series model.

In general, the results supported the superiority of the direct method. While these results

are not consistent with the theoretical appeal of the indirect method, they can be justified on

the basis of the following proposition. It is arguable that direct forecasting can be more

accurate if it leads to a reduction in the noise associated with the individual components. After

all, the direct method is based on a definition whereby di#ering time series are pooled, and this

may lead to a smaller random component (to use Harvey’s terminology) than those of the

individual time series.
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