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A SIMPLE APPROACH TO THE STATISTICAL INFERENCE 
IN LlNEAR TIME SERIES MODELS 

WHICH MAY HAVE SOME UNlT ROOTS * 

TAKU YAMAMOTO 

A bstract 

This paper proposes a simple method to circumvent the difficulties encoutered in the 

statistical inference for linear time series models which may have some unit roots. Specifically, 

it proposes adding certain artificial regressors in the regression model in addition to the original 

ones. The method can be applied without a priori knowledge of whether the true process is 

stationary, integrated, or cointegrated. It is shown that the liner (or non-linear) restrictions of 

coefficient estimates have an asymptotically chi-square distribution. Thus, by using this method, 

the testing problem can be handled as a standard asymptotic theory. The power of the test of 

the proposed method is rather low in the small sample, but the simplicity of the method may be 

proved to be useful in situations where the conventional approach is difficult to apply. Thus, it 

may be useful for analysis in financial market where a large body of data is available. 

1. Introduction 

Linear time series models with some unit roots have been a focus of econometrics last ten 

years. Most notably, various tests of unit root and tests of cointegrations have been proposed. 

Among them are Fuller ( 1976), Dickey and Fuller ( 1979), Phillips (1987), Engle and Granger 

(1987), and Johansen (1991). Significant general results have been derived on the statistical 

inference for linear time series models by Phillips and Durlauf ( 1988), Park and Phillips 

(1989), and Sims, Stock and Watson (1990, hereafter SSW). Recently, extensive results have 

been given by Toda and Phillips ( 1993) on the Granger causality in vector autoregressive 

(VAR) models. However, as is well known, there are several difficulties in the statistical 

inference for these models. Firstly, the asymptotic distribution of the ordinary least squares 

(OLS) estimator may be non-normal. Secondly, the pretests such as tests for unit roots and/ 

or cointegrations are necessary for determining a proper representation of the model. 

There have been a few attempts to obtain a standard asymptotic theory for time series 

models with unit roots. Choi ( 1993) has derived asymptotic normality of the OLS estimator in 

univariate autoregressive models. In particular, he has shown that the usual t test statistic for 

* The earlier version of the paper was presented at Econometrics Conference at Hitotsubashi University and 

the Annua] Meeting of the Japan Association of Economics and Econometrics. I am grateful to Peter Phillips, 
Mitsuhiro Odaki, Katsuto Tanaka, Hiro Toda for valuable comments on earlier drafts. The research reported here 

was financially supported by Nihon Keizai Kenkyu Shorei Zaidan. 
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unit root is asymptotically normal, if an extra lagged variable is added in the regression model. 

Along the same line, Toda and Yamamoto ( 1995) have shown that the usual Wald test statistic 

of general non-linear restrictions for a VAR model is asymptoticauy chi-square when extra 

lagged variables are added in the model. Lutkephol and Reimers (1992) has shown, based 

upon the result in Toda and Phillips ( 1993), that the Wald statistic for testing the Granger 

causality in a cointegrated bivariate VAR model is always asymptotically chi-square. Phillips 

(1995) has recently proposed a powerful method which can induce the Wald statistic whose 

limit distribution is a linear combination of independent chi-square variates, even when the 

restriction involves coefficients of both stationary and non-stationary variables. 

However, when a restriction involves the coefficients of a constant term, the above 

approaches are not valid, since the limiting distribution of the estimated coefficients of a 

con.stant term is non-normal, even if extra lagged variables are added. In such a case, the usual 

Wald test statistic is no longer asymptotically chi-square, even if extra lagged variables are 

added. For example, we cannot make the F-type tests for unit roots in Hasza and Fuller ( 1979) 

or Dickey and Fuller ( 198 1) to be asymptotically chi-square, by adding extra lagged variables 

Further, as is well known, the convergence speed of the estimated coefficients of a constant 

term is generally slower than those of lagged endogenous variables. It means the second 

difficulty. As Theorem 2 of SSW shows, if a single linear or non-linear restriction involves 

estimated coefficients that exhibit different rates of convergence, then the estimated coefficients 

with the slowest rate of convergence will dominate the test statistic. A Typical example of such 

restriction occurs in the test of the present value model, such as Ito ( 1986) and Campbell and 

Shiller (1987). They escaped the dtibculy by assuming stationarity or a certain type of 

cointegration for the process. The different rates of convergence of estimated coefficients also 

bothers, for example, when constructing the asymptotic confidence interval of prediction, or 

when conducting the usual F type test of structural change. 

In this paper, we propose a simple method to circumvent the above difficulties. We 

propose to add a slightly disturbed explanatory variable for each original explanatory variable 

including a constant term. Thus, we shall have a regression model that has twice as many 

explanatory variables as the original one. It can be applied to an integrated, a cointegrated or 

a stationary model without any a priori knowledge. The usual Wald statistic is shown to valid 

in the sense it has a chi-square distribution asymptotically. Thus, by using the method, we can 

deal with the testing problem or the construction of prediction interval as if the process were 

purely stationary. 

The obvious merit of the method proposed here is its simplicity. However, as shown in 

section 3, its size of the test is slightly distorted and its power of the test is rather low in the 

small sample. Thus, the method is proposed not as an alternative to conventional tests for unit 

roots or cointegrations whose critical values have already been tabulated, but as tests of more 

complicated restrictions that involve coefficients of a constant term and whose critical values 

have not been tabulated. 

In section 2, we propose a simple transformation of the model by which the usual Wald 

test statistic converges to a chi-square asymptotically. In section 3, we present the results of 

some experiments that exhibit the small sample properties of the method. The concluding 

comments are given in section 4, 
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2. Statistical Inference in a Multivariate Model 

We shall consider the Wald test of linear restrictions in a multivariate time series model. 

Let n variate process {Xt = [x,t]} be generated by 

Xt = 60 + 6]t + (,)t (t = O, 1, 2, ...), (2.1) 

where 60 = [6,0] and 61 = [6,1] are coefficient vectors, and {(Dt = [(,),t]} is a p-th order 

autoregressive process 

a)t = ~P = I Ak(L)t_k + nt' (2.2) 

whereAk = [a,jk] (k = 1, 2, ...,p) are coefficient matrices, and n = [n,t] (t = l, 2, .... T) are 

independently identically distributed with meam zero and covariance matrix ~ = [U,j] such 
that E I n,t 1 2+6 < co for some 6 > O. We assume thatp is known a priori andA (z) = O Iie either 

on or outside a unit circle whereA (z) = I~ - ~~ = I Akzk. That is, each variable of {(L)t} may be 

stationary or non-stationary with a unit root. There may be some cointegrations among 
variables. Substituting (L)t = Xt - 60 ~ 61 t into (2.2), we get 

Xt = ~~= I AkXt_k + ro + rlt + nt, (2.3) 
where ro = [rio] = A (1)60 ~ A'(1)61 and rl = [r, l] = A (1)61 are coefficient vectors. 

In what follows, it is convenient to discuss using the following streamlined notation. We 

express the model (2.3) as 

Xt = A+ 'Yt+_ I + n, (2.4) 
where Yt+ I = [Xf-1'X;_2. Xt p, I t] andA+'= [Al'A2, "',Ap ro rl] [~+ J rs the n 
X (np + 2) coefficient matrix, and p, is the coefficient vector of the i-th equation, i,e., the i-th 

row ofA+ I We can rewrite (2.4) in an alternative formula as 

whereX = [Xp+ l.Xp+2, "',XT]" Ytl = [Yp+, Yp+ l, "'. Y~_ l]', and n [np+ l, np+2, "', nT]'. 

In a single equation formula, we get 

~ i + , 
where, s = Vec(X), p+ = Vec(A +), u = Vec(n), R is the kronecker product, and Vec( ' ) is 

the column stacking operator. 

Now consider the test of a general linear hypothesis given as follows: 

Ho: R+p+ = r, vs (2.7) 
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H R+p+ ~ r, 

where R+ is the m x 2n(np + 2) restriction matrix with rank(R +) = m, and r is the m x 1 

vector. 

In the traditional approach, first, the rank of cointegration space is evaluated, and then 

statistical inference is made upon the appropriate model, such as the error-correction model, 

as in Johansen ( 1991). Other approaches, such as Phillips (1991), are also available. In what 

follows, we propose an alternative approach that is based upon the following augmented 

model: 

X, = ~P IAkK, +r + r t + ~ IAk*X,* +r* 1* +r*t* +n,, (2.8) 

where X,*_k =X,_k + T-Aek, (k = 1. 2, ..., p), l* = I + T-leob and t* = t + T-Aep+ l, are 

added regressors, 80, and ep + l, are scalar random variables and ek, = [ekj,] (k = 1, 2, .. ., p) are 

n x I vectors of random variables which are independently identically distributed with mean 
zero and covariance matrix C)k = diag {(D~,i} (k = O, 1, 2, ..., p + l) such that leot 1 2+6 < oo, 

lep+1tl2+6 < co and lekj,12+6 < oo for some 6 > O, and ro*, rt, andAk* (k = 1, 2, ..., p) are 

zero. We assume that O < A < l/2. The added regressorsX,*_k (k = 1. 2, . ..,p), l*, and t* are 

artificial ones which are constructed by adding random variates to the original regressors. In 

practice, we may obtain these random variates by drawing computer generated pseudo normal 

numbers. 

The augmented model (2.8) is compactly expressed as 

X* =A'Y, _ I + n,, (2.9) 
where Y, I [Y,+ i Y* I] Y, I = Y*+_1 + T-a5*, where e, = [e;,, e~, "' ' , ep,, e(t, ep+1']' is 

(np + 2) x I vector of random variables which are independently identically distributed as 

N(O, V++) and V++ =diag {(Dk}, A'= [A+'. A*'], and A*' [A A2 . Ap, To*, rt] = 
[p,*'] where ~,*' is the i-th row ofA *' 

We can rewrite (2.9) in an alternative formula as 

where Y_1 = [Yp Yp + l, , YT- l]' ' In a single equation formula, we get 

s = [I~ R Y_l] p + u, (2.11) 
where p = Vec(A). We have p+ = [I~ ~) (I~p + 2. O)] p. The OLS estimator ~ of p is given by 

~ = [I~ R (Y_1 Y_1)-1 Y_l] s (2.12) 
The general linear hypothesis in (2.7) is written in terms of the coefficient vector p of the 

augmented model as follows: 
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Hl: Rp~r. 

where R = R+ [I~ ~ (I~p +2, O)] is the m x 2n(np +2) restriction matrix which has zeroS for 

the coefficients of the added regressors. Obviously, we have Rp = R + p + 

Consider the following transformation 

where 

D Ir'p+2 Inp+2 [ -* J' 
and D * is an appropriate rotation matrix that separates different stochastic order components 

See, for example, (2.7) of SSW. Then, we have 

Z T-1 e + = t] [ t. Zt Z* D* Yt+ 

Correspondingly, the model (2.9) is represented as 

Xt = A'Zt _ I + nt' (2.16) 
= [6: l. 6; = [6,+', 6i*'] is a coefficient vector of the i-th equation of the where A'=A~)-l 

above model, and 6,+ and 6,* are both (np + 2) x I vectors. In a single equation formula, the 

above model is written, instead of (2. 1 1), as 

s = [I~ R Z-I] 6 + u, (2.17) 
where Z_1 = [Zp Zp+ i, "', Zr-l]' , [I~ R Z_]] = [I~ R Y_]][I~ R D'] = [I~ R Y_lD'], 

6 = Vec(A) = [I~ ~ D'-1] p. For the limit of the moment matrix, we have 

r~lZL]Z_ r ~> V V++ (2.18) l -1 =[ **]' O
 

O V 
where the symbol ~ indicates convergence in distribution, V+ + is defined in (2.9) and V* * is 

the Op(1) square matrix of dimension np + 2, and 

Tv2 - a I~p + 2 O 

r - O r* 
and r* is an appropriate scaling matrix with r~l 

matrix rT in p. 121 of SSW. 

Let us define 

= Op(T-v2). See, for example the scaling 
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　　　　δ十＝［∫、⑭（1。。。。，0）1δ＝1δプ，δチ’，…，㌻十’1’，・・d　　　　　（2．19）

　　　　δ＊＝［∫、⑭（0，1、ρ。。）1δ＝［δヂ，δチ’，…，劣ポr．

Letδbe　the　OLS　estimator　ofδ．Since7in（2．18）is　b1ock－diagom1，it　is　easi1y　seen　t11at

　　　　r1／2■λ（δ十一δ十）＝今jV（O，Σ⑭γ；㌧）．　　　　　　　　　　　　　　　（2．20）

Sinceβ十＝【1、⑳（∫．ρ十。，0）］βandβ＝［1’、⑭1）’］δ，wehave

　　　　β十＝【1、⑳（∫、p＋2，O）H1蜆⑳一0’】δ＝［1、⑳（1蜆ρ十2，一D＊’）］δ

　　　　　　＝δ十十（1。⑳が’）δ＊　　　　　　　　　　　　（2．21）

Since，as　was　shown　by　SSW，δホーδ＊＝0ρ（r■1），we　ha▽e

　　　　τ1”一λ（β十一β十）＝τ1／2■λ［（δ十一δ十）十（1咀⑭D‡’）（δ‡一δ非）】

　　　　　　　　　　　　　＝「1ノ1■λ（δ十■δ十）十0p（1）　　　　　　　　　　　　　　　　　　（2．22）

　　　　　　　　　　　　　＝〉W（O，Σ⑳γ；㌧）．

Now　consider　the　usual　Wald　test　statistic　for　the　hypotheses　in（2．13）：

　　　　　〃＝（Rβ一・）’［R｛Σ⑳（γ一1γ一1）■’lR’1■1（Rβ一・），　　　　（2．23）

whe・・Σ＝Σ二。十1（X二一■γ一1）（X、一ノ’巧一1）’／｛lr一ρ一2（岬十2）｝．Sin㏄Rβ＝R＋β十，

we　have　from（2．22）

　　　　τ1／2■λR（β一β）＝T1／2一λR＋（β十一β十）

　　　　　　　　　　　　　：⇒」V（0，沢十（Σ⑭γ；㌔）R＋’）．　　　　　　　　　　　　　　　　（2．24）

0n　the　ot1ler　hand，for　the　middle　bmcket　of　the　right　hand　side　in（2．23），we　have，by　Z‘＝

1）γ‘，

　　　　　r一｛1－2λ）［R｛Σ⑳D’（Σ二。十1Dγ一Iプ＿1D’）■11）｝R’】一1

　　　　　　　　　＝［τ’■2λR｛Σ⑳D’ヅ’γ（Σ二。十1Z，＿1Z；一1）’1η・一1〃｝R’］一’　（2．25）

　　　　　　　　　＝［T1－2λR｛Σ⑭D’γ■’（γ■1Σ二、十1Z、＿lZ；＿1γ■1）■’ヅ’1）｝R’］一’．

Noting（2．18）and　R＝R＋［1”⑳（1I皿ρ十2，0）】，we　have

　　　　　［r1－2λR｛Σ⑧D’γ一1（γ一’Σ二、、1Z，＿1Z；一1γ■’）一1γ一11）｝パ】■】

　　　　　　　　＝1R＋1Σ⑳r’■2λ（∫、。。。，0）1）’γ一1（711＋・ρ（1））γ一11〕（1州，O）’lR＋’1■1

　　　　　　　　＝圧R＋｛Σ⑳（1’。p＋2，τ1／2’λ1）＊’γ；1）（γ■1＋oρ（1））　　　　　　　　　　　（2．26）

　　　　　　　　　　　　・（1、ρ。。，τ1／2■λ1）”γ王’）’｝R＋’1■’

　　　　　　　　＝［R＋｛Σ⑳（γ；㌧十rl■以（D”γ享1γ；』γ；11）＊）十〇ρ（1）｝R＋’】■1

　　　　　　　　→［1～十｛Σ⑳γ；㌧LR＋’】■1，
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where the symbol - indicates convergence in probability, and the last relation comes from T~l 

= Op (T-i/2). Then, from (2.24) and (2.26), we have that W converges to a chi-square 

variable with m degrees of freedom: 

Example: We shall illustrate the merit of the proposed method in the following example. 
Consider a scalar process {x,} given by 

xt = ro + aixt-1 + rlt + nt (t = O, l, 2, ･･･), (2.28) 

which is a scalar version of (2.3) withp = l. In this case, we have ro = (1 - a]) 60 + ai 6i and 

rl = (1- ai)61' When lal I < l, {xt} is a stationary process around a linear trend 60 + 6lt. 

When al = 1, the model is reduced toxt = 61 + alxt -] + n', that is, {xt} is a random walk with 

drift 61' Assume that we know a priori that 60 = O for simplicity, and suppose that we are 

interested in the slope of a linear trend. In particular, suppose that we are interested in testing 

for 61 = d, i.e., the slope of a linear trend being d (d ~ O). It should be noted that here we are 

not interested in whether the process is difference stationary or trend stationary, i.e. al = I or 

not. When 60 = O, we have that ro = 61 al and ro + rl = ai 61 + (1 - al) 61 = 61' Thus, the null 

and the alternative hypotheses are formally given as 

Ho: ro ~ da] = O and ro + rl = d (2.29) 
Hl: ro ~dai ~ O and/or ro + rl ~ d 

The Wald statistic proposed in the paper can be derived from the OLS estimates of the 

following augmented model: 

xt = 7: + alxt + r t + r*1* + atx:*-1 + rt t* + n,. (2.30) 

In the conventional approach, we first test for a unit root in (2.28). When an appropriate 

unit root test is rejected, the Wald test for (2.29) is constructed based upon the OLS estimates 

of (2.28). It has the standard distribution, i.e. a chi-square distribution. When the unit root test 

is accepted, we test for 

Hl: r0~d 

based upon the OLS estimates of (2.28). In this case, Tl/2 (~o ~ ro) has the non-standard 

distribution. Altematively, we may test for the hypotheses (2.3 l) based upon OLS estimates of 

the following regression model: 

xt = r + alx,-1 + nt (t = O, l, 2, .･･). 

In this case, Tl/2 (~0 ~ To) has the standard distribution, i.e., a normal distribution. See, for 

example, West ( 1988). The obvious drawback of the eonventional approach is that it requires 



94 HITOTSUBASHI JOURNAL OF ECONOMICS [December 
a pretest for a unit root, whearas the proposed method can be applied without paying any 

attention whether al = I or not, and thus is free of error in the pretest. 

Several remarks are in order: 

Remark 1: We may remark on the range of A. If A ~~ 1/2, we have ~t = 2 (T~~5,t)2 = T-2~ 
~tT=2ei2t = Op (1) (i = O, l, ..., P, P + 1). Then, the central limit theory in (2.20) does not 

work. On the other hand, if ~ ~ O, (2.22) and (2.26) do not hold. Namely, terms involving 
(6~ * - 6*) and V* * in (2.22) and (2.26) are not smaller order of convergence. 

Remark 2: If a restriction involves only coefficients of lagged variables Xt _k (k = l, 2, .. ., p), 

we just need to add augmented variables to lagged variables as a special case of (2.8) as 

follows: 

X,=~P=1AkX, +r +r t+~ I Ak (X, k+T ekt) +n (2.32) 

However, for the present case, the following regression model has been recently proposed by 

Toda and Yamamoto (1995), which includes only an extra lagged variable vector to (2.3): 

X, = ~P=1 AkX, +Ap+1X, p +r + r t + n (2.33) 

In the paper, it was shown that the conventional Wald statistic is asymptotically chi-square. 

This approach is better than one proposed in this paper, since it saves a number of parameters. 

Further, the convergence speed of this approach is Op (T-1/2), while that of the present paper 

is Op (T-(v2-1)). It means that it has higher efficiency in a large sample. 

If a restriction involves coefficients of lagged variables and a trend variable but not a 

constant term, we may also estimate the following regression model as an extension of the 

above:. 

X,=~Pk=iAkX, +Ap+iX, p I +r +r t+r (t+e) +n (2.34) 

where e, is independently identically distributed as similarly defined in (2.8) and is independent 

of n,. An important point here is that, if the restriction does not involve ro, we can easily obtain 

the estimates of other parameters whose convergence speed is Op (T-in). 

Remark 3: The essential feature of the proposed is to create estimates which he the same and 

slow convergence speed. As is clear from the above remark, use of T-ae, in augmented 

regressors are necessary, when a restriction involves a coeificient of a constant term. This is 

because its OLS estimate is non-normal and its convergence speed is Op (T-1/2), when there is 

a unit root in the process. In order to get normality, we need estimates which have a slower 

convergence speed than Op (T-v2). It implies that the method proposed in this paper is less 

efficient than the conventional approach, and consequently posseses lower power of the test. 

Thus, merit of the present method is its simplicity and is free form possible errors in pretests 

at sacrifice of its efficiency. 

Remark 4: The method proposed in this paper can be easily generalized to higher order unit 

roots and/or higher trend models. It can be also applied to models with exogenous variables. 

In such cases, it is generally hard to apply the conventional inference strategy, since there can 

be too many possible parameter values, and it is difficult to obtain necessary critical values by 

simulations. 
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Remark 5: Adding one augmented variable to each exising regressor may easily be a cause of 

a severe multicollinearity. That may occur in a small sample, but is unlikely in a moderate 

sample, since an added disturbance vector et has diagonal covariance matrix V++. 

Remark 6: The diagonal covariance matrix of et also implies diagonality of the covariance 
matrix of the OLS estimates ~t of the i-th equation. Thus, inference can be further simplified, 

if we fix variance of a random number to a specific value, say, c,k, = c2 for all k and i. In this 

case, we have V++ = c21~p +2. The statistical inference is quite simplified, since the asympotic 

covariance matrix of~+ in (2.22) is simplified to 

~ R V+~ = c~2~ R I~p+2. (2.35) 
Remark 7: Some may be bothered by using the computer generated artificial variates. 

However, the essential properties needed for the added e,t (i = O, 1, ･･ ･, p, p + l) are that they 

are stationary with mean zero and uncorrelated with nt' Thus, for example, for practical 

applications, we may obtain e,t as eit = A2X, _i_i (i = O, 1, ･･･, p, p + l). In such a case, V++ 

will not be diagonal. But it will not pose any problem. 

3. Some Experiments 

In this section, we show some experimental results which exhibit finite sample properties 

of the proposed Wald statistic (2.23) in a single equation model. Here, we are interested in its 

speed of convergence to a chi-square distribution and in its empirical size and power. All the 

experiments were executed using GAUSS version 3.0. 

3,1 Unit Root Test 
Design ofthe Experiment: While the proposed method is not suitable for testing a unit root, 

it is examined for the sake of comparison of the empirical size and power of the test. We 

generate data from the following simplest random walk model: 

xt = xt -1 + nt, (3' 1) 
where nl is independently identically distributed as N (O, 1). The regression model we consider 

for testing for a unit root is given by 

xt = ro + alxt-1 + rl t + nt' (3'2) 
The true value ofp+' = [ro, al, rl] is [O, l, O]. The null and the alternative hypotheses for the 

test are formally given as 

Ho: p+'= [O, 1, O], and 

Hl: p+'= [O, al, O] (O < al < l). (3.3) 
The augmented model rs grven by 

xt = ro + alxt-1 + rlt + r~ (1 + T-lel,) + at (xt-1 + T-ae2t) (3'4) 
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+ rt (t + T-Ae3,) + nt' 

The true value of p' = L3+', fi*'] = [ro, al, rl' ro*, at, rt] is [O, l, O, O, O, O], and et = [elt, 

e2t, e3t]' is independent of nt and is independently identically distributed as N (O, 13). Sample 

sizes are T = 50,250, and 1000. The number of replication is 10,000 for each sample size T. 

The shorter samples are first parts of the longest one in each replication. For the sake of 

comparison, we experiment with three values of A, that is, A = O. l, 0.25, and 0.4. 

Convergence to a Chi-square Distribution: Figure I to Figure 3 show cumulative distributions 

of the Wald statistic W in (2.23) for A = O, l, 0.25, and 0.4, respectively. The solid line in each 

figure is the theoretical cumulative distribution of a chi-square variable with 3 degrees of 

freedom. Comparing these figures it is seen that convergence to the chi-square distribution is 
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FIGURE 3. 
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faster when A is larger. When ~ is small, i.e.. A = O. l, there remains a wide discrepancy even 

T = 1000. It may be a result of the fact that the second term in (2.22) disappears faster for 

larger ~ . 

EmpiricalSize and Power ofa Unit Root Test: Table I reports empirical size and power of a 

unit root test for (3.3). DF in the table indicates the corresponding Dickey-Fuller test statistic 

(:)2 in Dickey and Fuller (1981). The column of al = 1.00 shows the empirical size of the test. 

The empirical size of the proposed method is generally larger than the corresponding nominal 

TABLE 1. EMPIRICAL SIZE AND POWER OF Cm-
SQUARE TEST FOR A UNrr ROOT WITH 5% 

SIGNIFICANCE LEVEL 

Method¥a l o.8 0.9 0.95 l .OO 

T=50 
DF 

A = O. l 

0.25 

0.4 

O.09 
O. 1 9 

O. 1 2 

0.08 

0.04 
O. 17 

O. 1 2 

0.09 

0.03 

0.18 
O. 1 3 

0.09 

0.06 

0.22 

0.15 
O. I l 

T = 250 

DF 
A = O. 1 

0_25 

0.4 

0.99 

0.27 
O. 10 

0.06 

0.43 
O. 1 4 

O.08 

0.06 

0.09 
O. 1 2 

0.08 

0.06 

0.05 
O. 1 9 

O. 1 2 

O.07 

T = 1000 

DF 
A=0.1 

0.25 

0.4 

l .OO 

0.73 
O. 14 

0_07 

1 .OO 

0.25 

0.08 

0.06 

l .OO 

O. I l 

0.06 

0_05 

0.05 
O. 16 

0.08 

0.05 

No tes : l . DF indicates the Dickey-Fuller a)2 test in Dickeyand Fu]ler 

(1981). 

2. The number of replications rs 10000. 
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size. This size distortion is greater when A is smaller, as expected from the figures discussed 

above. The size distortion for ~ = O. I is large, even when sample size is relatively large, i.e., T 

= 1000, while it disappears for A = 0.4. 

The other columns in Table I shows the empirical power of the proposed test for various 

values ofal, i.e., al = 0.8, 0.9, and 0.95. We find that power of the proposed test is quite low 

in comparison with the Dickey-Fuller test, when sample size is 250 or larger. From these 

observations, the proposed test is not recommended as an alternative to conventional unit root 

tests such as various Dickey-Fuller tests. We note that power is particularly low large A, while 

it is relatively high for small ~.Thus, there appears to be a trade-off between size-distortion and 

low power of test in terms of value of A. Thus, in experiments of the next sub-section, we will 

adopt A = 0.25 as a compromise. 

3.2 . Test of Linear Restrictions of Coefficient Parameters with Different Speed of 

Convergence 
Design ofExperiment: We now consider a test of linear restrictions of coefficients of a model 

which may or may not have a unit root. Actually, the hypothesis (2.29) for the model (2.28) 

discussed in the example in the previous section is examined. 

We set d = I in (2.29). Several values ofal and 6i, taht is, al = O.5, 0.9, 1.0, and 61 = 0.0, 

0.5, 1.0, 1.5, 2.0 are selected for the experiment. The number of replication is 3000 for each 

configuration of al and 61' 

Empirical Size and Power of the Test: Table 2 reports the empirical size and power of the test 

described above. The columns of 61 = 1.0 show the empirical size for various values of al. 

When al is equal or close to unity and the sample size is small, the empirical sizes are generally 

larger than the corresponding nominal sizes. When ai is small, i.e., al = 0.5, the empirical sizes 

TABLE 2. TEST OF LINEAR RESTRICTIONS 

Model: x, =r0+aix*-1 +rlt +n* 
where To = (1 ~ a]) 60 + a[61 and rl = (1 ~ al) 61' 

Ho: To ~al = O and ro + T1 = I (i'e., 61 = 1)' 
H1: ro ~ al ~ o and/or To + rl ~ I (i.e., 6* ~ 1). 

al 
6
,
 

Significance 

level lO% 
T = 25 

250 
l OOO 

Significance 

level 5 % 
T = 25 

250 
l OOO 

Significance 

level I % 
T = 25 

250 
l OOO 

0.5 

l .O I . 5 2.0 

. 1 2 .20 .58 

. I I .32 .76 

.09 .52 .97 

.07 . 1 2 .32 

.05 .21 .65 

.04 .39 .95 

_02 .05 . 1 5 
.OI .08 .43 
_O I . 1 8 . 84 

0_9 

1.0 1.5 2.0 

. 1 6 .44 .24 

. I I .80 .35 

.09 .99 .58 

. 10 . 16 .34 

.06 . 24 .7 l 

.04 .45 .97 

.03 .06 . 1 8 

.O I . 10 .49 

.OI .24 .91 

l .O 

1.0 1.5 2.0 

,22 .46 ,29 

. 1 7 .76 .39 

. 1 3 .97 .59 

.14 .21 .37 

. 1 1 .29 .69 

.06 .49 .96 

.05 .09 .22 

.04 . 1 5 .5 l 

.02 .28 .89 
Note: The number of replication is 3,000. 
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are relatively close to the corresponding nominal size. The other columns show empirical 

power of the test. It was found that the emprical power is symmetric around 6] = 1.0, that is, 

results of 61 = 0.0 and 0.5 are similar to those of 2.0 and 1.5 respectively, those of 61 = 0.0 and 

0.5 are omitted from the table. The power of the test is slightly higher for a larger al. Thus, 

there exists a slight trade-off between size-distortion and power of the test in terms of value of 

al. As in the previous experiment, the empirical power is generally low. However, when 61 = 

2 and the sample size is large, i.e. T = 1000, the test shows reasonable power. 

4. COncluding COmmentS 

In this paper, we proposed a simple method to circumvent the difficulties in the statistical 

inference for linear time series models which may have some unit roots. Specifically, we 

proposed to add a slightly disturbed explanatory variable for each original explanatory 

variable in the regression model. It has been shown that it can be applied to a stationary, 

integrated, or cointegrated process without any modification. The conventional Wald test 

statistic has been shown to converge asymptotically to a chi-square variable. Thus, by using the 

method, we can deal with the testing problem as if the process were purely stationary without 

worrying about whether the process is stationary or not, or when we are interested in the 

statistical inference without paying attention on the stationarity of the process. 

The experiment has shown that power of the test is very low in comparison with the 
conventional method in the small sample. It requires a very large sample to be useful. Thus, the 

proposed method is not a reasonable alternative to conventional tests for unit roots whose 

necessary critical values have been already tabulated. Rather, the proposed method is useful 

for tests for more complicated restrictions of coefficients, when a large sample is available. For 

example, it can be useful for evaluation of the confidense interval of prediction or the F type 

test of structural change in the analysis of finacial data. 
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