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AN EXTENSION OF KRYLOV’S APPROACH
TO STOCHASTIC SOLUTIONS: THE SPACE LE

YoicHl KUWANA*

Abstract

We extend Krylov (1980)’s L£-derivative approach to stochastic solutions. His results
are based on polynomial growth of the payoff function which is inconvenient for most
financial applications. A space called LF, which is the set of Markov diffusions whose
exponential moments are finite, is introduced to incorporate exponential growth.

Stochastic solution technique, also known as Feynman-Kac formula, is one of the most
frequently used tool for dealing with financial economics problems in continuous time. In
spite of its usefulness, however, the regularity conditions required for the application are
very delicate and often ignored in the financial economics literature. ’

In this artlcle we discuss properties of stochastic solutions to the Cauchy problems of
degenerate parabolic partial differential equations (PDE’s). Our focus is on the smoothness
of stochastic solutions. We follow Krylov (1980)’s L-derivative approach, which gives more
suitable results for our task than do standard references such as Friedman (1975), and,
Karatzas and Shreve (1987). (Neither of them includes results allowing degeneracy of
diffusion coefficients.) However, Krylov’s results require a polynomial growth condition
which is inconvenient for many financial applications. For instance, option payoffs and
HARA utilities have exponential growth if the underlying asset price processes are assumed
to be Markov diffusions with bounded drift and dispersion processes.

We extend his results by weakening the polynomial growth condition and assuming the
drift and dispersion processes to be bounded. A key concept introduced in the present work
is a space called £E, which is the set of Markov diffusions whose exponential moments are
finite. Although the proof is parallel to Krylov's approach and many details will be omitted
here, we must be careful in verifying the growth conditions since the proof is sensitive to
them. For later reference, the results here will be presented in a more general setting than
is required in most financial problems. Applications of the ramification in this article can
be found in Kuwana (1993, 1995).

* The author is grateful to his Ph.D. thesis advisor Professor David Siegmund for valuable advice and
discussions. Also, the author would like to thank Professor Darreil Duffie for helpful comments.
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I. Estimates of moments and exponential transforms

Let a probability space (2, §, P) and a filtration {Fs} be given. Let p,(x) and & be
d-dimensional random vectors and S,(z) be a d x d; random matrix. We assume p4(x), &;
and S,(x) are §,-progressively measurable. We assume that’ ‘us(x) and S,(x) satisfy the
following condition.

Condition 1.1. There exist constants M > 0 such that for V€,,Yy € R%,Vs € [0,T]

(a) I8s(x) - Se(wll < Mllz -yl llns(@) — ps(®)ll < M|z — g
T

(b) E /0 (1€s117 + llies(O) 12 + IISs(0)||2)dS] < oo

Here || - || is the usual matrix norm, i.e. [[A]|% = trA’A.

We consider a process {X,}Z in R? which satisfies a stochastic integral equation:
8 8
(1.1) X, =&, +/ po(Xo)do +/ So(Xg)dWy , s€ [0, T],
) 0 0

where W, is a R% dimensional standard Brownian motion on (£2,%, P). Condition 1.1
insures that the stochastic integral equatlon (1.1) has a unique strong solution. (See e.g.
Krylov (1980) Theorem 2.5.7)

Let 6 : Ry xRY - R,, f: Ry xR = R, and g : R? — R be continuous in &, for each
t Borel functions. Also, let

= / 8(t + 6, Xo)db.
0

Our objective in this article is to analyze the behavior of a payoff function given by

T—t
w(t,z) = E / Ft+6,Xo)e™9°df + g(Xp_¢)e ¢~
0

when €, = x and ¢t € [0,T] are given constant and p,s(:z:s),‘Ss(a:) are nonstochastic.
First of all, we need an estimate of moments of X,. The following lemma is a conse-
quence of Krylov’s Lemma 2.5.1. (pp.78-79) and obvious inequalities.

Lemma 1.2. Suppose there exist nonnegative §,-progressively measurable processes a
and 3, which satisfy

s (@)l < a5 + Kljzl| ,  [ISs(@)l|? < 267 + 2K |||,
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Then we have for all ¢ > 1,
12  (BIX, - &%) < / " a4 1)(6=0) (F020}1/dg
0
+ (4¢ - 2) / | e(aK* +1)(s-0) { paaay1/adg.
0

In particular, if o <m and 3, <m forall s € [0,t],

(1.3) (EIX. - &%) < (49 — 1)7m? (4gK? + 1) 9l K+,

Remark. Condition 1.1 automatically implies the growth condition in the lemma with
o = ||s(0)]], Bs = [|Ss(0)]| and K = M. However, we need to let K | 0 later.

When we consider a derivative of a process depending on parameters in §2, we need
moments of difference of two processes. Let {f( s}g; be a process on ({2, §, P) given by

8 8
X, =6+ / io(X)do + / So(Xo)dWs, s € [0,T],
0 0
We have a corollary to Lemma 1.2.

Corollary 1.3. Suppose p and S satisfy Condition 1.1 (a). Then for allé >1ands € [0,t],

EIX, — Rl < (49 4+ N(g, Myt +9) B, — &1
8
(1.4) vt [ [0 g (Ke) fo o) ot
0

+ (128)9'E [ [ e, (s) - Se(fca)n”de] |
0

where
N(g, M) = ((32M*)7 + (128¢M?)9) (4¢*M? + )~

This is Krylov’s Corollary 2.5.5 with more precise coefficients indicating dependency on g.
We need these coefficients in order to estimate exponential transforms.
By using Corollary 1.3, we can estimate moments and exponential transforms of

SUPo<e<s | Xo — XO)”-
Theorem 1.4. Suppose Condition 1.1 is satisfied.
(a) For all ¢ > 1 and s € {0,t} we have

E sup || X — Xo|% <2297 'E|l€, — &*7 + Ni(s, ¢, M)
0<0<s

+ Na(s,q, M)E / P@MO0 | 5(E,) — fio(€s) [0
0

+ No(s,q, M)E f MeMO-08,(€,) — Sy(€,)]ds,
A .
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where
Mg, M) = 4¢°M? + ¢

8
Ni(s,q, M) = 222 M2 Ny (s, q, M) / MeME-D | X, — £,]|%d8
0

Na(s,q, M) = (211‘7t‘1—1qq + 1)26q—le2qM2t.

(b) Further suppose there exists a constant b > 0 such that

llaes () + Ilﬁs(w)ll <6, IS (ﬂ»‘)ll2 + 1S5 (x)|* < 26%.

Then forall0 <y < 2,a>0 and s € [0,¢], there exists a constant N3(a,b,7) < oo such
that .

1
2

Eexp [a sup nxo—xem] SNs(a,b,v){EeXP [4a sup_uso—éan")]}
0<6<s : . 0<6<3s

Proof. Part (a) is Krylov’s Theorem 2.5.9 with more precise expression of constants. We
sketch how these constants are obtained.

Let max{supo< <7 [|££s(0){l,8upg<s<7 [ISs(0)|} = m which is finite by Condition 1.1
(b). Note that by the remark to Lernma 1.2, Condition 1.1 (a) implies the condition needed
in Lemma 1.2 with K = M, a, = ||ps(0 )|| and 3, = ||S;(0)||. Then as in the proof of
Krylov’s Theorem 2.5.9 and by (1.3) of Lemma 1. 2, for all s € [0,¢} we have

"E sup || Xp—&|*
0<0<s

¢
(1.5) <o2etlg2aKt {E”Xs — &% + tzqle/ ”#0(0)||2qd9}
, i ‘
S22q+le2qff2t {(4q - 1)9m2(4¢K? + 1)_‘76(4‘12}{2”” + t2qm2q}

-Here we intentionally wrote the Lipschitz constant as K instead of M. This is because
we need to let K | 0 for proving the exponential estimate. It should be noted that when
Krylov proved the first inequality of (1.5), the Lipschitz condition was used only to insure
the linear growth of ||us(x)|| and ||S,(z)]|. _ :

As in the proof of Krylov’s Corollary 2.5.5, let Y; = (X, — X,) — (€, — &;). Then Y,
satisfies a stochastic integral equation :

8 8
Y, = [ upaas+ [ 83 ¥aaws
0 0

where

16 (Y) = (o(y + Xo + &0 — £0) ~ 16(€0)] , SE(y) = [Se(y + Xo + & — o) — Se(€s))-
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Since u3'(y) and S (y) satisfies the Lipschitz condition with constant M, we can apply
Corollary 1.3 to Y;. Hence by the inequalities .

X — X127 < 22071 ([[ Y611 + 1166 — &611%9),
112 ()19 < 2207 (f| o (X + & — £4) — pa(ENP2 + [l (€) — s (€5)11%9)
<22 M™| Xy — &2 + [l ps(€s) — (€)1,
IS2(0)[1%0 < 22971 (M| X, — &% + 1S(£) — S(€)I1*),
and by the first inequality of (1.5) and Corollary 1.3, we obtain

B sup [IXo - Xl < 207(B sup Yol + Ellés — &)
8 . )

< oGt {Ennu?" +ouip uus‘(om?qde}
N 8
+22-1E||g, — &%

< (@) )i [ MO0 o) s
. A

s
+ 211qqqtq—162qM2tE /O e(4q’ M2+49)(6-t) ”SBA(O)qudO

+2%1E|g, - &%
< 2271E||g, — €] + Ni(s,q, M)

+ Na(s,q, M)E / MaMO-0)40(E,) — fig(€:)]27d0
0

- L 4 Ny(s,q, M)E / H@MO-0)5,(€,) — Sp(€,)]27d6
0

Next we prove assertion (b). Note that
lul@) <26 ,  [SMa)) <8b.

Then we can apply the second inequality of (1 5) to the process. Y, with m = 3b. Then for
all K > 0, we have

4q -1 q 2 g2
E su Y: 2 « 22q+1 3b 2qe2qK2t A e(4q K44q)t +t2q}_
sup %% < 2041(3h) TreE

Since the r.h.s. is continuous‘ in K, the inequality still holds if we let K | 0. Then for all
g>1and s € [0,¢], ’

(1.6) Fooa Y5112 < 2%9+2(3b)0e8(T"Hg? = (K1 (6))*(29)"-
sSUss
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Here we used t29 < 49 exp|qt], ¢? > 1,q > 1 and obvious inequalities.
Now we proceed as follows. Assume without loss of generality that 2 > 4 > 1. Then
by (1.6), we have

Eexp [a sup || Xg — X’GHA’]
0<8<s

<E sup {exp[2""a(|[Yll" + (1€ - &)}
0<0<s .
3
s{Eexp [4a sup uYeu*]} {Eexp [4a sup ||ea—ée||*)]}
0<6<s 0<6<s
oS 3
< 4a)"FE Yol "™ /n!
_{n;)( a) 0?323” Al /n}
~ 2
x {Eexp [4a sup o eetm] }
0<8<s

s{ Z(4a)"{Kx(b)}”"(vn)’"/"’/n!}

n=

1
2

=

o

1
2

X {Eexp [4a sup ||&e — €~9||7)} }
0<6<s
=N3(a, b, 7){E6XP [40 sup ||€s — fell”] }
0<6<s

The finiteness of N3(a,b,v) follows from Stirling’s formula. Take ng so large that for any
n > ng, n! > /m/2n"+t1/2e=" and n!~7/2 > 8a{K,(b)}"7"/2. Then

Y (a) (K (0)} ()™l < (2v/7/2)7 ) 272 < oo
n=ngp n=ng
Hence we have assertion (b). O

I1. £-derivative processes

We define spaces £, LB LE and L-derivative process of {X}Z which will be needed
to estimate derivatives of v(t,z). We write X, € L if forall ¢ > 1

T
E / 1 X, [%ds < oo.
0
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We write X, € LB ifforall¢g>1

E sup | X,]|? < 0.
0<s<T

When we deal with exponential growth, it is convenient to consider the space LE which is
the set of all {X,}3 satisfying a condition

E sup {explal|X|"]} <oco forall a>0and0<~y<2.
0<s<T

It is clear that LE C LB C L.
For a sequence X},...,X?,... € £, we write £L-limp_,00 X7 = X0ifforallg>1

T
lim E/ X~ X?)|%s =0
0

n-—+0C
Similarly, £B-lim, . X* = X2 ifforall¢ > 1

lim E sup | X" - X,||? =0,

n—00  <s<T

and LE-limp_0o X* = X0 ifforalla >0and 0 <7y <2,

lim E sup {expla||X]} - X,||"]} =1.
n—=o0  0<Ls<T

When the process X? is parametrized by a real vector parameter p € D C R%, we
say XP is L(LB, LE)-continuous at po if for any sequence pn such that ||p. — pol — 0,
L-(LB-,LE-)limp_,oo XP» = XP°. It is clear that LE-continuity = L B-continuity =
L-continuity. , :

For a unit vector [ € R, we say Y € L is an L(LB)-derivative of X? in p along a
direction ! when

a . -
YP = L(LB)- o X7 = L(LB)- lim r; L(XxPotral _ xP0)
exists for any sequence of real numbers 7.

The space LE and LE-convergence are not introduced in Krylov since they are not nec-

essary for proving results with polynomial growth. We do not need the notion of LE-

derivative in the following argument. In fact, due to the unavailability of exponential

estimates, it is not easy to prove LE-differentiability of the processes we are interested in.
We list elementary properties of £-derivatives. The proofs are are not hard.

Properties of L-derivatives.
(2.1) If XP is L-continuously L-differentiable, then u(p) = E(X P) is continuously differ-
entiable in p. ZEXP = E (L-§ XP), if the r.h.s. exists.
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(2.2) L-§ XP = LB-Z XP, if the r.h.s. exists.

(2.3) The process [; X§df is LB-continuous if XP is L-continuous. Also, LB-§ [ XPd
= fo £-& X} do holds.

(2.4) Let W, be a d;-dimensional Brownian motion on (Q,3, P) and SP be d x d; ma-
trix which is §,-progressively measurable. If S? is L-continuous, then Jo SEdW, is LB-
continuous. Further, if SP is L-differentiable, then fos SPdWy is LB-differentiable and
LB-§ [ SEdW, = [ L-2SEdW.

(2.5) Let XP be LB-continuous at p and continuous in s. Suppose TP is a random variable
taking values in [0, T] and continuous in probability at p. Then XP?. is L-continuous at p.

In order to prove L-continuity and L-differentiability of composite processes, we need
the following lemmas.

Lemma 2.1. Let f;(x) be random variables defined for s € [0,T) and « € R?. Suppose
either

(a) Let a sequence of processes X!,---,X?,-.. € L converges in L to XY9. Suppose there
exist K,a > 0 such that |f,(x)| < K(1 + ||z||*) for all s € [0, T] and = € R¢,

or, ) oo .

(b) Let a sequence of processes X!,---,XP,... € LE converges in LE to X?. Suppose
there exist K,a > 0 and 0 < v < 2 such that |fs(z)| < K(1 + explal|z|)),

is satisfied. . .

Then we have L-lim f,(X7) = f,(X?).

Proof. Assertion (a) is Krylov’s Lemma 2.7.6. Assertion (b) can be proved in a simi-
lar manner. We outline the proof here. First by an inequality |f,(x)|? < 2971K¢ (1+
explag|z||”], we note that f,(X7) is in £ for all n. Write hs(Z7) = f,(X?) — fo(X?) with
Z} = X7~ X and hy(2) = fo(z + X0) - £,(X?). Since E f] | Z3]d8 — 0, we have
Z7 — 0 in measure dP x dt. Thus by Lemma 2.7.5 of Krylov, we have hs(Z?) — 01in
measure dP x dt.- Define a sequence of bounded processes g = |hy(Z7)|(1 + |ho(Z7)]) 1.
Then g7 — 0 in measure dP x dt and thus for any ¢ > 1, ’

T
B [ 1510 —o.
0

Since LE-limp 00 X7 = X0 and X0 €LE,

1 1
n . n 2 0 2
supE sup eI Xall" < {supE= sup - g*e4ll X5 7"3"’} {E sup e4"°”x6"’}} < 00,

m 0<e<T.. - . Un  o0<6<T  0<e<T

and thus we have P
supE sup {|he(X)|9} < c0.
n  0<9<T .
Hence we derive
L

T T 3 ' T NE
E/ |h(Z3)}19d8 < {E/ |gg|2qd0} {22q"1TE sup {1 + Iho(Xg))Fq}} — 0,
0 o - 0<6<T
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which shows £-lim, e fs(X7) = fo(XD?). O

Lemma 2.2. Suppose either condition (a) or (b) of Lemma 2.1 is satisfied. Let a d-
dimensional process X™(u), u € [0,1] be continuous in u and || X (u)— X?| < | X? - X?|.
Then

1
£ tim [ A2 )du = £(X2).

Proof. By assumption, it is easy to see that X?(u) € £ (or LE), and L(LE)-X7(u) = X?
for each u. Therefore by Lemma 2.1,

T
E / 1o (X3 () = Fo(X3)I%d6 — 0
0

asn — 0 for all u € [0,1] and ¢ > 1. Hence by Fubini’s theorem, Holder’s inequality and
dominated convergence, we have for all ¢ > 1,
T
7
0

1 q T 1
/ Fo(XF(w)du — fo(XD)| db < E / / fo( X)) — fo(XQ)|9dudd
0 0 0

1 T
< /0 E /0 Fo(XP () — fo(XD)|9duds
-0

as n — oo. This completes the proof. 4
By using above lemmas, we can prove the following result on £-continuity and £-
differentiability of composite processes.

Theorem 2.3. Suppose either condition

(a) XP is L-continuous and n times L-continuously L-differentiable. fs(x) is n times
continuously differentiable in x. Further, the absolute value of each derivative including
fs(z) itself does not exceed K(1 + ||x||*) for some K,a > 0,

or,

(b) XP is LE-continuous and n times L-continuously L-differentiable. fi(x) is n times
continuously differentiable in . Further, the absolute value of each derivative including
fs(z) itself does not exceed K (1 + explal|xz||?]) for some K,a >0 and 0 <y < 2,

Then f,(XP) is also n times L-continuously L-differentiable. In particular, we have for a
unit vector I € R¢,

(2.6 £ F(XE) = fuyy (XD,

32
(2.7) Lo Fs(XT) = foze) (XN 221 + Fareyrn) (XD)NYPIZ,
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where YP = L-5 XP, ZP = L-£ X? and foy)(@) = ¥5_, 25 - yjllyl~* (ify # 0) or
0(ify=0)

Proof. Part (a) is Krylov’s Theorem 2.7.9. As we have done so far, part (b) can be proved
similarly. For po,1 € R? and u € [0,1], let

Xs(n)(u) = quo%—'ml + (1 _ U)Xspo , I/S(n) — T;I(Xf+r"l _ Xf)

Then
rat (fo(XEOH) — fo(XP0)) =1 / "2 X ()
n 8 s s 8 —'n 0 au s E]

d 1
AR / foz, (X (w))du
j=1 0

where Ys(';) is the j-th component of Ys(") and fs . (x) = -a—g—’ag—), (z1,-,2y, -, Tp) = .

Since ||X§")(u) - XPo|| < ||Xf°+l/" — XPo| for all u € [0,1], by Lemma 2.2 (b), we have
L-limy,_, o fol fs,zJ(X,(")(u))du = fsz,(XP°). Note that f;, (XP°) is L-continuous by
Lemma 2.1 (b). Hence from Lemma 2.1 (a) applied to the function g(z,y) = x'y, we
conclude

) o .
Loy X3 = L- nILI{goTnl(fs(Xf°+ ") — fo(XP0)) = foyroy (XYL,

where YP° = C—E‘%X Po E-%X Po s L-continuous since the product of £-continuous process
is also L-continuous.
Properties of higher order £-derivative processes can be proved similarly with induc-

tion. |

When we prove continuity of payoff functions with respect to time parameter in the
next section, we need the following lemmas.

Lemma 2.4. Let h}(x) be nonstochastic, h?(x) — 0 as n — oo and there exists Kg > 0
such that

(2.8) sup [h(z) — hi(y)| < Krlle -yl
lz—yli<R

for all n and R > 0. Suppose either

(a) L-lim, 0o X = X2 and for all ¢ > 1 suan’fOT | X3]|9d8 < oo. Further, there exist
constants K, a > 0 such that |hZ(z)| < K(1 + ||z||*) for all n,

or,

(b) LE-limy,—,00c X? = X? and sup,, Esupycg<r expla| XZ|°] < oo foralla > 0,0 < 3 <
2. Further, there exist constants K,a > 0 and 0 < v < 2 such that |h?(x)| < K(1+el=l")
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for all n.
Then L-lim, o A2 (X7) =0.

By using Lemma 2.7.16 of Krylov, the proof can be done in the same way as we proved
Lemma 2.1.

Corollary 2.5. Let fP(x) be continuousinp € D andx € R¢. Also, there exists constant
Kpg > 0 such that

(2.9) sup |fP(x) — f2(y)| < Krllx -yl
lz-yli<R

for all p € D and R > 0. Suppose either
(a) XP is L-continuous and for all ¢ > 1 and p € D, there exists § > 0 such that

SUP|p|<s Ef(;r | X%|9d6 < oo. Further, there exist constants K,a > 0 such that |fP(x)| <
K(1+ ||z||®) for all p € D, (K,a may depend on p.)

or,

(b) X? is LE-continuous and supyp <s E suPo<co<r exple|| X2|I%] < oo for all « > 0 and
0 < 8 < 2. Further, there exist constants K,a > 0 and 0 < v < 2 such that |fF(z)| <
K(1+ e2l=I”) for all p € D. (K,a,y may depend on p.)

Then fP(XP) is L-continuous.

Proof. For a given I € RY, take any sequence r, | 0 and apply Lemma 2.4 with
h?(z) = fPrl(z) — fP(x). It is easy to see the conditions of Lemma 2.4 are satisfied.

O

I11. Properties of stochastic solutions to parabolic PDE’s

In this section, we derive a result on stochastic solutions. First, we need a lemma on
taking £-limit in stochastic integral equations.

Lemma 3.1. Let

Xr =g+ / pp(Xp)do + / S3(X7)dWs, n=0,1, -
0 0

where p7(z) and S§(x) satisfy Lipschitz condition uniformly in n . Suppose piz) —
po(z) and S™(x) — SU(x) in L. If €7 — €9 in L(LB), then L(LB)-limp—o0 X7 = X7
Further, if LE-limy—c0 € = £° and u?(x), S3(x) are bounded, we have LE-limp_.o0 X'
= X0

Proof. Let G™(x) = S™(z) — S*(0). Then G7(x) satisfy the Lipschitz condition and
IG2(x)|| < K||z| with K the Lipschitz constant. Furthermore, G}(z) — GY(z) in L.
Therefore by Lemma 2.4 (a), G?(X?) — G%(X?) in £. Similarly, we have ur(X?) —
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p3(X?). Now, applying Theorem 1.4 (b) to X™ and X?, we see X? — X0 in L(LB) if
£€? — &% in £(LB). In order to prove LE-convergence, we only need to apply Theorem 1.4
directly. |

We consider processes {X?}¥" and {X%*}T defined by stochastic integral equations:

8 8
X2 =60+ [ uolp. X)d0+ [ Sutp. XPAWs | seloT,
8 8
X =z +/ p(t+ H,X;""")dﬁ +/ S(t+6, X;’z)de , sS€1[0,7].
0 0
Here for each p € D and « € R?, p,(p,z) € £ and &,(p) € L forall p € D and = € R¢
are §s-progressively measurable d-dimensional vector processes and S:(p,x) € Lis a F,-
progressively measurable d x d; random matrix. p € D C R% is a parameter. Also,
u(t + 6,x) is a d-dimensional nonrandom vector and S(t + 6,z) is a d X d; nonrandom
matrix. We assume that &(p), pe(p, ), pu(t + 6,z), S(t + 6,z) and Se(p,x) satisfy
Condition 1.1 for all p € D, t € [0,T] and € R Then by Lemma 1.2, the process ). ¢4
and X%® are in £ for all p € D and (¢,z) € Ry x R%. We have a corollary to Lemma 3.1
gives sufficient conditions for £, £B and LE-continuity of X P, The proof is easy.

Corollary 3.2. Suppose us(p,x) and S,(p,xz) are L-continuous. If &e(p) is L(LB)-
continuous, then X? is L(LB)-continuous. Further if {||us(p, z)||+||Ss(p, x)||} is bounded
for all p € D and &,(p) is LE-continuous, then XP is LE-continuous.

We show L-differentiability of the process XP. It should be noted again that we do
not need £E-differentiability. The next theorem is Krylov’s 2.8.4. It should be noted again
that we do not need a result for £E-differentiability.

Theorem 3.3. Suppose that p,(p,x) and S,(p, x) are i-times continuously differentiable
in (p,x), and each derivative does not exceed K(1 + ||z||)™. Then XP is i-times L-
continuously differentiable and

0

P_r. Y xp
Y, EBlX’

6 8
(3.1) =£-§ f+/0 {Ne,(z),*(P, X(';D)+#0,*,(34,9)(P,X5’)||Yep||}d9

8
+ [ {80,000 XE) + S0, o (0 DIV } 2o
where i, « (2)(P, T) and p 1), denote directional derivatives of p,(p, x) with respect to x

and p respectively. (Similarly for S, (z)(p, ) and S, )..) Also, for I,m € R%, we have
an expression of second L-derivative as

d o
P _ o ___XP
(3.2) 27 = Lo (c azxa)

k] k]
—¢P 4 / o (28)(2, X2)| 226 + /0 S(zg)(p, X2)| ZE AW
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where
8 a 8 k]
¢ = Lg |eg&®)+ [ powa XD+ [ Sa 0. XP)aWs
4. e 3 3
P —_ 1 4 _ " XP P
+3 [ ) { o o0 XE) + 5 th ) (0, XYL 0
. rs ] d
+ (YF)s § 2—S0,r),(2: X5) + 75— S0,,cve) (0, X)) YNl ¢ dW.
17 o
/o Zj Zj

Here (Y[), is the j-th element of Y.

Proof. We just outline the proof. Take a sequence of real numbers 7, | 0 and ! € R%.
Define processes

XP(y) = uXPHl L (1 —u)XP, uwel0,1]
YPr =g (X - XD),

8

it is not hard to see that Y7 can be expressed as

8 8
ver—npn+ [ vpman+ [ Q5 Yp AW,
0

where

8 1
nP" =1 (€s(p +al) — &6(p) + /0 [ /0 Ho,),+(P + ural, X; ’"(U))dU] dé

X] 1
+ / [/ Sg,(z)y,, (p + ur,l, Xg’n(u))du:| dWy
0 0

1
V2 () = / 1)1 120.0. (o) (P + urnl, XP™(u))du
0
1
Qi (p,x) = / 1211S0.0.(2) (P + urnl, XP7 ().
0

By applying Lemma 2.2 to the process (p + ur,l, X?"*(u)) and from Lemma 3.1, we see
that

£ lim V7 (p, ) = [||Hg,0, o) (P, XF(1))
£ Tim Q7 (p, @) = 2]|Sp,0 ) (P, X (w)

. n a 8 8
L- lim 0 =£—§£s(p)+ / Mo,y (P, X5™)dO + /0 Se.). (0, X5 )dWy
n— 0
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Therefore by using Lemma 3.1 again, we obtain expression (3.1). In order to see L-
continuity of YP, we only need to apply Theorem 2.3. Higher order derivatives can be
proved similarly by induction. (3.2) can be obtained by the £-differentiation rule of com-
posite functions (Theorem 2.3) and the interchangeability of L-differential and Riemann
integral or stochastic integral (properties 2.3 and 2.4.) a

When p = (t,2), &(p) = =, po(p,y) = p(t +6,y), and Se(p,y) = S(t + 6, y), the
L-derivative of the process X® = & + [ p(t + 0, X=)df + [ S(t + 6, Xt®)dW, w.r.t.
x, has a simpler expression:

0 oG e
63 Lp Xt =¥ =4 Y [ melt+ 0, X5%)as
7 k=170

d 8
+Zfo (Y75 )eSk(t + 6, Xg®)dW,,j = 1,- -+ d,
k=1

where C-%X L® is an abbreviation of L-%Xﬁ” with ! a (d + 1)-dimensional unit vector

whose (5 + 1)-th element is 1, €’ € R? is the d-dimensional unit vector whose j-th element
is 1, (Yetf)k is the k-th element of Yot,’;’, pet+0,y) = %u(t +8,y) and Si(t +6,y) =
%S(t + 6,y). It is emphasized that the parameter in consideration is (¢,z). We do not
need L-derivative w.r.t. ¢ in the following argument. Similarly, for the second derivative,

we have

32 d 3
Lo Xt = 2i% =) /0 Bilt + 8, X5®)(Z5%)kdb
v k=1

d s
(3.4) + Z/O Sk(t + 4, X;’z)(zgfj)dea
k=1

d d

+3° Z/O (Yo7 e (Y it + 6, X57)d6

k=11l=1

d d g
+> / (Yo D) (Yo Skt + 6, X5™)dW.
k=11=1"0

2 2
Here Mkl = %“(t + 01 y) Skl = %S(t + 07 y)
The estimates of moments of E—%X L2 can be obtained by applying Theorem 1.4.
to (3.3). Since pu(t + s,%) and S(t + s, y) satisfy the Lipschitz condition, %u(t + 5,v)

aiy]S(t + s,y) are bounded. Thus p(t + s,y)(y)x and Sk(t + s,y)(y)x also satisfy the
Lipschitz condition. Hence from Theorem 1.4 (a), we have for any ¢ > 1,

o 2q .
X;®| < N(s, K, q)llz|*.

Lo

E sup
0<6<s
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We summarize the results on £-derivative of X%® in the following Corollary:

Corollary 3.4. Suppose the Lipschitz conditions on p(t,y) and S(t,y) are satisfied. Then
Xt® is £ B-continuous for the parameter (t,x). Further, if u(t,y) and S(t, y) are bounded,
then X%= is LE-continuous for the parameter (t,x). If u(t,y) and S(t,y) are i-times
continuously differentiable in y and the derivatives does not exceed K (1 + ||y||*) for some
K.a >0, then X%® is LB-continuously (in t,x) LB-differentiable in x.

By combining the results obtained so far, we derive a smoothness result for the payoff
function:

T—t
v(t,z) = E /0 Flt+6,X5%)e#0d6 + g(X7%,)e™ T

with .
s = / 5(t+6,Xg")do.
0

and 6(¢, z) a nonnegative function.

Theorem 3.5. Let u(t, ) and S(t, x) satisfy the Lipschitz condition. Further assume that
w(t,x) and S(t,x) are twice continuously (in t,x) differentiable in & and the derivatives
including the functions does not exceed K(1 + ||x||*) for some K,a > 0. Further suppose
f(t,x) and g(x) are continuous in t, and twice continuously (in t,x) differentiable in x.
Then we have the following assertions:

(a) If the derivatives of f(t,x) and g(z) does not exceed exceed K (1 + ||z||*), then v(t, )
is continuous in t,x and twice continuously (in t,x) differentiable in x. Moreover, there
exists a constant M > 0 such that |v(t,x)] < M(1 + ||={|?).

(b) If the derivatives of f(t,x) and g(x) does not exceed exceed K (1 + edl=l™y 0 < v < 2,
and p(t,x) and S(t,x) are bounded, then v(t,x) is continuous in t,x and twice contin-
uously (in t,x) differentiable in . Moreover, there exists a constant M > 0 such that
Jo(t, @)| < M(1+etalel),

Proof. We consider a process (p}, X4®) where p! =t 4+ s which is £ or LE-continuous
corresponding to the conditions (a) or (b). By the property (2.3) and Theorem 2.3,
fos 6(pt, X1®)dv is LB-continuous. Due to the nonnegativity of the function §(t,x) and by
Theorem 2.3 applied to the function h(z) = e"*1(z>0}, €~ fs 8(ei X" Yav s L-continuous.
Further, by the properties (2.3), (2.5), Theorem 2.4 and Corollary 3.4 applied to the process
(pt, X5®), we see that the process

0 0<s<t
yLe

= s—t
J pt,Xt’m e 380X dvgg t <5< T
0 oo

is L£B-continuous at t,z. Hence from the property (2.1), E (;F—tf(pz,Xf,""’)
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] t t, . . . . . : :
e~ Jo 8(pu. X.")dv g | s continuous in t,z. A similar argument shows the continuity of

E|g(X5®,) e~ Jo "8, X0*)dv | Therefore v(t, ) is continuous in ¢, z.

Continuity (in ¢, ) of derivatives of v(f,x) w.r.t. & can be proved in a similar man-
ner by L-differentiation rule (Theorem 2.3) and Corollary 3.4. Also, from Theorem 1.4,
it is easy to see that v(t,z) satisfies the polynomial or exponential growth conditions.

O

We define operators L for u(t z) € CY2([0,T] x R?) as
2

Lu(t,x) = bu + trE(t T)—— Ou (t,:z:)'g—: —6(t, x)u

ot dxox’
where X(t, x) = S(¢, 2)S(¢, z)'.
The next theorem shows the existence and uniqueness of the solution to the Cauchy
problem of linear parabolic PDE.

Theorem 3.6. Suppose the conditions of Theorem 3.5 are satisfied. Then v(t,x) is a
unique C12([0,T] x R?) stochastic solution to the Cauchy problem

Ly(t,z) =0
(T, z) = g(zx).

Existence and uniqueness are proved for the polynomial growth case by using Markov
property of X%* in Krylov’s Theorem 2.9.10. In order to show the exponential growth
case, we only need to mimic his proof by replacing polynomial growth with exponential
growth. Continuity of the first derivative in t follows from Theorem 3.5 and the relation
Lv=20

It should be noted that Friedman(1975) and Karatzas & Shreve assume uniform ellip-
ticity for the existence part. Theorem 3.6 does not require this condition. (see also Remark
2.9.11 of Krylov.)
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