Hitotsubashi Journal of Economics 37 (1996) 45-58. © The Hitotsubashi Academy

TURNPIKE THEORY FOR CAPITAL ACCUMULATION IN A
GENERAL STATIONARY MODEL UNDER UNCERTAINTY

SHIN-ICHI TAKEKUMA *

Abstract

A general stationary model of capital accumulation under uncertainty is constructed, and
weaker conditions for boundedness of economy and for expansibility of capital stock in
production technology are assumed. The existence of a supporting price for the optimal
stationary state is proved. By using the supporting price, weakly maximal programs are proved
to converge to the optimal stationary state in the weak* topology, in probability, and in the
&-norm topology. In addition, the almost sure convergence of weakly maximal programs is
proved under the assumption of uniform convexity. The “value loss” approach is more
effectively used in the proofs.

1. Introduction

In this paper we shall construct a general stationary model of capital accumulation under
uncertainty, and prove the turupike property of weakly maximal programs of capital accumu-
lation. Stochastic stationary models have been developed in several papers by Dana (1973),
Radner (1973), Jeanjean (1974), Evstigneev (1974), and Zilcha (1976-a). The assumtions we
will make on the model are more general than those made on their models. In fact, we assume
weaker conditions for boundedness of economy and for expansibility of capital stock in
production technology.

As preliminary arguments we prove the existence of an optimal statonary state which is
the turnpike for capital accumulation, and the existence of a supporting price for the optimal
stationary state (Theorems 4. 1 and 4. 2). In our proof of the existence of a supporting price
we use the same technique that was applied first by Radner (1973) in a model of stochastic
production, and by Jeanjean (1974), Evstigneev (1974), and Zilcha (1976-b) in general
stochastic models.

By using the supporting price for the optimal stationary state, we will prove some
convergence properties of weakly maximal programs to the optimal stationary state. First, as
a basic property of convergence, we prove the convergence in the weak™* topology of weakly
maximal programs (Theorem 6. 1). Second, we show that weakly maximal programs converge

* The author is grateful to T. Shinotsuka for his helpful comments.
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to the turnpike in probability and in the &;-norm topology (Theorem 6.2 and Corol-
lary). Finally, under the assumption of uniform convexity, the almost sure convergence of
weakly maximal programs is proved (Theorem 6. 3).

The turnpike property of optimal programs was proved by Jeanjean (1974) in a model of
stochastic production, and by Evstigneev (1974) in a general stochastic model. Our proof is
more direct than theirs and the so-called “value loss” is more effectively used in the proof of
convergence of weakly maximal programs to the optimal stationary state.

II. A General Stationary Model

Let (2, , P) be a probability space, where £ is a set, % is a o-field, and P is a probability
measure. Each element in £ is a state of nature and is interpreted as a stream of environments
in all past, present, and future periods. The o-field ¥ is the set of all possible events. The
measure P denotes the probability distribution of states of nature.

Let N = {1, 2, 3, .-} be a space of time. The information structure is specified by a
filtration {%,|t =0, 1, 2, ...}, where %, is a o-subfield of # such that %, _ %, for allt EN.
Each.%, denotes the information about states of nature, which becomes available up to time ¢.

To describle the possibility of capital stocks and social welfare in the period between time
t — 1 to time ¢, we use a relation F, : 2 — R**/ i,

wER — F(w)CR*",

where R¥* denotes a (2 + 1)—dimensional Euclidean space. For x, y € R’, and a E R, x,»,
a) € F,(w) means that, under state w, capital stock x at time ¢ — I can be transformed into
capital stock y at time ¢, and level a of social welfare can be attained. We assume the
measurability of relation F,, i.e., the graph of F, defined by

G(Ft) = {(X, ¥y, a, w)l(x, y’ a) EF!((’J)},

is measurable in Z(R¥**') X &, where Z(R¥*") is the family of all Borel subsets of R¥*’.

Remark 2. 1: Economic models are usually depicted by production sets and utility functions
as follows: For each state w € £2, let D,(w) denote the production set of capital stocks at time
t. If (x, y) € D,(w), capital stock y can be produced at time ¢ from capital stock x at time ¢
— 1. For (x, y) € D(w), let u(x, y, ®) denote the social welfare at time ¢, which is the
maximum utility obtained in transition of capital stock x into capital stock y. Thus, the relation
F, in this paper is derived by defining

Ff(w) = {(xs J’, a) I (x: y) ED:(“))’ a g u,(x, Y, (1))} .

We incorporate a stationary structure into the model by making the following two
assumptions.

Assumption 1: There is a map 7 : 2 — £ such that map 7 : (2, %, P)—=>(Q2, F -1, P) is
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measurability- and measure-preserving for each t € N:
(1) Map 7 is one to one and onto, and both 7 and its inverse T ~! are measurable.
(2) P(z7'(E)) = P(E) for all E E%, _,.

Assumption 2: Foreacht &N, F,=F, o t*7/ je.,
F(w) = Fi(z' (w)) for all w € £,

where 7'~/ denotes the (¢ — 1)-time composite map of 7.

The map 7 in Assumption 1 is a time-shifting operator. If each element w €  denote a
stream of environments at all periods in time, it may be called a “history”. Let w € Q and o’
= 7(w). Then, history @’ can be regarded as the exactly same history as history w, except that
everything in history w happens one period earlier in history w’.

Assumption 2 means that the possibility of capital stocks and social welfare at each period
in time does not depend on time ¢t € N, but only on state @ € Q. From now on, we denote F,
by F,and F, = Fot' ! for eacht EN.

Remark 2. 2: Under Assumption 1 we are going to consider the following situation: Let S,
denote the set of possible environments at time ¢, and 2 be the infinite product of sets S;, that
is,

Q:...XS_IXSOXSJ XSZX""

Namely, each state of nature w & 2 is a stream of environments at all periods. We assume that
the set of environments at any period is the same set S, and that S, = S for all ¢. Let o/ be a
o-field consisting of some subsets of S. For a fixed ¢, define a subset E of Q by

E=..X4 _,XA4_, X4 X8 X8 X ..,
where A; Eo7 for all s < ¢, and 4, = S for all but finitely many s < ¢. Then, we can regard %,
as a o-field generated by sets defined as set E.

For state w & £, let w, be the t-th cordinate of @ and denote the environment at time ¢ in
w. Then we can define a map, w — 7(w), by

(W) -1 = W, for each w €2 and t EN.

Let w €2 and 0’ = 7(w). Then, w’,—; = w, for all t E N, that is, the environment at time ¢
in history @ happens at time ¢ — 1 in history w’. Thus, map 7 shifts time forward.

IIl. Programs of Capital Accumulation

Let k, be an initial stock, which is an %;-measurable function on Q to R’. A program of
capital accumulation starting from k, described by a stochastic process {(k,, u)|t € N}, where
k: is an #-measurable function on £2 to R’ and u, is an.%,-measurable function on £ to R. The
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quantities of capital stock and the level of social welfare at time ¢ in state w are denoted
respectively by k,(w) and u(w).

We assume the boundedness of the economy, and consider only programs starting from
essentially bounded initial stocks.

Assumption 3: There are numbersa* > 0 and b* > 0 such that (x, y, a) € F(w) implies | vl
< max{b*, |x|} and |a| < max{a*, |x|}.

Let us denote the set of all essentially bounded measurable functions on (£2, %, P) to R’
by Lo (F:). When ¢ = I, we write Lw(F,) instead of Z../(#). For any program {(k., ;) |t €
N} starting from ko, we always assume that k, € Z(%,). A program {(k,, u,) |t € N} starting
from k, is said to be feasible if (k.- (), k(w), u,(w)) € F(w) a. s. for eacht EN.

Lemma 3. 1: For any feasible program {(k., u,) |t € N} from ko, k; € L/(F) and u, €
FLolF:) for all t € N. Moreover, any feasible program is uniformly bounded.

Proof: Since (k, - 1(®), k(w), u(w)) € F,(w), by Assumption 3 we have |k (w)| < max{b*,
|k - 1(w)|} and |u(w)| < max{a*, |k,—;(w)|}. Therefore, k, - ; € L (% - 1) implies k, €
&S (F) and u, E Lwo(F). Since ko € Lof(F), we have k, €E L (F;) and u, € Lw(F,) for all
tEN.

Also, |k, < max{b*, |k.—;|~} and |u,|~ < max{a*, |k,—;|=}, where |- |- denotes
the essential norm. Hence, we have k|~ < max{b*, |ko|w} and |u,|~ < maxf{a®, b*,
|ko| =}, which implies the uniform boundedness of program {(k, u)|t E N}. [ |

For any feasible program {(k., u;) |t € N} from ko, by Lemma 3. 1 the sum of expected
utilities obtained up to time T can defined by

27 o ulw) dP()].

Since the sum of expected utilities may be unbounded as time T goes to + oo, the overtaking
criterion, or the catching-up criterion is used to evaluate programs. A feasible program {(k.,
#,) |t E N} from ko is said to be weakly maximal if it is not overtaken by any other feasible
program starting from the same capital stock, i, e., there is not any feasible program {(k’, u*)
|t € N} from k, such that

T T
timinf [ Y, [w, dP—Y, [u dP]>o0.

T+ ;= t=1

Also, a feasible program {(k,, u,) |t € N} from ko is said to be optimal if it catches up all
other feasible program starting from the same capital stock, i.e., for all feasible program {(k’,
u’) |t EN} from ko,

T T
limsup [ Y, fuw,dP—, [u dP)<o0.
T—+teo ;= =1

If a program catches up all other feasible programs starting from the same capital stock,
it is not overtaken by any other feasible program starting from the same capital stock.
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Therefore, any optimal program is weakly maximal.
Now, we assume the convexity and continuity of the model.

Assumption 4: The relation F : 2—>R**! is closed- and convex-valued, i.e., F(w) is a closed
and convex subset of R¥*/ for all w € Q.

Let us denote the set of all integrable functions on (2, #,, P) to R’ by &/(%#;). Whens =
1, we write &(%,) instead of &/(%).

Remark 3. 1: For each f & £ (#,) a linear function on &/(%)) is defined by
PELF) —~ Jop(®) f(w)dP(w) ER,

and Z(#;) can be regarded as the set of all norm-continuous linear functions on &/ (%)
[Dunford & Schwartz (1964), Thm. IV. 8. 5, p. 289]. There is the weakest topology for
& (#,) such that the linear functions defined in the above are all continuous. Such a topology
for space £(#,) is referred to as the weak topology.

On the other hand, for each p € F/(%#,), a linear function on &./(%#;) is defined by

fELLIF) —~  Jop(w)*f(w) dP(w) ER,

and it is continuous in the norm topology. There is the weakest topology for (%) such that
the linear functions defined in the above are all continuous. Such a topology for space Z'(%#:)
is commonly referred to as the weak™ topology.

Let us define a subset ¥ of Lo'(%p) X L'+ (F1) by

H = {(f, 8 u) ELHFo) X L (F1) X Lol F) |
(f(w), g(w), u(w)) E F(w) a. s.}.

Under Assumption 4, we can prove the following lemma by a standard argument.

Lemma 3. 2: Set %% is a convex and closed subset of L/ (%) X Lo’ TI(#1) in the weak*
topology.

Proof: The convexity of % immediately follows from that of F(w) for all w €Q in
Assumption 4, To prove the closedness of %, let (f*, g", u") be a net (generalized sequence) in
K converging to a point (f°, g% u°) in the weak* topology.

Since (f*, g, ") can be regarded as a net in /(%) X & 1(F), (f*, g, u") converges
to (f°, g% u°) in the weak topology. Therefore, there is a sequence (f", g”, u™) of convex
combinations of some elements (f”, g", ") converges to (f°, g°, 4°) in the &;-norm topology
[Dunford & Schwartz (1964), Cor. V. 3. 14, p. 422]. Without loss of generality, we can
assume that (f*, g", u") converges to (f°, g%, u°) almost surely. This is because the convergence
in the mean implies the convergence in measure, and because any sequence converging in
measure has a subsequence converging almost surely [Dunford & Schwartz (1964), Thm. III.
3. 6, p. 122 and Cor. III. 6. 13, p. 150].

Since F(w) is convex for all w €2, (f"(w), g"(w), u"(w)) € F(w) for all w & Q.
Therefore, since F(w) is closed for all w € £, it follows that (f°(w), g°(w), u’(w)) E F(w) for
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all w € Q, i.e, (f° g° u’) EX. This proves the closedness of %" ]

IV. Optimal Stationary States and Supporting prices

A pair of functions (k, u) € Z(Fo) X Lw(F) is called a stationary state if (k, k ° T,
u o 7) EX. Let us define the set of all stationary states by

F = {(k, u) ELS(Fo) X Lok Fo) | (k, ko1, u 0 T) EX}.

For a stationary state (k, u) €., a feasible program starting from k is defined by {(k ° 7°,
u o 7')[t E N}. Such a program is called a stationary program. In a stationary program, an
identical plan of capital accumulation is repeated forever.

Theorem 4. 1: Under Assumptions 1-4, there exists a stationary state (k*, u*) €. such that
JSu*dPz fjudP for all (k, u) EF.

Proof: By Assumption 3 of boundedness, if (k, k ° 7, u © T) EX, then [k|» = |k ° 7[w <
max (b*, |k|~} and |u]e = |u o 7|« < max{a*, |k|«}, where || denotes the essential
norm. Hence, we have |k |~ < b*, and |u|~ < max{a*, b*}. This proves the boundedness of
set 7.

By Lemma 3. 2, set % is weak*-closed. Therefore, we can easily prove that set. 7 is also
weak *-closed. Since set.# is bounded, set.# is weak*-compact [Dunford & Schwartz (1964),

Cor. V. 4. 3, p. 424]. Hence, ./a‘ u dP attains the maximnm value at some (k*, u*) €% I

The stationary state (k*, u*) = in Theorem 4. 1 is called an optimal stationary state. In
fact, the stationary program {(k* o', u* o 7")|t EN} from k* can be proved to be an
optimal program.

Assumption 5: If (x, y, a) € F(w) and x =< x’, then (x’, y, a) € F(w).

Assumption 6: There is (k, k’, u) E% such that k <k’ o 7. Here, for f, g € L' (F0), fK
g means that for some ¢ >0, f(w)+e* 1 <g(w)a.s, where | = (1, ..., 1) ER"

We assume, by Assumption 5, the free disposal of initial capital stocks. By Assumption 6,
the existence of an expansible capital stock is assumed. Capital stock k in Assumption 6 is
expansible to capital stock k’.

Let &/(#)* denote the dual space of (%), i.e., the set of all norm-continuous linear
functions on (%) to R.

Lemma 4. 1: For an optimal stationary state (k*, u*), there is 7% € L (%) * with 7* 2 0
such that

fu*dPz ffudP—n*+(f—geot")

for all (f, g, u) EX.
Proof: Define a subset of R X Z'(%5) by
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= {(a, h) ER X &' (Fo)|a < AudP—Au*dPanthf—gor"
for some (f, g, u) €%}.

Then, since set. % is convex, set A is convex. Also, by the optimality of (k*, u*), the origin of
R X &L (%o) does not belongs to 4. By Assumption 5 of free disposal, the norm-interior of A
is not empty. Therefore, by a separation theorem [Dunford & Schwartz (1964), Thm. V. 2. 7,
p. 417], there exists (¢, — 7*) €E R X Lo’ (Fo)* with (¢, — z*) # O such thatca —n* = h <
0 for all (a, h) € 4. The shape of set A implies that ¢ = 0. Also, Assumption 5 implies that 7*
=0.

Suppose that ¢ = 0, then z* « (f —g o t~') 2 0 for all (f, g, u) E¥. Thus, Assumption
6 implies that z* = 0, which contradicts (c, — z*) # 0. Therefore, ¢ > 0, and without loss of
generality we can assume that ¢ = 1. Hence, @ — z* « h < O for all (a, h) € A, which implies
this lemma.

The linear continuous function 7* in the above lemma is called a supporting price for
stationary state (k*, u*). Furthermore, for an optimal stationary state (k*, u*), we can find
a supporting price which belongs to &7 (%) rather than to £(%o)*.

Theorem 4. 2: For an optimal stationary state (k*, u™), there is p* € % (%) with p*
such that

fu*dPz [ [u—p*+f+ (p*o7)+g]dP

for all (f, g, u) EX.

Proof: Let 4(%,) denote the set of all bounded finitely additive /-dimensional vector-valued
measures on %, that are absolutely continuous with respect to P. Then, L= (%:)* can be
identified with 4/(%;) [Dunford & Schwartz (1964), Thm. IV. 8 .16, p. 296]. Therefore, for
the linear continuous function 7* in Lemma 4. 1, there is v € 4/(%;) such that

n*ef= [fdv for all f € LHFo).

Since 7* = 0, it follows that v = 0. Therefore, v can be decomposed into two parts [Yosida &
Hewitt (1952). Thm. 1. 23, p. 52], that is, v = v, + v,, where v, is a non-negative countably
additive measure on %, which is absolutely continuous with respect to P and v, is a
non-negative purely finitely additive measure on.%,. Hence, by the Radon- leodym theorem,
there is a unique p* € % (%;) with p* = 0 such that

Jofdve= [ p*fdP for all f E LHFs).
Moreover, there is a sequence of #;-measurable sets, {4,}, such that4, C A4, ;, v,(4,) = O for

all n, and lim, . + « P(4,) = 1 [Yosida & Hewitt (1952), Thm. 1. 22, p. 52].
Let (f, g, u) €% and define f,, g, and u, by
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_ [(f(w), g(w), u(w)) wEA,
(@), (@), un(@)) = [(k*(w), k*(2(w)), u*(z(w))) otherwise.

Then, (f,, g, u.) EX. Therefore, by Lemma 4. 1 we have

Sou*dPz fudP—a*+ (fi—gnot )
= \/n‘“"dp"_./;;(fn—gn"'f”)dvc—ﬁm—gnor“l)dvp,
= frundP— fp* - (fi—giot )V dP— [ (i—goT N dw,
= fudP— [[[p*fi— @ 1) *g]dP

Hence, as n — -+ 0, in the limit we have the conclusion of this theorem. [ |

Remarks 4. 1: For each (f, g, u) €%, we can define a value by

L(f,gu)= f(u* —u+p*<f—(p*e1)+gldP,

which is commonly called “the (expected) value loss”. By Theorem 4. 2, L(f, g, u) 2 0 for all
(fgu) EX

V. The Accessibility to Optimal Stationary States

Let (k*, u*) be an optimal stationary state and ko € L(¥0) be a capital stock. The
optimal stationary state (k*, u*) is said to be accessible from k, if there exist k;, u; € L (%)
and a number 6 with 0 < 6 < 1 such that (ko, k1, u)) EX and ko + (1 — ) k* = ko077

A feasible program {(k,, u,)|t € N} from ko is said to be good if

7 [ fudP— fju*dP]>— oo

Lemma 5. 1: Let ko € L (¥5) be a capital stock from which optimal stationary state (k*,
u*) is accessible. Then, there is a good program from ko.

Proof: Since (k*, u*) is accessible from ko, there exist k;, u;, and 8 with 0 < 8 <1 such that
(ko, k1, u)) EF and O ko + (1 —0) k* =k;ot . Fort 22, definek, = 6 k,—;ot+ (1 —
Ok*ottandu,=0u,_;ot+ (1 —0)u*ort

Consider program {(k, u,;)|t € N} from k,. For t = 2, we have

(kr—l ) ,r]-t’ k,ofl_', u, © .L.I—t)
=0 (ki—2°t? Lkt w0t + (1 —0) (k*, k*or,u* o).

Since % is convex, by induction, (k,—;° 7' ", k,ot! ", u, 0 t! ") EX for all t = 1, which
implies the feasibility of program {(k, u,) |t € N}.
Moreover, we have
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22 [ fudP— [u*dP1 =37 [ L6 (u-;—u*)dP]
=22,107" fu—u*)dP]
= fou—u*)dP/(1—6) > — .

This implies the goodness of program {(k;, u,)|t € N}. [ ]

Lemma 5. 2: Let ko € &./(%0) be a capital stock from which optimal stationary state (k*,
#™) is accessible. Then, any weakly maximal program from k, is a good program.

Proof: Let {(k,, u,) |t E N} be a weakly maximal program from k, and suppose that it were
not a good program. Then, by the definition of goodness,

lim inf Z [ fudP— fju*dP] = — oo, 6.1

T—+o00 ;=

On the other hand, by Lemma 5. 1, there is a good program from ko, say {(k’, u’)|t €
N} such that

2,:,[£u’:dP—£u*dP]>—w. (5.2)

Hence, by (5. 1) and (5. 2), we have

lim inf 2‘ [ fuidP— fudP]

T—++o00 ;=19

= lim inf 2 [ L @'i—u*)dP— [ (u—u*)dP]

T— + o0

= + oo,

Thus, program {(k’, u’)|t & N} overtakes program {(k,, u,) |t € N}, which contradicts the
weak maximality of program {(k,, u,) |t € N}. [ |

VI. The Convergence of Weakly Maximal Programs to the Turnpike

The optimal stationary state (k*, u*) is called the turnpike for capital accumlation. The
uniqueness of the turnpike can be easily proved under the following assumption of strict
convexity.

Assumption 7: For each w € 2, (x,y, a) € F(w) and (x’, y’, a’) € F(w) with x # x’, there
exists a number § > 0 such that

x+x’ y+y a+a’

By Lemma 3. 1, we know that any feasible program stays in a bounded region. Thus,
when we consider the property of feasible programs, without loss of generality, we can make
the following assumption of boundedness.
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Auxiliary Assumption: Set % is a bounded subset of L=(F5) X Lo+ (#1). In addition,
F(w) is a bounded subset of R¥**’ for all w € 2.

Since set % is weak*-closed by Lemma 3. 2, under the Auxiliary Assumption set %" is
weak*-compact [Dunford & Schwartz (1964), Cor. V. 4. 3, p. 424].

Lemma 6. 1: For any weak*-open neighborhood U of k*, there is a number > 0 such that

fu*dPz fjlu—p* f+@*or) gldP+5
for all (f, g, u) EX with fE L (F)\U.
Proof: Suppose the contrary. There is a sequence (f", g", u") EX¥ with f* € L (%) \U such
that ./a‘ [ —p* «f"+ (p* o 7) *g"] d P converges to j‘;u* d P. Since set % is weak*-

compact, we can assume without loss of generality that sequence (f”, g, u") converges to a
point (f°, g°, u°) EX in the weak* topology such that f° # k*. Therefore, we have

furdP= [[u°—p*fo+ (p*o7)-g’1dP. 6. 1)

By Assumption 7 of strict convexity, for each w € ©2 there is a number o(w) = 0 such
that

(k*(w) +(@) k*(r(w)) +8%w) u*(1(w)) +u’(w)

= : : 2 +p(w)) EF (),

where p(w) >0 when k*(w) # f°(w). By a measurable selection theorem [Hildenbrand
(1974), Thm. 1, p. 54], map, w —>p(w), can be chosen as an .%;-measurable function, and
therefore as an %;-integrable function. Define functions f°, g’, and u’ by £ = [k* + f°)/2, g’
= [k* o7 +g°]/2, and u’ = [u* o T+ 4°]/2 + p. Then, (f, g’, u’) EF and, by (6. 1),

Lolw—p* e f+@*or)-g’ldP

= (172) fIu*+u—p* e fO+ ptor) g1 dP+ LodP
> fu*dP,

which contradicts Theorem 4. 2. [ ]

Theorem 6. 1: Let ko € /(%) be an initial capital stock from which the turnpike (k*, u*)
is accessible. Let {(k, u,)|t EN} be a weakly maximal program from k,. Then, under
Assumptions 1-7, k, © 7~* converges to k* in the weak™ topology.

Proof: Suppose that k, © 7~* would not converge to k* in the weak™* topology. Then, there
exists a weak*-open neighborhood Uof k* such that k, o ™' € L/(%,)\U for infinitely many
t © N. Therefore, by Lemma 6. 1, there is a number é > 0 such that

Lu*dPz [uet' " —p*e (ko' )+ (@*or)  (kiot'T)]dP+6
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for infinitely many ¢ & N. Hence, for any T there is n such that

Jop* ckedP— fip* e (krot NVdP—n62X" [ fudP— fu*dP)]

andn — + o0 gs T — + oo, Since k7 stays in a bounded region, the left hand side of the above
inequality goes to — e as T — + oo. Therefore, program {(k:, u,) |t & N} from ko is not
good, and, by Lemma 5. 2, it is not weakly maximal. This is a contradiction. [ |

Corollary: When we regard {(k, © ") [t € N} as a sequence in space £/ (%), then k, o 7"
converges to k* in the weak topology.

Proof: The dual space of &(%,) is smaller than the dual space of Z.(¥;) with the weak*
topology. Therefore, the weak* convergence implies the weak convergence.

To get a stronger convergence of weakly maximal programs to the turnpike, we have to
prove a more general assertion of Lemma 6. 1.

Lemma 6. 2: For any € > 0 there is a function p € &(%#;) with o > 0 such that

Su*dPz [ilu—p*-f+@*or)+gldP+ [odP.

for all (f, g, u) EX, where E = {w € Q| |[f(w) —k*(w)| = ¢}.
Proof: Lete > 0. By the Auxiliary Assumption and Assumption 7, for each w € 2 there is a
number p(w) > 0 such that

x+x’ y+y ata +ow)
( 2 7 2 2

) E F(w).

for all (x, y, @) and (x’, y’, a’) € F(w) with |x —x’| = £. By a measurable selection theorem
[Hildenbrand (1974), Thm. 1, p. 5], map, w —> p(w), can be taken as an %;-measurable
function, and therefore as an %;-integrable function.

Let (f, g, u) EX¥ and E = {w € Q| |[f(w) — k*(w)| =¢€}.

Suppose the contrary of this lemma, i.e.,

Jou*dP< filu—p* f+@*ot)+gldP+ fpdP. (6. 2)
Define f = [f + k*}/2 and g’ = [g + k* o 7]/2. Also define a function u’ by

u(w) + u* (1)) + p(w)
, _ 2
@) = y(w) + u* (z(w))
2

for wEE

for w EQ\E.

Then, (f(w), g’(w), ¥’ (w)) E F(w) forallw € 2, i.e., (£, g’, u’) EX. In addition, by (6. 2),
we have
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Jolw—p*f+@*or)-gldP
=(1/2){j;u*dp+ Llu—p*f+@*ory-gldP+ [odP}
> fu*dP,

which contradicts Theorem 4. 2. |

Now, we are ready to prove the convergence in probability of weakly maximal programs
to the turnpike.

Theorem 6. 2: Let k o € £./(%5) be an initial capital stock from which the turnpike (k*, u™*)
is accessible. Let {(k,, u,)|t EN} be a weakly maximal program from ko, Then, under
Assumptions 1-7, k, © 7~ converges to k* in probability. Namely, for any ¢ > 0,

PlweEQ| |k ot ' (w) —k*(w)| =2e} =0 ast— + oo,

Proof: Suppose that k, © 7~ * would not converge to k* in probability. Then, there exists £ >
0 and 6 > O such that P(E,) = & for infinitely many ¢ € N, where

E = {weEQ||kict(w) —k*(w)| = &}.
By Lemma 6. 2, there is a function p € £(%;) with p > 0 such that

‘[nu*d})g ‘/a‘[u,or’“'—p*°(k,_1°r"')+(p* of)o(klotl—r)] dP
+ [ pdP

forallt = N.
We can easily show there is a number 7 >0 such that j; o dP =7 for all E €%, with
P(E) = &. Hence, for any T there is n such that

fop* ckodP— fop* e (krot Ny dP—ny2z X" [ fudP— [u*dP]

and n — + o as T — + 0. Since kr stays in a bounded region, the above inequality implies
that program {(k., )|t EN} from k, is not good, and by Lemma 5. 2, it is not weakly
maximal. This is a contradiction. [ |

t

Corollary: When we consider {k, © 77|t € N} as a sequence in space £/(%), then k, © 7~
converges to k* in the norm topology.

Proof: By the Corollary of Theorem 6. 1, k; © 77* converges to k* in the weak topology.
Therefore, the convergence in probability implies the convergence in the norm topology
[Dunford & Schwartz (1964), Thm. IV. 8. 12, p. 295].

In order to get the almost sure convergence of weakly maximal programs to the turnpike,
we need the following assumption of uniform convexity.

Assumption 8: For any ¢ > 0 there exists a number ¢ > 0 such that
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(x+x’ y+y a+a
2 7 2 72

+6) € F(w)

for all w €E 2, and (x, y, a), (x’, y’, a’) € F(w) with |x —x| 2 e.
Under Assumption 8, we can strengthen Lemma 6. 2 as follows.

Lemma 6. 3: For each € > 0 there is a number 6 > 0 such that
Su*dPz= [ [u—p*+f+(p*ot)+gldP+6P(E)

for all (f, g, u) EX, where E = {w € Q| |f(w) — k*(w)| = &}.

Proof: In the proof of Lemma 6. 2, by Assumption 8 of uniform convexity, we can set o(w)
=6 forall w €.

Theorem 6. 3: Let ko € £(%¥0) be an initial capital stock from which the turnpike (k*, u*)
is accessible. Let {(k;, u,)|t EN} be a weakly maximal program from ko,. Then, under
Assumptions 1-6 and 8, k, o 7™’ converges to k* almost surely. Namely, for almost every w
EQ, k, o T7(w) converges to k*(w) as t = + oo,

Proof: For each € > 0, let us define
Et= {weEQ||k ot (w) —k*(w)| 2 ¢}, and
Dt =Ilimsup,ES = N,2,U,s,E5.

If o & Q2 and k, © T~ '(w) does not converge to k*(w), then there is a number £ > 0 such that
w E Ef for infinitely many ¢t € N, and therefore w € D*®. Conversely, w € D*® implies that
k; o 77'(w) does not converge to k* (w).

Suppose that k. © 77 would not converge to k*almost surely. Then there is a number &
> 0 such that P(D*) > 0. By the Borel-Cantelli lemma [Ross (1983), Prop. 1. 1. 2, p. 3],
2,2/ P(E) = + 0. In fact, if X,Z,P(E5) < + oo, then we have

P(D®) =P(N,2, U >, ES) =limy~ e P(U,5, E9Z lim, . %, 2, P(E%) = 0,

which is a contradiction.
By Lemma 6. 3, there is a number § > 0 such that
fu*dPz flucc' "t —p*e(kiosor! )+ (p*or) e (kot! )] dP
+ 8 P(E%-))
for all t = N. Hence, for any T,
Jop* ckodP— [ p* e+ (krot )dP—5 5,1, P(E)
225, f, @ —u*)dP).
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Since k7 stays in a bounded region, the above inequality implies that program {(k., u.) |t &N}
from k, is not good, and, by Lemma 5. 2, it is not weakly maximal. This is a contradiction.
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