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Abstract 

A minimax solution to Merton's optimal investment/consumption decision problem will 

be derived. The result holds under general assumptions on the unknown drift process and the 

utility functions. 
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I . Introduction 

Various generalizations have been made to the problem of optimal investment/con-

sumption decisions since the first introduction by Merton (1971). One of such ramifications 

is the topic of partial observations where drift of the uncertain asset's price process is 

assumed to be unobservable. Bayesian approach and filtering theory have been the most 
frequently employed tools for analyzing the problem. The literature in this context contains 

Detemple (1986, 1991), Dothan and Feldman (1986), Feldman (1989, 1992), Gennotte 
(1986), and Kuwana (1993, 1995). 

In this article, we take an alternative approach to the problem based on a minimax 

formulation. Unobservable drift is allowed to be more general than is commonly assumed 

in Bayesian situations. Also, arbitrariness from the assumption of prior distribution can 

be avoided. 

We start with a set e of c~dlag functions on IR+ , e is vlewed as the parameter space for 

our minimax analysis. Various information structures can be implemented by restricting 
the parameter space e. For instance, the parameter space {// e e : ,tt = c,Vt e [O, oo)} 

corresponds to the constant unknown drift problem considered in Kuwana (1999). Another 

example is a simple regime switching or a change point problem where the restricted p~~ 

rameter space can be written as {,l e e : ps = a, s e [O,T),/it = p,t e [T, oo), T e R+}' 

By specifying probability measures on these restricted parameter space, decision problems 

fit into the Bayesian framework. 



l 24 HITOTSUBASHI JOURNAL OF ECONOMICS [December 

ll. The Setup 

Let {Zt}t~o be a standard Brownian motion on some probability space (~, {~t }t~o, Po) ' 

Also, Iet {,lt}t~o be adapted c~dl'ag stochastic process on (~, {~t}, Po) which takes values 

in e. Assume that Po(foT /1~ds < oo) = 1}. For a given c~dlag function ~t. e e that is a 

path of the process {,t.}, there is a probability measure Pp Such that 

t
 

Wt Zt - 'td'ds 

is a standard Brownian motion on (~, {~t}t~o, Pu). It should be noted again that //, in 

above integral is not stochastic. 

Consider a financial market where two assets are traded. One is a bond which pays 

constant rate of return r over time without uncertainty. The other is a stock which has 

uncertain price fluctuation. To be more specific, Iet p, be the price of the stock at time s. 

Then ps is assumed to satisfy a stochastic differential equation given by 

(1) dps = dZ /J ds + dW 
ps 

Here we assumed that the volatility parameter is constant over time and equals to I . At 

time t, an investor/consumer is endowed with x units of fortune. Then he continuously 

invests a proportion 7rJ of his wealth in the stock and a proportion I - 7rs in the bond until 

a finite horizon T. Simultaneously, a proportion cs of his wealth is lost due to consumption. 

It is assumed that his trading volume is so small that his strategy does not affect the price 

of assets in the market. For a given path /ls e e and {~s}~adapted decision processes 

{7Ts}t~.~T and {cs}t~s~T' his wealth can be expressed as 

(2) 
dX~"r'c ={(1 - Irs)r - cs}X~'1T'cds + 7rsX~'~'cdZs 

={(//s ~ r)1rs + r - cs}X~"T'cdS + IrsX~'7r'cdWs' 

Define a loss function as 

T f
 

(3) - e~ssU1 (csX~'~,cds) - e~5TU2(X~ 'r c) L(//, {X~"T'c}t~s~T) = 

where 5 is a known positive constant discount rate and Ui : E~+ ~' It,i = 1,2 are twice 

continuously differentiable, strictly concave and strictly increasing utility functions with 

Ut(O) > -oo, i = 1,2. Denote A by the set of Markov strategies (7T,c). For a given c~dlag 

function /1 e e and (7r,c) e A, the risk function associated with the loss function (3) is 

given by 

(4) R(t,x)(,t, Ir, c) = E(,Jt,x) [L(/4, {Xr,'r,c}t~s~T)] ' 

where E(pt,x) [･] denote the P,! expectation wlth the process {XP'~,c}t<a<T startmg at 

Xr,~,c = x. 
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When the path p e e is known, the agent's objective is just to minimize (4), i,e, to 

maximize sum of expected cumulative utility from consumption from time t to T and the 

utility of his expected terminal wealth at time T. If the agent has prior knowledge about 

// with a prior probability measure A, he will minimized the Bayes risk: 

fe R(t,x)(u, 7r c)A(d,l) 

We implement a simple information structure of ,1 by restricting e. Let I be a closed 

interval in IR. Define a parameter subspace 

el = {/1 e e : ps e I Vs e [O T]} 

For example, ,l e e[r+c,oo) ' e > o represents a knowledge that /Is Stays at least e higher 

than the riskless rate. Also, p e eR Contains no information about l/-

Our problem is to find the minimax strategy for the agent, i.e, to find a strategy 
(7r', c') that satisfies 

sup R(t,x)(fl, 7T', c') (5) = inf sup R(t,x)(//, 7T, c) 
peel (,r,c)eA,!eel 

for given t and x. 

Ill:. The Minimax Solution 

In order to obtain the minimax solution for the problem (5), we need a representation 

for the difference of risks. 

Lomma 1. Suppose po,s = pO Is constant over tlme Then for any //1 e e and Markov 
strategy (7r, c), we have 

R(t,x)(//1 ' IT' c) - R(t,x)(uo' 7r, c) 

=: 

(6) 

{,tl x) (llo' 7r, c)ds 
T ('ll's /Jo)1r~,XPl"r'CR(s x' I ") 

Proof. Write 
Rt(t, x) = R(t,x)(p$, 7r, c) 

and 
Xi,* = Xu " 

for i = O, l. Then Ro(t,x) satisfies a Cauchy problem: 

- 
~6tUl(cx) + {r - c + (/lo - r)1r}xaRo + 1~2x2a2Ro _ O aRO 

e~5T 
Ro(T,x) = - U2(x). 

5
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By applying Ito's lemma to Ro(s, X1'J) and using above equation, we have 

aRo(s, Xl's ) d(Ro(s, X1's)) ds + Rox(s, Xl's)dXl" + ~Roxx(s. X1's)1T2X~ sds 
~ s 
= 

~5sUl(csX1's)ds + (/11's ~ Pto)1TsXl'sRox(s, Xl's)ds 

+ ~sXl'sRox(s,XI )dW 

By integrating from t to T and taking expectations of both sides, we have [
 
f
 

T 
E(,Jtlx)[Ro(T, Xl'T) - Ro(t, Xl't)] =E(ptl::) e~6sU1(csXl's)ds 

T 
+ (fll" //o)7rsXl sRox(s Xl s)ds 

Note that 

f
 

E(,,tlt) [RO(T, Xl'T) - Ro(t, Xl't) - e~5sU1(csXl's)dsj = R1(t, x) - Ro(t, x) 

This completes the proof. Cl 

An expression of the optimal strategy when !1 is a known constant was given by 
Karatzas, Lehoczky and Shreve (1987). In this situation, the optimal Markov investment 

strategy 7r$(s, x) is explicitly given by 

- 

y=~(s,x) (8) 7T (s x) = P-r a7t(s,y) 
x ay 

where 
oo T-t 

al(z, 6; y)d6 + a2(z, T - t; y) 

-oo 

[_ii] a,(z,O,y) erz (r+T 12)ol (ev (u )z+(6 T r 12+,!12)o) . I , i = 1,2, z
 1/~~F~ exp 26 

and It' i = 1, 2 are inverse functions of Ui,i = 1, 2 respectively. Also, K;(s, x) is defined as 

the inverse function of 7t(s,y) w.r.t. y, i.e. K satisfies 

7t(s,K(s,x)) = x, x > o 

It is not hard to see that a~~~2yv'y is negatrve smce It't 1 2 are stnctly decreasmg Now 

we present the main result. 
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Proposition 2. For a given closed interval I in I~, Iet ,f = arg infmel Im - rl･ Let (7r', c') 
be the optimal strategyfor a constant drift p' . Then (7r', c') is the unique minimax strategy 

for the parameter space el' In other words, for any (7T, c) e A such that (7r,c) ~ (7r', c'), ~ 

wle have 
sup R(t,x)(//, 7r',c') < sup R(t,::)(,l, 7T,c). 

peel pee, 
Proof. When /f = r, it follows from the expression (8) that lr' = O. In this case, the 
optimal wealth process {Xt,"'," } does not depend on ft. Thus R(t,.)(/1, 7f , c') is constant 

over all // e e' (7T',c') is clearly the unique Bayes decision for unit mass prior at r. Hence 

it is the unique minimax decision. 

Suppose ,f > r. Then by Lemma l, for any // e el, 

R(t,x)(lJ;' Ir$ , C$) - R(t,x) (If ' 7T" C$) 

E(pt,!:) [f (slXr 
t
T
 

 
(
'
t
s
 
~
 
I
f
 
)
7
r
'
 
(
S
'
 
X
t
"
'
r
"
c
'
 
)
X
t
'
~
t
 
,
c
'
 
R
 

x 

tt " (fftlrt,c$ dS )
 

Without loss of generality, we may assume that Ut(x) > O, i = 1,2 by offsetting -U$(O) 
when Ut(O) < O. Therefore, Ir'xR(st,:e)(/f, 7f, c') is nonpositive. Since ,ts ~ /J' ~ O, we have 

R(t,x)(p lr , , ' ') ~ R(t,x)(/i,7r',c') 

for all fl e el' Here the equality is achieved only if p = ,l a.e. Since (7r', c') is the unique 

Bayes for a unit mass prior at /f, for any (7T,c) ~ (7r', c') we have 

sup R(t,x)(,l, Ir', c$) ~ R(t,a)(/!, 7T$'c$) < R(t,x)(/f, 7r, c) ~ 

'leel 

sup R(t,x)(/f , Ir] c). 

peel 

Hence (7r', c$ ) is the unique minimax strategy. The proof when ,! < r is similar. D 
Proposition 2 asserts that if no information is available, a minimax investor never 

invests to the uncertain asset no matter how less risk aversive he might be. This resuit 

seems somewhat conservative. It is conjectured that this phenomenon will go away by 
taking the agent's regret into consideration. 
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