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Abstract

Kandori,Mailath, and Rob (1993) considered a single, homogeneous population of agents

playing a 2-player 2-action, coordination game and found that the risk-dominant equilibrium

is the stochastically stable outcome. However, this robustness does not extend to the case where

there are distinct populations of player 1’s and player 2’s. Here, with some restrictions on the

adjustment dynamics other than the ‘Darwinian property’ we show that the risk-dominant

equilibrium would be the stochastically stable outcome in the “battle of the sexes” game.
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There is some literature on the stochastically stable equilibria in games with best response

learning when the players experiment randomly. Kandori,Mailath and Rob (1993) and Young

(1993) are two well-known studies on this topic.

In particular, Kandori,Mailath, and Rob (1993) showed that the risk-dominant equilib-

rium is the long run equilibrium in a 2-player, 2-action coordination game with a single

homogeneous population, provided that a very weak assumption, named the ‘Darwinian

property’, is satisfied. The coordination game they considered is an important one with many

implications in the real world. However, it is by no means the only game to which their concept

of the long run equilibrium can be applied. The unfortunate fact is that beyond the 2-player,

2-action coordination game with a single homogeneous population, the ‘Darwinian property’

is not strong enough to find out which state will be the long run equilibrium in general.

In this paper we will look at coordination games similar to those of Kandori,Mailath, and

Rob (1993), except for the fact that there are two populations of players instead of one

homogeneous population. We will assume that the players are playing games only with players

from the other population. We can observe this kind of situation in the real world, such as the

case of sellers and buyers in the retail market or the case of males and females when they

interact with each other.
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aid from Korea Foundation for Advanced Studies is gratefully acknowledged.
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These games with two populations of players were mentioned briefly in the last section of

Kandori,Mailath, and Rob (1993), and they gave one example to show the di$culties in

analyzing the two-population case compared with the one homogeneous population case. Here,

we will look more systematically at the di#erences between single- and two-population cases.

In this paper we will mainly concentrate on ‘battle of the sexes’ games, as shown below.

In other words, games such that while coordination is always desired by both populations of

players, each prefers a di#erent coordination equilibrium because their payo#s are asymmetric.

The main result of this paper shows us what conditions are needed for the adjustment

dynamics of the ‘risk-dominant equilibrium’ to be the long run equilibrium in ‘battle of the

sexes’ games. Harsanyi and Selten (1988) defined ‘risk-dominant equilibrium’, and in the game

shown above the equilibrium (A, A) is the risk-dominant equilibrium if a�b, and the

equilibrium (B, B) is the risk-dominant equilibrium if a�b.1 Intuitively, (A, A) is the

risk-dominant equilibrium if player 2 is more strongly attracted to the equilibrium (A, A) than

player 1 is to (B, B).

In the last section, we will examine the case of local interaction, which was introduced in

Ellison (1993). We can see that in local interaction games with two populations, not only is the

convergence to the long run equilibrium much faster, but that only the ‘Darwinian property’

on the deterministic dynamics is enough to guarantee that the risk-dominant equilibrium is the

long run equilibrium.

I . Modeling

We will use basically the same model as Kandori,Mailath, and Rob (1993), except for that

there are two populations, row players (player 1) and column players (player 2). Each

population has N players. The game will be played in discrete times, t�1, 2, 3, …. In each

period every player will choose the strategy she will use and be paired with another randomly

chosen player from the other population, and the two players will get the payo#s decided by

the strategies they already chose.

We will look at 2�2 games and the basic payo# table of the games is as we described in

the introduction.

The scenario here is that while both populations of players want to coordinate, player 2

prefers equilibrium EA in which both players play strategy A, and player 1 prefers equilibrium

EB in which both players play strategy B. These kinds of games are known by the name ‘battle

of the sexes’.

Let z1 denote the number of player 1’s who are playing strategy A, and let z2 denote the

1 Actually, what Harsanyi and Selten defined was that equilibrium (A, A) ‘risk dominates’ equilibrium (B, B) if

a�b. Here, we will just call the equilibrium (A, A) as the ‘risk dominant equilibrium’ in this case.

player 2

player 1

A B
(a�1, b�1)

A 1, a 0, 0

B 0, 0 b, 1
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number of player 2’s who are playing A. Then, the expected payo# of a player i from playing

strategy s when zj of player j’s are playing A, which we will denote as p i
s (zj), is as follows,

p 1
A(z2)�

z2

N
, and p 1

B(z2)�
(N�z2)

N
b.

p 2
A(z1)�

z1

N
a, and p 2

B(z1)�
(N�z1)

N
.

As in Kandori,Mailath, and Rob (1993), we will assume that the players are myopic and

choose the best response against the distribution of the other player’s strategy in the previous

period, i.e. in period t by comparing p i
A(z t�1

j ) and p i
B(z t�1

j ), i�j.

If we denote the deterministic dynamics by

(z t�1
1 , z t�1

2 )�b(z t
1, z t

2)�(b1(z t
1, z t

2), b2(z t
1, z t

2)),

then, the ‘Darwinian property’, (D), means,

(D) sign(bi(z t
1, z t

2)�z t
i )�sign(p i

A(z t
j )�p i

B(z t
j )), i�j, for i�1, 2.

We will assume that the ‘Darwinian’ property is satisfied by the deterministic dynamics

throughout the rest of this paper.

Another thing to note here is that the Darwinian property (D) allows inertia in

adjustment. This means that all the players may not immediately change to the best response,

even though the population is moving in that direction by the assumption of the Darwinian

property (D). Like the Kandori,Mailath, and Rob (1993) model, this inertia helps to justify

the myopic actions of players.

As in Kandori,Mailath, and Rob (1993), we assume that players do not always choose the

best response, but they experiment or mutate with a small probability 2+, and randomly choose

A or B with the probability, +�0 respectively. This probability to experiment, 2+, is same for

all the players and independent across the players and the populations.

Let’s reintroduce Kandori,Mailath, and Rob (1993)’s formal definition of the long run

equilibria.

First, define the transition probability as

pi j k l�Prob(z t�1�(k, l)�z t�(i, j)), where z t�(z t
1, z t

2), 0�i, j, k, l�N, and i, j, k, l are

integers.

P�[ pi j k l] is a Markov matrix and due to the possibility of mutations all elements in the

matrix P are strictly positive.

The stationary distribution m�� is mP�m, where�	{ s�R2 N�2�s i j�0 for i, j�0, 1, …,

N and S i j s i j�1}.

This m exists uniquely satisfying stability and ergodicity.2

Definition: The long run equilibria are the set of states { z�(i, j)�m*i j�0, m*��} where

m* is the limit distribution defined by m*�lim +
0 m(+).

Kandori,Mailath, and Rob (1993) proved the existence of the long run equilibrium in the

single homogeneous population case. Even though there are two populations in our model, it

is basically the same because there are still only a finite number of possible states as the

2 Look at Fudenberg and Levine (1998) Chapter 5 for more about this.
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numbers of players and strategies are finite. Therefore, we omit the proof on the existence of

the long run equilibrium.

Theorem (Kandori,Mailath, and Rob (1993)): The limit distribution m* exists and is

unique.

Once we know the existence of the long run equilibrium, the next question would be how

to find it. For this purpose we will use the radius and coradius concepts of Ellison (2000) in

the next section.

II . Long Run Equilibria in the Battle of Sexes Game

Before we apply the radius and coradius concepts and find the long run equilibrium of the

game, we need to introduce some notations. First, we need to define z*i, (i�1, 2) as the smallest

integer that is not smaller than zz*i when p j
A(zz*i )�p j

B(zz*i ), where i�j. In the game we are

considering now, they are zz*1�
�
��
�

N

1�a

�
��
�

, zz*2�
�
��
�

bN

1�b

�
��
�

.

Obviously, there can be three restpoints of the underlying deterministic paths, (z1, z2)�
(0, 0), (z1, z2)�(N, N), and (z1, z2)�(zz*1, zz*2 ). These are the only possible states that can be the

long run equilibrium.

Here, we will eliminate the possibility that (zz*1, zz*2 ) can be a long run equilibrium by

assuming that it cannot be achieved by fractions of players playing each pure strategy. Then,

we have two candidates for the long run equilibrium, (z1, z2)�(0, 0) and (z1, z2)�(N, N).

Now let’s call the set of states from which the deterministic paths go to EB (where (z1, z2)

�(0, 0)) as ‘the basin of attraction of EB’ and denote it by BB. A similar definition applies to

the basin of attraction of EA (where (z1, z2)�(N, N)) and notation BA.

As we mentioned at the end of the previous section, Ellison (2000) proved that if the

radius of Es is greater than the coradius of Es, then the long run equilibrium of the game

belongs to Es.

We will not repeat the formal definition of radius and coradius here,3 but roughly

speaking, the “radius of Bs” is the least number of mutations necessary to leave Bs when play

begins in Es, and the “coradius of Bs” is the least number of mutations necessary to reach Bs

when play begins in a state from which the largest number of mutations are needed to reach

Bs.

Therefore, in practice we can find the long run equilibrium by comparing the numbers of

mutations to leave and enter each basin of attraction.

In our case of “battle of the sexes”, this is as simple as figuring out how many mutations

will be needed for the state to change from EA to BB and from EB to BA.

Clearly, the reason why it is so simple is that all states belong to either BA or BB. Therefore,

on the radius side, once the play leaves BA, it is automatically in BB. On the coradius side, once

the play begins in BB, one option that is always available is to reach EB following the

deterministic path, then enter BA from EB. As a result, the coradius of BA cannot be bigger than

the number of mutations needed from EB to BA, while clearly it cannot be smaller.

3 For the formal definitions of radius and coradius, see page 23 and 24 of Ellison (2000).
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Now, let’s look at this game using figure 1 (a). The states can be denoted in a 2

-dimensional diagram and the directions of the deterministic paths will be like the arrows in

figure 1 (a). When z2�z*2 , B is the best response for player 1 and z1 decreases. On the other

hand, when z2�z*2 , z1 increases. In the same way, we can see that the direction of the

movement of z2 depends on the comparison of z1 and z*1 .

Before we look at the battle of the sexes game, let’s see the case where the Darwinian

property is strong enough to predict the long run equilibrium.

F><. 1 (a)

F><. 1 (b)
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Proposition 1: In a game with (a�1)(b�1)�0, for any dynamics with the Darwinian

property EA is the long run equilibrium if z*1�z*2�min{N�z*1 , N�z*2 }, and EB is the long run

equilibrium if (N�z*1�1)�(N�z*2�1)�min{ z*1, z*2 }.

The proof is trivial once we realize that z*1�z*2 is the most number of mutations needed for

the state to change from EB to one in BA, while min{N�z*1, N�z*2 } is the least number of

mutations needed for the state to change from EA to one in BB. We can see this in figure 2.

Now let’s go back to battle of the sexes games, where (a�1)(b�1)�0. In general, it is

impossible to figure out the long run equilibrium in battle of the sexes games only with the

assumption of Darwinian property (D) and the reasons are as follows.

In figure 1 (a), (b) we can see why di#erent dynamics would lead to di#erent long run

equilibria in games with two populations of players, unlike games with a single population as

in Kandori,Mailath, and Rob (1993) where any dynamics with the Darwinian property (D)

always lead to the risk-dominant equilibrium in the long run.

In the single population case, all states can be denoted on a line and the sizes of the basins

of attraction can be simply measured and compared by their lengths. Therefore, we can easily

see that the restpoint with the bigger basin of attraction would be the long run equilibrium. In

contrast, here the size of the basin of attraction depends on the adjustment speed of each

population, and in this two dimensional diagram we have no clear standard in comparing the

sizes of the basins of attraction. For example, in figure 1 (a) we cannot see an obvious way to

say whether BB is bigger than BA or the other way around.

Furthermore, if one looks at figure 1 (b), one will notice that a simple comparison of the

sizes of BA and BB is not enough to find the long run equilibria. Even though BA seems bigger

than BB, the deterministic path can make it very easy to get out of BA(i.e. without many

mutations), while it may need more mutations to get out of the seemingly smaller basin of

attraction, BB. This is because of the fact that some deterministic paths in BA approach BB as

F><. 2
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they proceed. Sometimes consecutive small numbers of mutations over several periods may

cost less to exit a basin of attraction than one big number of mutations in just one period. This

possibility makes it more di$cult to analyze the game, because just a simple comparison of the

sizes of the basins of attraction will not be enough in figuring out the long run equilibria.

First, we will see conditions that make one cluster of mutations always need less numbers

of mutations than consecutive clusters of small numbers of mutations. We refer to the

dynamics that satisfy the conditions as dynamics (DA).

Before we define Dynamics (DA), we want to define x1�z1�z*1 and x2�z2�z*2, and xt
i as

xi at time t so that xt�1
i �bi(z t

1, z t
2)�z*i. With a little abuse of notation, the deterministic path

can be alternatively denoted by xt�1
i �bi(xt

1, xt
2).

Dynamics (DA):

�
�

xt�1
i �xt

i�min{ fi(xt
i, xt

�i), N�z*i�xt
i }, if xt

�i�0

�xt
i�max{ fi(xt

i, xt
�i), �z*i�xt

i }, if xt
�i�0

(i�1, 2)

where fi is a function

fi : N*�N*�N*(N*�{�N, �N�1, …, �1, 0, 1, …, N�1, N }) such that

(i) fi(xi, x�i)x�i�0,

(ii) ( fi(xi, x�i)�fi(xi,
�x�i))(x�i��x�i)�0,

(iii) ( fi(xi, x�i)�fi(
�xi, x�i))(xi��xi)�0.

First, condition (i) means that the Dynamics (DA) satisfy the Darwinian property.

Second, at (ii) ‘fi(xi, x�i)� fi(xi,
�x�i) if x�i��x�i’ means roughly that xi moves faster

when x�i is farther away from zero. It can be interpreted that players adjust faster to the best

response when the other population is more concentrated on one strategy, that is, when a

bigger gain in payo# is expected from strategy changes. This is a kind of ‘monotonicity’

assumption because the adjustment speeds are higher when the expected payo# gains from the

adjustment are bigger.

Third, condition (iii) means that the change to the best response happens at a higher

speed when more players have already changed to the best response, provided that the expected

payo# gains from this change are the same. The implication of this condition would be that

players might be slower to change to a new strategy when not many from their population have

changed to the new strategy yet.4

Here, min{ fi(xt
i, xt

�i), N�z*i�xt
i } and max{ fi(xt

i, xt
�i),�z*i�xt

i } are needed to prevent the

cases where z t�1
i �0 or z t�1

i 	N.

The practical reason we need (DA) is that it has the property which guarantees that a

sequence of mutations over several periods will not reduce the number of mutations needed to

exit any basin of attraction compared with simultaneous mutations in just one period. The next

lemma shows this.

Lemma 1: In the case that the deterministic dynamics belong to (DA), for any state

(x0
1, x0

2)
BB if (b1(x0
1, x0

2)�k1, b2(x0
1, x0

2)�k2)
BA, k1, k2�0, then (x0
1�k1, x0

2�k2)
BA.

Proof: Consider two initial states (xt
�, xt

2) and (�xt
1,
�xt

2)�(xt
1�k1, xt

2�k2), k1, k2�0, at

t�t. Then, at t�t�1 we have (xt�1
1 , xt�1

2 )�(xt
1�f1(xt

1, xt
2), xt

2�f2(xt
1, xt

2)) and (�xt�1
1 , �xt�1

2 )�

4 We need this condition mainly for the technical purpose of proving lemma 2. However, we can do without

this condition, if the deterministic dynamics are functions of only the expected payo#s, that is, fi (xi, x�i)�fi (x�i).
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(xt
1�k1�f1(xt

1�k1, xt
2�k2), xt

2�k2�f2(xt
1�k1, xt

2�k2))�(xt
1�k1�f1(xt

1�k1, xt
2), xt

2�k2�f2

(xt
1, xt

2�k2))�(xt
1�f1(xt

1, xt
2), xt

2�f2(xt
1, xt

2)). The last two inequalities came from conditions

(ii) and (iii) of the (DA). This means that xt�1
1 ��xt�1

1 and xt�1
2 ��xt�1

2 . Therefore, we know that

for all t�t�1, xt
i��xt

i, i�1, 2.

If (xt
1, xt

2)�BA, then the deterministic path will ultimately lead (xt
1, xt

2) to (N, N). Because

xt
i��xt

i, for all t�t, i�1, 2, the deterministic path will also lead (�xt
1,
�xt

2) to (N, N), and as a

redult, (�xt
1,
�xt

2)�BA.

Now, we can prove the lemma using this result.

Compare b(x0
1�k1, x0

2�k2)�(x0
1�k1�f1(x0

1�k1, x0
2�k2), x0

2�k2�f2(x0
1�k1, x0

2�k2))

with (x1
1�k1, x1

2�k2). We can see that x0
1�k1�f1(x0

1�k1, x0
2�k2)�x0

1�k1�f1(x0
1, x0

2)�x1
1�k1

and x0
2�k2�f2(x0

1�k1, x0
2�k2)�x0

2�k2�f2(x0
1, x0

2)�x1
2�k2. From what we showed above, if

(x1
1�k1, x1

2�k2)�BA, then (x0
1�k1, x0

2�k2)�BA because b(x0
1�k1, x0

2�k2)�BA. Q.E.D.

We can say the same thing for the case where the state changes from BA to one in BB.

What we can see from lemma 1 is that if k1�k2 mutations are needed for the state to

change from BB to BA after the state changes following the deterministic path from (x0
1, x0

2) to

(x1
1, x1

2), the state can be changed with no more than k1�k2 mutations if it changes from

(x0
1, x0

2) into BA without following the deterministic path any further. Therefore, the least

number of mutations will be needed for the state to change from EB into BA, if this change

happens in one period rather than over many periods.

Now, we are able to decide the long run equilibria by comparing the adjustment speeds of

two populations. What we are saying in the next proposition is that if the payo#s of the game

we are looking at satisfy b�a (i.e. EA is the risk-dominant equilibrium according to Harsanyi

and Selten’s definition), then unless there exists a big di#erence in adjustment speeds between

the two populations, EA will be the long run equilibrium.

Let fi�max{ xi�0, x�i�0 }{� fi(xi, x	i)�}, that is, the maximum distance that the state

may change in one period when xi�0, x	i�0. Also, let’s define l1�
*

* * *
N	z1	f1

z1�z2	(N	z2)
,

l2�
*

* * *z1�z2	(N	z1)

N	z2	f2

, and see the following proposition.

Proposition 2: Consider dynamics (DA) satisfying
f1(x1, x2)

f2(x1, x2)
�l1, for all (x1, x2) such

that x1�0, x2�0, x1�	l1x2�f1, and
f1(x1, x2)

f2(x1, x2)
�l2, for all for all (x1, x2) such that x1�0,

x2�0, x1�	l2(x2	f2). Then, there exists a unique long run equilibrium in games where b�a,

and the unique long run equilibrium is the risk-dominant equilibrium, EA.

Proof: From lemma 1 it is obvious that comparing the minimum mutations needed for the

state to change from EB to a state in BA and those from EA to a state in BB would be enough

to find the long run equilibrium. The state will certainly change from EB to one in BA, if there

occur z*1 mutations in population 1 and z*2 mutations in population 2. The shaded area in figure

3 denotes the set of states that can be reached from EA with no more than z*1�z*2 mutations. The

slope of the dotted line in the area x1�0, x2�0 is l1. Let’s limit our consideration to the right

side of the dotted line, in other words, (x1, x2)’s such that x1�0, x2�0, x1�	l1x2�f1. Here,
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the slope of the deterministic path from these points would be
f1(x1, x2)

f2(x1, x2)
which is the ratio

of two adjustment speeds of the players. If it is
f1(x1, x2)

f2(x1, x2)
�l1, as you can see from figure 3,

the deterministic path from any state in the shaded area would remain on the right side of the

dotted-line and will ultimately end up in the area where x1, x2�0 and go back to EA. The same

logic can be applied to the deterministic paths from points where x1�0, x2�0, x1��l2

(x2�f2), and as a result, all the states in the shaded area where x1�0, x2�0, also belong to BA.

Therefore, it takes more than z*1�z*2 mutations for the state to change from EA to a state in BB,

while at most z*1�z*2 mutations would be enough for the state to change from EB to a state in

BA. As a result, the risk-dominant equilibrium EA is the long run equilibrium. Q.E.D.

The reason that fi(i�1, 2) was introduced is that the deterministic path may lead the state

to change from the area x1�0, x2�0 to x1�0, x2�0, and vice versa. Then, it would be di$cult

to predict where the state will finally end up, in BA or BB. fi(i�1, 2) were introduced so that

we can exclude this possibility. This would not weaken proposition 2 very much if there is

considerable inertia and only very small portions of the populations change their strategies in

each period, that is, if fi(i�1, 2) is small.

One thing to notice here is that proposition 2 is a su$cient condition for EA to be the long

run equilibrium.

To get some sense of this proposition let’s look at a numerical example. Let’s assume that

the population is very large and the inertia is big so that fi(i�1, 2) is trivially small.

A simple calculation shows that, when b�a,

*
* * *

N�z1

z1�z2�(N�z2 )
� a�ab

ab�2b�a
�1 and

*
* * *z1�z2�(N�z1 )

N�z2

� 1�2b�a

a�b
�1.

F><. 3

f1(�)/ f2(�)

a/b�
*

* * *
N�z1�f1

z1�z2�(N�z2 )

c/d�
*

* * *z1�z2�(N�z1 )

N�z2�f2
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If we substitute a, b with numerical values such as a�4, b�2, then the su$cient

condition for EA to be the long run equilibrium is that
f1(x1, x2)

f2(x1, x2)
� 3

2
, when x1�0, x2�0,

x1��
3

2
x2, and

f1(x1, x2)

f2(x1, x2)
� 1

6
, when x1�0, x2�0, x1��

1

6
x2.

Because
f1(x1, x2)

f2(x1, x2)
is the rate of the two populations’ adjustment speeds, the result

means that for EB to be the long run equilibrium there has to be quite a di#erence in the

adjustment speeds between the two populations.

Remark: One thing that should be mentioned here is that Young (1993) also pointed out

that the risk-dominant equilibrium will be the long run equilibrium in two-population games.

However, Young employed an assumption that the players will remember only randomly

chosen K periods out of the most recent N periods. (K�N) This assumption that the players

may remember only the remote past without remembering the most recent past trivializes the

analysis in the following sense.

Let’s assume that in figure 3 the game was at EA at first, then N�z*2�1 number of player

2’s mutate and choose B for one period. Of course, given that all player 1’s are playing A,

player 2’s will go back to play A in the following periods. However, if all player 1’s only

remember the period when many of player 2’s played B, without noticing the fact that they

went back to play A, all player 1’s will change to play B regardless of what player 2’s are

actually doing at the moment. If more than N�z*1�1 player 1’s have changed to play B and

player 2 notices this change, then player 2 will begin to play B until everybody will play (B,B).

Therefore, N�z*2�1 mutations are enough to make the state change from EA to EB, while for

the same reason z*1 mutations are enough for the change from EB to EA. As a result, the

risk-dominant equilibrium EA will be the long run equilibrium.

Even though it is a very clear cut result, one can see that this selective memory assumption

totally trivializes the analysis of the areas where x1�0, x2�0 or x1�0, x2�0.

Therefore, even though Young got a similar result as proposition 2 with di#erent

assumptions, analyzing the game without his specific memory system, as we did in this paper,

is meaningful, especially in the sense that we can get some insight into how the characteristics

of the deterministic path a#ect the long run equilibrium, not to mention the fact that one may

feel it is more realistic.

III . Local Interaction

Here we will again consider the ‘battle of the sexes’ games with N players in each population,

but this time we will assume that the players will be matched only locally.

Let’s assume that players of each population are arrayed in a circle, as in the model in

Ellison (1993), and that the two circles are facing each other and each player is playing only

with her T nearest counterparts with equal probability,
1

T
, for each of them.
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population 1 A A A A A A A

��� ���
population 2 A A A A A A A

(T�3)

Let w1 be the minimum number of A’s played among T nearest players in population 1 in

order to make A the best response for player 2. Also define w2 as the minimum number of B’s

played among T nearest players in population 2 in order to make B the best response for player

1. Clearly, w�is are dependent on the payo#s a, b, and when a, b�1, obviously w1, w2�
1

2
T if

T is even, and w1, w2�
1

2
(T�1) if T is odd. In the case when a�4, b�2, and T�4, it would

be w1�1 and w2�2.

Now, we can prove the following proposition.

Proposition 3: In a local interaction game where N is big enough relative to T, EA will be

the long run equilibrium if w1�w2, and EB will be the long run equilibrium if w1�w2.
5

Proof: (1) We want to show that if w1�w2, for any state there is always a way to reach

(N, N)(�EA) with at most w1�(T�w2) mutations needed. Consider the state where all the

players are playing B. If there occurs a situation where a cluster of neighboring players choose

strategy A such as w1 of player 1’s and T�w2 of player 2’s, the deterministic path will go to

EA. This can be shown because w1 number of player 1’s playing A will make T�w1�1 adjacent

player 2’s choose A, and because from the assumption w1�w2 it is T�w1�1�T�w2, we can

see that the number of player 2’s choosing A will increase. In the same way, (T�w2) number

of player 2’s who are playing A will make w2�1 player 1’s choose A, and as w1�w2�1, the

number of player 1’s playing A will increase. Then, the increased number of players who play

A will make more players choose A, and this will keep going on until EA is reached.

(2) The rest of the proof is the same as Theorem 1 (a) of Ellison (1993).Q.E.D.

One can see that it can be w1�w2, only when b�a, and w1�w2, only when b�a. Since EA

is the risk-dominant equilibrium when b�a, and EB is the risk-dominant equilibrium when

b�a, proposition 3 in essence predicts that the risk-dominant equilibrium will be the long run

equilibrium.

Clearly, one property of the local interaction model is that the convergence time is much

shorter than in the basic model.

However, another good thing about the proposition is that the Darwinian property (D)

is the only restriction needed on the deterministic dynamics.

The fact that we need much fewer restrictions on the dynamics here compared with the

case in section 2 can be understood as follows. In the local interaction model of Ellison (1993)

with a single homogeneous population, the Darwinian property was enough to make the

risk-dominant equilibrium the long run equilibrium, and there were two reasons for this. First,

inside each small neighborhood the risk-dominant equilibrium will be chosen for the same

reason as Kandori,Mailath, and Rob (1993). Second, a cluster of players who choose the

risk-dominant strategy keeps making the nearby players choose the same strategy. Even

5 In the case where w1�w2, there are many equilibria other than EB, EA, and it is di$cult to see what will

happen.
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though both of them work to make the risk-dominant equilibrium the long run equilibrium,

actually the second one was enough to make the risk-dominant equilibrium the long run

equilibrium.

In this two population case the first reason does not hold any more, because, as we saw in

the previous section, the Darwinian property is not strong enough to select the risk-dominant

equilibrium as the long run equilibrium. However, the second reason still holds, because the

local interaction model here is basically the same as that in Ellison, even though in this model

we have two populations of players arrayed in circles rather than one as in Ellison. Therefore,

the Darwinian property should be enough to single out the risk-dominant equilibrium as the

long run equilibrium in this case of local interaction.

We can also easily see that for the same reason that the number of players who play A

keeps expanding, the number of players who play B keeps shrinking when w1�w2.

Moreover, we can see that there would be many equilibrium states if w1�w2. In this case

there are many states where the clusters of players who play A and those of players who play

B neither expand nor shrink, but coexist while maintaining a kind of stalemate.

However, if the payo#s are asymmetric and a�b, then we can always find T large enough

to make w1�w2, and the risk-dominant equilibrium will be the long run equilibrium by

proposition 3.

Following is an example, when T�3, w1�2, and w2�1.

Each of the A’s and B’s denotes a player who plays that strategy, and a bold character

denotes the player who will change strategy in the next period.

t�1

population 1 A A A B B A A

� � �
population 2 A A A B A A A

t�2

population 1 A A B B B A A

� � �
population 2 A A A B B A A

It can be easily seen that once B is used by three neighboring players, it will be spread to

the entire population via the domino-e#ect.

IV . Conclusion

In this paper we have shown that the nice result of Kandori,Mailath, and Rob (1993) can

be extended to two population cases with some restrictions, including the condition that we

called the dynamics DA. The long run equilibrium would be the risk-dominant equilibrium.

In addition, we have shown that in the case of local interaction, the long run equilibrium

will be again the risk dominant equilibrium as long as only the Darwinian property is satisfied.

Also, we could see that the speed of adjustment for each population is important in

deciding the long run equilibrium in these two population cases, unlike the one population

cases.
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