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AN EXTENSION OF KRYLOV'S APPROACH 
TO STOCHASTIC SOLUTIONS= THE SPACE LE 

YOICHI KUWANA* 

Abstract 

We extend Krylov ( 1980) 's L-derivative approach to stochastic solutions. His results 

are based on polynomial growth of the payoff function which is inconvenient for most 

financial applications. A space called LE, which is the set of Markov diffusions whose 

exponential mqments are finite, is introduced to incorporate eiponential growth. 

Stochastic solution technique, also known as Feynman-Kac formula, is one of the most 

frequently used tool for dealing with financial economics problems in continuous time. In 

spite of its usefulness, however, the regularity conditions required for the application are 
very delicate and often ignored in the financial eco,nomics. 'literature ,. 

In this article, we discuss properties of stochastic solutions to the Cauchy problems of 

degenerate parabolic partial differential equations (PDE's). Our focus is on the smoothness 

of stochastic solutions. We follow Krylov (1980)'s L-derivative appr9ach, which gives more 

suitable results for our task than do standard references such as Friedman (1975), and, 

Karatzas and Shreve (1987). (Neither of them includes results allowing degeneracy of 
diffusion coefflcients.) However, Krylov's results require a polynomial growth condition 

which is inconvenient ' for many financial applications. For instance, option payoffs and 

HARA utilities have exponential growth if the underlying asset price processes are assumed 

to be Markov diffusions with bounded drift and dispersion processes. 

We extend his results by weakening the polynomial growth condition and assuming the 

drift and dispersion processes to be bounded. A key concept introduced in the present work 

is a space called LE, which is the set of Markov diffusions whose exponential moments are 

finite. Although the proof is parallel to Krylov's approach and many details will be omitted 

here, we must be caieful in verifying the growth conditions since the proof is sensitive to 
them. For later reference, the results here will be presented in a more general ~etting than 

is required in most financial problems. Applications of the ramification in this article can 

be found in Kuwana (1993, 1995). 

* The author is grateful to his Ph.D. thesis advisor Professor David Siegmund for valuable advice and 

discussions. Also, the author would like to thank Professor Darrell Duffie for helpful comments. 
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I. Estimates of moments and exponential transforms 

Let a probability space (~, ~, P) and a filtration {~s} be given. Let /ls((1;) and ~* be 

d-dimensional random vectors and S~(zc) be a d x dl random I~latrix. We assume /1'((c), es 

and S.((c) are ~.-progressively' measurable. We assume that',l.((c) and S.((e) satisfy the 

following condition. 

Condition 1.1. There exist constants M ~ O such that for Ves'Vy e I~d,Vs e [O, T] 

(a) IiSs(x) - S.(y)ll ~ Mll(c - yll , Il/1'(:c) - Il'(y)ll ~ M211(c - yll 

(b) 

~
T
 

(lle'll2 + Il/1'(o)ll2 + Ils,(o)ll2)dsJ < oo E 

Here ll ･ Il is the usual matrix norm, i,e. IIAll2 = trA'A. 
We consider a process {Xs }~ in IRd which satisfies a stochastic integral equation: 

(1.1) 
X. = E' + 'lo(Xo)de + J( So(Xo)dWo ' s e [O T] ~

 
where Ws is a IF&dl dimensional standard Brownian motion on (~,~, P). Condition 1.l 
insures that the stochastic integral equation (1.1) has a unidue strong solution. (See e.g. 

Krylov (1980) Theorem 2.5.7) ~ 
~et 6 : ~t+ x JRd -, IR+, f : I~+ x I:~d ~' IR, and g : I~d -, IR be continuous in ~s for each 

t Borel functions. Also, Iet 

* f ~o = 6(t + e,X6)d6. 

Our objective in this article is to analyze the behavior of a payoff function given by 

v(t,(c)  E [~ f(t + e, Xo)e~v'ed6 + 9(XT_t)e~(pT~tJ T-t 

when es ~~ (1; and t e [O, T] are given constant and lls(ccs)' Ss(x) are nonstochastic. 

First of all, we need an estimate of moments of Xs ' The following lemma is a conSe-

quence of Krylov's Lemma 2.5.1. (pp.78-79) and obvious inequalities. 

Lemma 1.2. Suppose there exist nonnegative ~.-progressively me'~urable process~s a* 

and p. which satisfy 

ll/1 ((c)ll <a +K Il(cll , llS.((c)ll2 ~2p~+2K21la;ll2. 
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Then we have for all q ~ 1, 
~
s
 

(1.2) (ElIXS ~ ~sll j - e(4qK2+1)(s-O){Ea~q}1lqde 2qlllq < 

~
s
 

+ (4q - 2) e(4qK2+1)(s-6) {Ep~q}1/qde. 

22 1 

In particular, ifas ~ m and ps ~ m for all s e [O,t], 

(1.3) (EllX. - ~sll2q) ~ (4q - 1)qm2q(4qK2 + 1)~qe(4q2K2+q)t 

Remark. Condition I . I automatically implies the growih condition in the lemma with 

as = Illls(O)ll, ps = IISs(O)ll and K = M. However, we necd to let K ~ O Iater. ' 
When we consider a derivative of a process depending on parameters in S2, we need 

moments of difference of two processes. Let {~s}~ be a process on (~, ~, P) given by 

~s = e~s + J( po(~6)dO + J( S0(~o)dVVb, s e [O,T], 

We have a corollary to Lemma 1.2. 

Corollary 1'3. Suppose 'l and S satiSfy Condition 1.1 (a). Then for all ~ ~ I and s e [O, t], 

EllXs ~ ~s'll2q ~ ) ~sll2q 4q +N(q,M)tq~le(4q2M2+q)t ElIES ~ ~ (
 (1.4) + 32qtq IE e(4q2M2+q)(o-t) Iluo(~o) - Po(;~e)li2qdO ' 

+ (128q)qtq~lE e(4q2M2+q)(e-t) IISo(~0) - S0(j~o)ll2qdO , 

where N(q, M) = ((32M4)q + (128qM2)q) (4q2M2 + q)~1. 

This is Krylov's Corollary 2.5.5 with more precise coefficients indicating dependency on q. 

We need these coefficients in order to estimate exponential transforms. 
By using Corollary 1.3, we can estimate moments and exponential transforms of 

sup0<e<s llXo - X6)Il-

Theo.rem 1.4. Suppose Condition 1.1 is satisfed. 

(a) For all q ~ I and s e [O,t] we have 

E sup llXo - X Il2q < 22q IElle ~ ll2q +N (s,q,M) 

0<_0<_s 

+N (s,q,M)E~ eA(q'M)(6 t)lllJo(~ ) /~e(e')Il2qde 

+N2(s,q,M)Efo e;L(q,M)(o t)llSo(e') So(~.)ll2qd6 
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where 
A(q, M) = 4q2M2 + q 

N1(s,q,M) = 22qM2qN2(s,q,M) f e;L(q,M)(o t)EllXo e ll2qde 

N2(s, q, M) = (21lqtq-1qq + 1)26q-1e2qM't 

(b) Further suppose there exis~s a constant b > o such that 

ll//.(x)ll + Ilp.((c)ll ~ b , IIS.(cc)ll2 + llS.((c)ll2 ~ 2b2. 

Then for all O < 7 < 2, a ~ O and s e [O,t], thore exists a constant N3(a,b, n!) < oo su'ch 

that 

- l Eexp [a sup llXo Eexp [4a sup . Ileo - eelllr) - Xelll!J ~ N3(a]b,7) 

Proof. Part (a) is Krylov's Theorem 2.5.9 with more precise expression of constants. We 

skefch how these constants ~re obtained. ~ 
Let max{sup0<s<T Il,ls(O)Il, sup0<s<T IISs(O)jl} = m which is finite by Condition 1.1 

(b). Note that by t~he remark to Leinma~.2, Condition 1.1 (a) implies the condition needed 

in Lemma 1.2 with K = M, ois = IllJs(O)ll and ps = llSs(O)ll. Then as in the proof of 
Krylov's Theorem ~.5.9 and by (1.3) of Lemma 1.~, for all s e [O, t] we have 

E sup llXe -~ell2q 
0<_0<_s 

(1.5) f + t2q_1E f lluo(O)ll2qde} ~22q+1 2qK2t IElIXS ~ esll2q 

~22q+1e2qK2t { (4q - l)qm2q(4qK2 + 1)~qe(4q2K2+q)t + t2qm2q} 

. Here we intentionally v~rote the Lipschitz constant as K instead of M. This is because 

we need to let K ~ O for proving the exponehtial estimate. It should be noted that when 

Krylov proved the first inequality of ( I .5), the Lipschitz condition was used only to insure 

the linear growth of llus(a;)ll and llSs(x)ll. 

As in the proof of Krylov's Corollary 2.5.5, Iet Ys = (Xs ~ ~s) ~ '(es ~ e~s)' Then Yx 

satisfies a stochastic integral equation ' 

Y' = 'l~(Yo)d6'+ S~(Yo)dWo 

where 

/l~(y) = [,le(y + ~o + eo - e~o) - Pe(E~o)] , S~(y) = [So(y + ~o + ~o - e~o) - S6(e~o)]' 
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Since l;t~(y) and S~(y) satiSfies the LiPSchitz condition with constant M, we can apply 

Corollary I .3 to Y'* . Hence by the inequalities 

llX. - ~sll2q ~ 22q-1(llY.ll2q + Ile. - e~.ll2q), 

ll,l~(O)Il2q ~ 22q-1(11lls(~s + es ~ e~<) ~ rts(~~s)Il2q + Ilp.(es) 'l (~ )Il2q) 

~ 22q-1(M2qllX. - ,esll2q + Illl'(~s) ~ Ps(~~.)ll2q), 

IISA(O)ll2q < 22q 1(M2qIIX. - esll + IIS.(E~") - ~s(e~')II2q), 2q 

and by the first i.nequality of (1'5). and Corollary 1.3, we obtain 

E sup llXo -X6112q < 22q l(E sup llYoll2q +Elle. -E~",ll2q) 

0<e<s 0<0<' fst } f
 

~ 24qe2qM2t IEIIYS Il2q f t2q~1E Il'l~(O) Il2qde 

+ 22q~1Ell~. - ~~ll2q 

< (25qtq I + 1)24qe2qM2tE~= e(4q2M2+q)(o-t)ll'l~(O)li2qde 

2 ~ + 21lqqqtq le2qM tE e(4q2M2+q)(o-t) IIS~(O)II2qdO 

+22q-lEllc -~ Il s s 2q 

~ 22q-1Elle. - e~s ll2q + Nl(s,.q, M) 

+:N2(s, ~, M)E fo e;L(q.M)(o-t) Iillo(e~') - po(~~.)ll2qd6 

o
 

,+ N2(s, q, M)E' Jfo e;L(q,M)(o-t)llSe(e~') - ~0(~.)II2qde. 

o
 

Next we prove assertion (b). Note that 

Ilp~'((c)ll ~ 2b , IIS~((c)ll ~ '8b2. 

Then we can apply the second inequality of (1.5) to the process. Y* with m = 3b. 

all K > o, we have ' 
Then for 

{( )q E sup llYoll2q ~ 22q+1 e(4q2K2+q)t + t2q} 4q - 1 (3b)2qe2qK2t 

0<0<s 4qK2 + 1 
Since the r.h.s. is continuous in K, the inequality still holds if we let K ~ O. 

q ~ 1 and s e [O,t], 

E sup llYoll2q ~ 24q+2(3b)2qeq(T~t)qq = (1.6) (K1(b))2q(2q)q. 0<_0<_* 

Then for all 
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Here we used t2q ~ 4q exp[qt], qq ~: 1, q ;~ I and obvious inequalities 

Now we proceed as follows. Assume without loss of generality that '2 > 7 ~ 1 . Then 

by (1.6), we have 

Eexp La sup llXo - Xoll~r 
0<_0<_s 

~E Sup {exp[21!-1a(llYollry + Ileo -~ellry)J} 

0<0<s l
}
 
{
 
7
 

~lEexp [4a sup llYoll~ Eexp L4a sup lleo -eolllr) 

o~o~s o~o~s 
{ (4a)nE Sup llYelllfn/n! _oo ~
 

< 
0<e<s n=0 J

}
 

x IEexp L4a sup lI~O - eolllf) 
0<_e<_s 

_oo < (4a)n{KI (b)}1rn(7n)ryn/2/n! 

n=0 
J
}
1
 

xlEexp [4a sup ll~o -eoll7) 
0<_e<_s 

N3(at b' Ir) r -Eexp L4a sup lleo - eolllf) 
0<_0<_s 

1
 2
 

The finiteness of N3 (a, b, 7) follows from Stirling's formula. Take no so large that for any 
n ~ no, n! ;Z ¥/~7~:2nn+1/2e~1~ and nl-?/2 ~ 8a{K1(b)}1!7ry/2. Then 

(4a)n{K (b)}ryn(ryn)Ifn/2/n' < (2V~7~)-1.~ 2-nn l/2 < oo 

Hence we have assertion (b). Cl 

II. L-derivative processes 

We define spaces L, LB LE and L-derivative process of {Xs}~ which will be needed 

to estimate derivatives of v(t, x). We write Xs e L if for all q Z I ~ 

T E~ IIXsllqdS <oo' 
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We write Xs e LB if for all q ~ 1 

E sup JIXsllq < oo. 
0<s<T 

When we deal with exponential growth, it is convenient to consider the space LE which is 

the set of all {Xs }~ satisfying a condition 

E sup {exp[allXslilf]} < oo for all a > O and O < ~ < 2. 

0<s<T 

It is clear that LE C LB C L. 

1 n X~ = X~ if for all q ~ 1 . . . e L, we write L- Iimn-oo X For a sequence X . . . , 
s' s' 

T ~
 

lim E IIX~ - X~llqds = O 
"~* 

Similarly, LB- Iim X~ = X~ if for all q ~~ 1 
~-oo 

lim E sup [lX~ X Il O 
~-oo 0<s<T 

and LE- Iim X~ = Xg if for all a > O and O < ry < 2, 
*-oo 

lim E sup {exp[allX~ - Xsllry]} = 1. 

~-oo 0<.<T 

When the process X? is parametrized by a real vector parameter p e D C I~d2 , we 

say X? is L(LB, LE)-continuous at po if for any sequence pn such that llp~ - poll - O, 

L-(LB-, LE-) Iimn-oo X?" = X~o. It is clear that LE-continuity ~> L1;-continuity ~> 

For a unit vector I e I~d2 we say Y.P e L is an L(LB)-derivative of X? in p along a 

direction I when 

a
 YP - L LB -XP = C(CB)- Iim r~1(X?0+.~1 _ X?") ' ~ ( )~al * n-= 

exists for any sequence of real numbers r~ . 

The space LE and LE-convergence are not introduced in Krylov since they are nqt nec-
essary for proving results with polynomial growih. We do not need the notion of ~E-

derivative in the following argument. In fact, due to the unavailability , of exponential 

estimates, it is not easy to prove LE-differentiability of the processes we are interested in. 

We list elementary properties of L-derivatives. The proofs are are not hard. 

Properties of L-derivatives. 
(2.1) If X? is L-continuously L-diflierentiable, then u(p) = E(X?) is continuously diflier-

entiable in p. ~EX? = E (C-~X?), if the r,h.s. exists. 
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(2.2) L-~XP = LB-~_XP ifthe rhs exists 

s al s' ' ' ' ' (2.3) The process fos XoPde is LB-continuous if xy is L-continuous. Also, LB-aa~1 foS X~de 

= fos L_~XoPdO holds. 

(2.4) Let Ws be' a dl-dimensional Brownian motion on (~,3r, p) and S~ be d x dl m~ 
trix which is ~s~Progressively mea~urable. If S~ is L-continuous, then fos S~dWe is LB-

continuous. Further, if S~ is L-diflierentiable, then foS S~dW6 is LB-difllerentiable and 

LB-~ fos S~dWo = f~ L-~S~dWo. 
(2.5) Let X? be LB-continuous at p and continuous in s. Suppose TP is a random variable 

taking values in [O,T] and continuous in probability at p. Then XTPp is L-continuous at p. 

In order to prove L-continuity and L-differentiability of composite processes, we need 

the following lemmas 

Lemma 2.1. Let fs((c) be random variables deflned for s e [O,T] and (c ~E JRd. Suppose 

either 

(a) Let a sequence of processes Xsl, . . . , X~, ･ ･ ･ e L converges in ,L to X~･ Suppose there 
exist K,a > O such that If.(x)1 ~ K(1 + llxlia) for all s e [O,T] and x e IRd 

(b) Let a sequence of processes X.1, . . . , X~, . . . e LE converges in LE to X~. Suppose 

there exist K, a > o and O < 7 < 2 such that Ifs((c)1 ~ K(1 + exp[allxlllr]), 

Then we have L- Iim fs(X~) = fs(~g). 

Proof. Assertion (a) is Krylov's Lemma 2.7.6. Assertion (b) can be proved in a simi-

lar manner. We outline the proof here. First by an inequality If.((c)lq ~ 2q-1Kq(1 + 
exp[aqll:ellry], we note that fs(X~) is in L for all n. Write hs(Z~) = fs(X~) - fs(Xg) with 

Z~ = X~ - Xg and hs(z) ~ f.(z + X~) - fs(X~). Since EfoT IIZ6"Ilde -~ O, we have 

Z. H, O in measure dP x dt. Thus by Lemma 2.7.5 of Krylov, we have hs(Z~) -~ O 'in 

me~sure dP x dt.. Define a sequence of bounded processes g~ = Ihs(Z~)i(1 + Ihs(Z~)D-1. 

Then g~ -~ O in measure dP x dt and thus for any q ~ 1, -

T E f ･ Il9~ll2qdO -' o. 

Since LE- Iimn-oo X~ = X~ and X~ eLE, 

}~ { _ _ }}~ , supE Sup eaqllxnlllr f , 4aqllxtTXglllF E sup Ife4aqllxglllr < oo 
e ~ IsupE = sup ' e 

"n o~o~T.. ' , n o~o~T _ 0<0<T 
and thus we have 

supE sup {lho(X~)lq} < oo. 
~ o~o~T . 

Hence we derive 

}~ { - -f T T 
'E Ih(Zen)IqdO ~ IE I9~l2qdO 22q-lTE sup {1 + Iho(X~))12q} -, O 

0<0<T 
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which shows L- Iimn-oo fs(Xn) f (X ) D 

Lemma 2.2. Suppose either condition (a) or (b) of Lemma 2.1 is satisfled. Let a d-
dimensional process Xr(u), u e [O, 1] be continuous in u and llX~(u) - X~ll ~ IIX~ - X~ll. 

L- Iim fs(X~(u))du = fs(Xg) 
n-oo o 

Proof. By assumption, it is easy to see that X~(u) e L (or LE), and L(LE)-X~(u) = X~ 

for each u. Therefore by Lemma 2.1, 

T E~ Ifo(X~(u))-fe(X~)lqd9-0 

as n ~' O for all u e [O, I] and q ~: 1' Hence by Fubini's theorem, H6lder's inequality and 

dominated convergence, we have for all q ~ I , 

E o Jo If6(X~(u)) fo(X~)Iqdude f6(X~(u)du- fo(X~)1 dO ~ E 

T -~1 ~ < E I fo(X~(u)) - fo(X~) Iqdude 

-~0 

as n ~ oo. This completes the proof. [] 

By using above lemmas, we can prove the following result on L-continuity and L-

differentiability of composite processes. 

Theorem 2.3. Suppose either condition 
(a) X~ is L-continuous and n times L-continuously L-difllerentiable. f.(x) is n times 

continuously difllerentiable in x, nlrther, the absolute value of each derivative including 

fs(x) itself does not exceed K(1 + llxll") for some K, a > o, 

or, 

(b) X? is LE-continuous and n times L-continuously L-diflierentiable. f*((c) is n times 

continuously diflierentiable in x. Further, the absolute value of ea;ch derivative including 

f*(x) itself does not exceed K(1 + exp[all:rllry]) for some K, a > o and O < ry < 2, 

Then fs(X~) is aiso n times L-continuously L-difllerentiable. In particular, we have for a 

unit vector I e Rd 

a
 (2.6) L~~lfs(XP) f.(Y )(XP)lIYPll 

(2.7) 
a2 

L~~~~f.(XP) f.(z )(XP)lIZPll + f.(Y )(Y )(XP)lIYPll2 
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where YP L a-alX?, ZP L ~ia~al XP and fs(~/)(X) = ~~~ ~!~~21 . yjllyll-1 (ify ~ O) or 

'=1 ax3 
O (if y = O). 

Proof. Part (a) is Krylov's Theorem 2.7.9. As we have done so far, part (b) can be proved 
similarly. For po, I e IRd and u e [O, I], Iet 

X{n)(u) = uX~ +r I + (1 u)XPO Ys(n) = r~1(X~+r~1 _ X~) 

Then 
la 

I
 
f
 

r~1(f'(X~"+'~1) _ f'(X~")) = - -f'(X~~)(u))du r~ au 
d
 = fl ~ Y.(~) f',', (X(n) (u))du 

j=1 

where Ys(n3) is the j-th component of Y(~) and fs x (x) - ' ' ' ' ' ' , s , 3 - af'(s~-), , ,xn) = x (xl ' XJ ' 
ax 

Since jlX(n)(u) - X~oll ~ IIX~0+1/n _ X~oll for all u e [O, 1], by Lemma 2.2 (b), we have 

L- Iimn-oo fol fs'xJ (X{n)(u))du = fs'xJ (X~o). Note that fs'x3 (X~o) is L-continuous by 

Lemma 2.1 (b). Hence from Lemma 2.1 (a) applied to the function 9(x,y) = x/y, we 
conclude 

L-~X~' L lim r~1(f (XP +' l) f (XP')) f.(Y'") 
. (X~")llY.P'Il, 

~~~ 
where YPo = L_~XPo L_~~XPo is L-continuous since the product ofL-continuous process 

s s ' al s is also L-continuous. 

Properties of higher order L-derivative processes can be proved similarly with induc-

tion. [] 
When we prove continuity of payoff functions with respect to time parameter in the 

next section, we need the following lemmas. 

Lemma 2.4. Let h~(x) be nonstochastic, h~(x) -~ O as n -~ oo and there exlsts KR > o 

such that 

(2.8) sup lh~(x) h"(y)1 < KRllx yll 
ll*-1'11<R 

for all n and R > O. Suppose either 
(a) L- Iim~_~ X~ = X~ and for all q ~ 1 sup~ E foT IIX~llqde < oo. Further, there exist 

constants K, a > o such that lh~(x)1 ~ K(1 + Ilxll") for all n, 

or, 

(b) CE- Iim~_= X~ = X~ and sup~ Esup0<0<T exp[allX~llp] < oo for all a > o, O < p < 

2. 1~~lrther, there exist constants K, a > o and O < n/ < 2 such th~t lh~(x)1 ~ K(1 + e"Il*ll') 
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for all n. 

Then L- Iim hn(Xn) = O n-oo s s 

229 

By using Lemma 2.7.16 of Krylov, the proof can be done in the same way as we proved 

Lemma 2.1. 

Corollary 2.5. Let f*P(x) be continuous in p e D and (t ~ IRd. Alsb, there exists constant 

KR > O such that 

(2.9) sup If~((c) fP(y)1 < KRllx yll 
ll*-vll<Ie 

for all p e D and R > O. Suppose either 
(a) X? is L-continuous and for all q ~ 1 and p e D, there exists 8 > o such that 
supllpll<5 E foT IIX~llqde < oo. Further, there exist constants K, a > o such that If.P(x)1 ~ 

K(1 + Il(cll") for all p e D, (K,a may depend on p.) 

or, 
(b) X? is LE-continuous and supllpll<5 Esup0<0<Texp[allX~llp] < oo for all a > o and 

O < p < 2. I~lrther, there exist constants K,~ ~ O and O < n/ < 2 such that If~(x)1 ~ 

K(1 + e"Il*ll') for all p e D. (K,a,n! may depend on p.) 

Then f*P(X?) is L-continuous. 

Proof For a grven I e R take any sequence r~ ~ O and apply Lemma 2.4 with 
" (x) - f.P((1;). It is easy to see the conditions of Lemma 2.4 are satisfied. h~((c) = f.P+. l 

D 

III. Properties of stochastic solutions to parabolic PDE's 

In this section, we derive a result on stochastic solutions. First, we need a lemma on 

taking L-limit in stochastic integral equations. 

Lemma 3.1. Let 

. = ~' f' ~ /1~(X~)d6+Jo S~(X~)dWo' n = 0,1,' X" e + 

where ll~(:c) and S~((E) satisfy Lipschitz condition uniformly in n . Suppose /1~((c) -

ll~((c) and S~((c) - S~(x) in L. Ife~ - ~~ in L(LB), then L(LB)-lim~_* X~ = X~. 

Further, ifLE- Iim~_* e~ = eg and ll~(x), S~(:c) are bounded, we have LE- Iim~_= X~ 

= X~. 

Proof. Let G~(x) = S~((c) - S~(O). Then G~(x) satisfy the Lipschitz condition and 
llG~(x)ll ~ Kll(1)ll with K the Lipschitz constant. Furthermore, G~(x) - G~(:c) in L. 

Therefore by Lemma 2.4 (a), G~(X~) - Gg(X~) in L. Similarly, we have /l~(X~) -
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ug(X~). Now, applying Theorem 1.4 (b) to X~ and Xg, we see X~ -, Xg in L(LB) if 
e~ -~ e~ in L(L'B). In order to prove LE-convergence, we only need to apply Theorem 1.4 

directly. D 
We consider processes {X~}~ and {Xg,'8}~ defined by stochastic integral equations: 

X~ = es(P) + J( /le(p,X~)de + J( So(p,X~)dVV~ , s e [O,T], 

Xg,c = (c+ Jo /:t(t+6,Xt,ap)de+ Jo S(t +e,X~,:c)dVVb , s e [O T] 

Here for each p e D and x e IRd, /Is(P, x) e L and es(P) e L for all p e D and x e If&d 

are ~8-progressively measurable d-dimensional vector processes and Ss(P,x) e L is a ~s~ 

progressively measurable d x dl random matrix. p e D c E~d2 is a parameter. Also, 
/Je(t + 6,(c) is a d-dimensional nonrandom vector and S(t + e, :c) is a d x dl nonrandom 

matrix. We assume that ~e(p), /lo(p,(c), I/(t + e,a;), S(t + e x) and So(p,(c) satisfy 
,
 Condition 1.1 for all p e D, t e [O,T] and :c e JRd. Then by Lemma 1.2, the process X? 

and Xt,'c are in L for all p e D and (t, (c) ~E IR+ X Rd. We have a corollary to Lemma 3.1 

gives sufficient conditions for L, LB and LE-continuity of X?･ The proof is easy. 

Corollary 3.2. Suppose /ls(P,(c) and Ss(P,:c) are L-continuous. If ~o(p) is L(LB)-
continuous, then X~ is L(LJ?)-continuous. l;hrther if { Il/ls (P, x) Il + IISs(P, x) Il } is bounded 

for all p e D and ~s(P) is LE-continuous, then X? is LE-continuous. 

We show L-differentiability of the process X~･ It should be noted again that we do 
not need LE-differentiability. The next theorem is Krylov's 2.8.4. It should be noted again 

that we do not need a result for LE-differentiability. 

Theorem 3.3. Suppose that /ls(P, :c) and Ss(P, x) are i-times continuously difllerentiable 

in (p, (c), and each derivative does not exceed K(1 + Il(clD Then XP Is c tlmes L m. 
continuously diflierentiable and 

a
 YP = L--XP 

s al s ~
{
 

/lo,(1),'(p, X~) + ,to,.,(YeP ) (p, X~ )llYoPll f dg 
~al s 

~s { + So,(1),' (p, X~) + So,.,(YoP ) (p, X~) IIYOPll fl dWo 

where /ls,',('e)(P' x) and lls,(t),. denote directional derivatives of/~s (P' (!;) with respect to (c 

and p respectively (Similarly for Ss".(~2)(P'x) and Ss,(1)"') Also, for l, r e JRd2, we have 

an expression of second L-derivative as 

s= ( (3 2) ZP L a L a XP 
ar ~~1 s 

f
 

= C~ + Jo uo,',(z~ )(P' X~)llZoPllde + S(z~)(P' X~)llZoPlldWo 



1995］

W止ere

AN　EXTENS10N　OF　KRYLOV，S　APPROACH　TO　STOCHAST－C　SOLUT10NS 231
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Therefore by using Lemma 3.1 again, we obtain expression (3.1). In order to see L-

continuity of YsP' we only need to apply Theorem 2.3. Higher order derivatives can be 
proved similarly by induction. (3.2) can be obtained by the L-differentiation rule of com-

posite functions (Theorem 2.3) and the interchangeability of L-differential and Riemann 
integral or stochastic integral (properties 2.3 and 2.4.) [] 

When p ~ (t,(c), ~s(P) ~ x, Ilo(p, y) ~ ,1(t + a,y), and So(p,y) ~~ S(t + e, y), the 
L-derivative of the process Xg,c = x + fos /1(t + e, Xg,,1;)dO + fos S(t + e, Xt,~B)dWo w.r.t. 

x3 has a simpler expression: 

j d~ (3 3) L- a Xt,a: (Yot,c)kuk(t+e,X~,'c)d6 Yst3(c=e +~ 
axj s k=1 

d
 ~s ,~ ~ (Yot ,:;)kSk(t + e Xg o)dWo, j = 1, ' 

k=1 

where L aax Xt,a: is an abbreviati n f a t 'c s o o L-~TXs' with I a (d + 1)-dimensional unit vector 
whose (j + 1)-th element is 1, ej e H;~d is the d-dimensional unit vector whose j-th element 

is I (Y6t,'c)k is the k-th element of Yot3c ,lk(t + e y) - - = /Jo(t + e y) and Sk(t + e y) 

aayk S(t + e, y). It is emphasized that the parameter in consideration is (t,x). We do not 

need L-derivative w.r.t. t in the following argument. Similarly, for the second derivative, 

we have 

L a2 d uk(t + e, X~,~)(Zot,e~j)kda = f ~
 

t,a~ Xt 3P Z ~ axi ax3 S ~ s ,i3 k= 1 

d s 
(3.4) ~ Sk(t + e, X~,'!:)(Zot,taj)kdWo + 

k=1 ~ 

d d ~
s
 

+ ~ ~ (Y6t,~ )k(Yot,~e)lllkt (t + e, X~'o)de 

k=1 l=1 

d d s ~ ~ ,~ + ~ ~ (Yot ae)k(Yot a')lSkl(t + e, X~,u)dWo' 

k=1 l=1 

Here llkl = ayk'ay! /1(t+e y). Skl = a2 S(t+e,y) a
 ' ' aykayl 

The estimates of moments of L-~Xg," can be obtained by applying 'Theorem 1.4. 

to (3.3). Since ll(t + s,y) and S(t + s,y) satisfy the Lipschitz condition, a~~y. I/(t + s,y) 

a~~y S(t + s, y) are bounded. Thus ftk(t + s,y)(y)k and Sk(t + s,y)(y)k also satisfy the 

Lipschitz condition. Hence from Theorem 1.4 (a), we have for any q ~ 1, ~ 

E sup L a Xt,* 2q < N(s K q)llxll2q 

o~0<* ~~~ o -
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We summarize the results on L-derivative of Xg,5e in the following Corollary: 

Corollary 3.4. Suppose the Lipschitz conditions on ll(t, y) and S(t, y) are satisfied. Then 

Xt,a: is CI?-continuous for the parameter (t, :c). Further, if//(t, y) and S(t, y) are bounded, 

then X~,a is LE-continuous for the paran2eter (t,x). If /1(t,y) and S(t,y) are i-times 
continuously diflierentiable in y and the derivatives does not exceed K(1 + Ilyll") for some 

K.a > o, then Xt,,c is LB-continuously (in t, x) LB-diflierentiable in :1~. 

By combining the results obtained so far, we derive a smoothness result for the payoff 

function: 

with 

T-t 
v(t, :c) = E f (t + e, X )e~Pod6 + 9(X~~t)e~(PT~' t,(c 

o
 

~s , tae (ps = 5(t + o X6' )de' 

and 5(t, (c) a nonnegative function. 

Theorem 3.5. Let u(t, :1~) and S(t, x) satisfy the Lipschitz condition. I~lrther assume t~at 

'l(t, (c) and S(t, x) are twice continuously (in t, (c) diflierentiable in a; and the derivatives 

including the functions does not exceed K(1 + Il(cll") for some K, a > o. I~Jrther suppose 

f(t, x) and g((1:) are continuous in t, x and twice continuously (in t, (B) difllerentiable in x. 

Then we have the following assertions: 
(a) If the derivatives of f(t, x) and g(x) does not exceed exceed K(1 + Ilxll"), then v(t, x) 

is continuous in t,x and twice continuously (in t,x) difllerentiable in x. Moreover, there 

exists a constant M > o such that lv(t,(1;)j ~ M(1 + Ilccll")-
(b) If the derivatives of f(t, x) and g((c) does not exceed exceed K(1 + e"Il*Il'), O < ~ < 2, 

and /1(t,x) and S(t,(c) are bounded, then v(t, x) is continuous in t, :c and twice contin-

uously (in t,x) difllerentiable in x. Moreover, there exists a constant M > o such that 

Jv(t, ~:)1 ~ M(1 +,e4*ll*ll'). 

Proof. We consider a process (p~, Xg,･) where p~ = t + s which is L or LE-continuous 
corresponding to the conditions (a) or (b). By the property (2.3) and Theorem 2.3, 
f~ 6(p~, X;,")dv is LB-continuous. Due to the nonnegativity of the function 5(t, x) and by 

J~ 5(p~,x~,' )d･ is L-continuous. Theorem 2.3 applied to the function h(x) = e~'1{*~o}, e~ 
Further, by the properties (2.3), (2.5), Theorem 2.4 and Corollary 3.4 applied to the process 

t* (p~, X.' ), we see that the process 

{ -O O~s~t 
Ustt'c s t f(p~,X~"c)e~f006(p"x~'x)dvde t < s ~ T 

is LB-continuous at t,(c. Hence from the property (2.1), E foT~tf(po'X~ap) 
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f s(p xt ' )d de Is contmuous m t,(c. A similar argument shows the continuity of 

tT,,ct) e~ foT~t s(p~,x~" )duJ ' Therefore v(t, (c) is continuous in t, a;. 

Continuity (in t,x) of derivatives of v(t, x) w.r.t. zc can be proved in a similar man-

ner by L-differentiation rule (Theorem 2.3) and Corollary 3.4. Also, from Theorem 1.4, 

it is easy to see that v(t,2;) satisfies the polynomial or exponential growth conditions. 

D 
We define operators L for u(t, :c) e C1,2([O, T] x IRd) as 

au I a2u au Lu(t,cc) = - + -tr~](t x) + //(t,:c)'~~ - 5(t (1:)u 
at 2 ' a(c ax ' 

where ~(t, x) = S(t, :c)S(t, (c)'. 

The next theorem shows the existence and uniqueness of the solution to the Cauchy 

problem of linear parabolic PDE. 

Theorem 3.6. Suppose the conditions of Theorem 3.5 are satisfed. Then v(t,x) is a 
unjque C1,2([O, T] x JRd) stochastic solution to the Cauchy problem 

Lv(t, x) = O 

v(T, cc) = g(x). 

Existence and uniqueness are proved for the polynomial growth case by using M~rkov 
property of Xt,ae in Krylov's Theorem 2.9.10. In order to show the exponential growth 

case, we only need to mimic his proof by replacing polynomial growth with exponential 
growth. Continuity of the first derivative in t follows from Theorem 3.5 and the relation 

Lv = O. 

It should be noted that Friedman(1975) and Karatzas & Shreve assume uniform ellip-
ticity for the existence part. Theorem 3.6 does not require this condition. (see also Remark 

2.9.11 of Krylov.) 
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