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RECURSIVE UTILITY:
DISCRETE TIME THEORY*

ROBERT A. BECKER AND JounN H. BoyD III

1. Introduction

Most of the modern literature on capital theory and optimal growth has proceeded
on the assumption that preferences are represented by a functional which is additive over
time and discounts future rewards at a constant rate. Recent research in the study of pre-
ference orders and utility functions has led to advances in intertemporal allocation theory
on the basis of weaker hypotheses. The class of recursive utility functions has been pro-
posed as a generalization of the additive utility family. The recursive utility functions
share many of the important characteristics of the additive class. Notably, recursive utility
functions enjoy a time consistency property that permits dynamic programming analysis
of optimal growth and competitive equilibrium models. The purpose of this paper is to
survey the discrete time theory of recursive utility functions and their applications in optimal
growth theory.

Recursive utility involves flexible time preference. In contrast, the rigid time preference
of the common additively separable utility functions may yield results that seem strange
in ordinary circumstances. A consumer facing a fixed interest rate will try either to save
without limit, or to borrow without limit, except in the knife-edge case where the rate of
impatience equals the interest rate. This problem is especially severe when there are hetero-
geneous households. Unless all of the households have the same discount factor, the most
patient household ends up with all the capital in the long-run, while all other households
consume nothing, using their labor income to service their debt.! The constant discount
rate hypothesis also creates problems for the calculation of welfare losses from capital in-
come taxation. The after-tax return to capital is always the pure rate of time preference.
The capital tax is therefore completely shifted to labor in the long-run. As a result, the
welfare cost of the tax is higher than it would be if some adjustment of the after-tax rate
of return could occur.

Recursive utility escapes these dilemmas by allowing impatience to depend on the path of
consumption. The assumptions made on utility allowing for variable time preference imply
a weak separability between present and future consumption. This leads to a representa-
tion of the utility function in terms of an aggregator function expressing current utility of

* A Spanish version of this paper appeared in Cuadernos Economicos. We thank Peter Streufert for use-
ful comments and suggestions.

! Becker (1980) demonstrated a variant of this result for the case of a borrowing constraint, The relatively
impatient households consume their wage income. This result was verification of a conjecture of Ramsey
(1928).
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a consumption path as a function of current consumption and the future utility derived
from the remaining periods consumption. In this way, recursive utility recalls the two-
period model of Fisher (1930).

Time additive separable utility has dominated research in economic dynamics owing
to the mathematical simplification derived from that functional form. The economic plau-
sibility of additive utility was pushed aside in the interest of obtaining insights and directions
for further research. The body of work surveyed in this paper represents the latest efforts
at studying dynamic optimization models with intertemporally dependent preferences as
embodied in the recursive utility hypotheses. The foundations of recursive utility theory
were set by Koopmans and his collaborators during the 1960’s and early 1970’s. We re-
examine this work in light of new developments in general equilibrium theory with infinite
dimensional commodity spaces. We focus on the optimal growth model as the paradigm
for dynamic models with brief mention of general competitive analysis for exchange eco-
nomies as another illustration of the methods used to analyze the implications of a recursive
utility specification of preferences. Part II of the paper examines the structure of com-
modity spaces with a countable infinity of goods and reviews the properties of recursive
utility functions. Part III explores the variety of notions of impatience and myopia. The
aggregator as the primitive expression of the preference order is taken up in Part IV. The
dynamic properties exhibited by optimal growth paths with recursive utility objectives is
presented in Part V. Concluding comments are found in Part VI and an appendix devoted
to mathematical properties of weighted contraction mappings completes the paper.

II. Recursive Utility and Intertemporal Preferences

1. Introduction

The development of the recursive utility representation of an intertemporal preference
order is most easily cast in a world with a countable infinity of time periods, t=1,2,...,T,...
where there is one all-purpose good which may be either consumed or accumulated. The
description of preference orderings exhibiting recursive separability as well various other
features, e.g. myopia or impatience, is presented as a refinement of standard axioms govern-
ing preference relations in an infinite dimensional commodity space setup.

Let ¢, denote consumption in period ¢ and let k. denote the capital stock accumulated
during period ¢, to be used in production for period £+ 1. The initial capital stock is k.
The sequences of consumption levels C={c]};2,, and of capital stocks K= {k.};>,, are
elements of Re, the space of all real-valued sequences. For the remainder of this part
as well as Part III, the focus will be on the possible consumption sequences; capital will
reappear in Part IV.

This section focuses on recursive utility as an abstract preference order. Accordingly,
we examine the properties of commodity and price spaces in Section Two, with examples
in Section Three. Section Four sets forth the relevant facts about representation of pre-
ferences. Finally, Section Five introduces the Koopmans’ Axioms, which imply that re-
sursive utility takes a special form.
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2. The Commodity-Price Duality

The commodity space, &, is a subspace of R*. Elements of & are denoted by C, X,
and Y. The space & may be chosen as a proper subspace of R=. The case & =¢, the space
of all bounded real-valued sequences, is a popular example. The space R* has a natural
order property: For elements X and Y of R~, define >by X>7 if and only if x,>y, for
all . The partial order relation < may be used to define the set RY, the positive cone of
R, by the relation RY={X<R>=: X>0}, where 0 is the zero vector. The space & inherits
the order structure determined by the partial order >; & . denotes the positive cone of &.
For XeR>, let |X|={|x|};2, denote the absolute value of X. Define the projection oper-
ator = and shift opetaror by zC=c, and SC=(c,,c3,...) for C€R>. The operator z¥C=
(€15€3,---,cx) denotes the projection of C onto the first N coordinate factor spaces. The
N iterate of the shift operator, S¥, is defined by S¥C=(cx,,Cx 1,-..)-

The space R is an example of a Riesz space (or vector lattice). That is, for every pair
of vectors X and Y, the supremum (least upper bound) and infimum (greatest lower bound)
of the set {X,Y} exist in R*. In standard lattice notation, Xv Y=sup{X,¥} and XA Y=
inf{X,Y}.2 We will require & to be a Riesz subspace of R*, that is, whenever X and Y= &,
the elements X'V ¥ and X A Y both belong to &.

An important class of commodity spaces may be defined given a vector w=(wy,wy,...)
&R as follows: let

A,={X€ER>: | X|< 2|o| for some 1>0},

where 2 is a scalar and the notation |X|<|Y| means |x,|<|y;] for all . The set 4, is the
principal ideal generated by w. A, is a Riesz subspace of R*, Notice that for w=(1,1,...)
that A,={~. 1In applications of recursive utility models, the natural commodity space
will typically be a principal ideal. The particular application will determine the choice
of w. For instance, in an exchange economy, » would be the aggregate or social endow-
ment vector. In the Ramsey optimal growth setting, » would be the path of pure accumula-
tion generated by iteration of production function with seed k.

The open-ended horizon characteristic of dynamic economic models means that there
are several Hausdorff linear topologies available for & in contrast to the finite horizon case.
Thus several dual spaces are also available in the infinite dimensional framework. The
choice of a topology for & as well as a selection of the dual space has important economic
consequences. Koopmans (1960) first observed that the continuity hypothesis maintained
on an agent’s preference order contained an implicit behavioral assumption about myopia.
The properties of the dual space show up in the representation of prices realized in a perfect
foresight equilibrium or in support of an optimum allocation.® The representation of the
price system links to questions about the possibility of bubbles in an equilibrium config-
uration.*

% For a general discussion of Riesz spaces with economic applications, see Aliprantis, Brown and Burkin-
shaw (1989).

¢ Debreu (1954) first cast equilibrium models in terms of a commodity-price dual pair of linear spaces.

4 See Gilles (1989) and Gilles and LeRoy (1989).
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We will equip & with a linear topology z compatible with the algebraic and lattice struc-
ture of the space. A subset 4 of a Riesz space &is said to be a solid set whenever | Y| <[ X]|
and XcA imply YeA. In this paper, the topologies will always be locally convex-solid:
the topology is locally convex and has a base at zero consisting of solid sets.

RIESZ DUAL SYSTEM. A Riesz dual system (&, &) is a dual pair of linear spaces such that
(1) &is a Riesz space;
(2) &'is anideal of the order dual &~ separating the points of &;
(3) the duality function {.,+) is the natural one given by the evaluation (X,P)=P(X)=
PX for all X & and all PE &',

In the economie framework, & is the commodity space and &’ is the price space. The
evaluation (+,P) defines a linear functional on & interpreted as a price system. The assump-
tion that ( £,7) is a locally conbex-solid topology implies the dual system ( &, & ") is a Riesz
dual system where & ' is the z-dual of &.5 Given ( &, &>, denote by ¢( &, & ') the weak
topology and 7( &, &) the Mackey topology of the dual pair (&, & ).

For the Riesz space &, any set of the form

X, Y]={Ze &:X<Z<Y}

is called an order interval of &. The Riesz dual system ( &, & ") is symmetric whenever every
order interval of £ is ¢( &, & ’)-compact.®

3. Examples of Commodity Spaces

The Riesz dual system (R*,c,,), Where ¢, is the Riesz space of all eventually zero se-
quences, is a symmetric Riesz dual system. The evaluation is defined by the formula

T
X, Py=Y" pox
t=1

where P={p.} and p,=0 for t>7. The space R is a Fréchet space, i.c., it is a complete
metrisable locally convex linear topological space. The Fréchet metric dr is defined by

= 1 [x: =yl
dr (X, Y)—; 28 14ix—=y °

The space (R*,dr) is also a separable metric space. Moreover, the Fréchet topology is
equivalent to the ¢(R>,c,)-topology, the z(IR=,cq0)-topology, as well as the product topology
on R viewed as the product of countably many copies of R. Convergence of sequences
in (R*=,dr) is coordinatewise.”

The Riesz space & =4¢> underlies two interesting commodity-price dual pairs. First,

& See Aliprantis, Brown and Burkinshaw (1989, pp. 99 and 101).

¢ There are several equivalent properties for symmetric Riesz dual systems. See Aliprantis, Brown and
Burkinshaw (1989, p. 102).

7 These facts about R= may be found in Liusternik and Sobolev (1961). General properties of Fréchet
spaces may be found in Robertson and Robertson (1973).
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consider the dual pair (£<,ba), where ba is the space of bounded additive set functions (or
charges) on the positive integers. If ¢~ is endowed with the supremum norm topology,
then ba is the norm dual of 6. The ||+||.c norm of X is defined by the formula

I\Xllw=s§1p AR

and the space (£=,]| +|l) is a Banach space, i.e., it is a complete normed linear space. The
spaces £ and ba are paired by means of the bilinear form {X,II} defined by

X, My = f X(1)dIL

If IIcba is a countably additive charge, then the Radon-Nikodym Theorem [Dunford and
Schwartz (1957, p. 181)] implies there exists a unique P& 4%, such that

(X, H>=Zp:xz
t=1

for each X=f=. The countably additive elements of »a have natural price interpretations.
However, there are continuous linear functionals on (£%,}|+||..) which are not identifiable
with price systems in this fashion.® A charge failing to have a countably additive part is
known as a pure charge (purely finitely additive measure).® In general, a charge may be
uniquely decomposed into a maximally countably additive measure and a pure charge;
this is the Yosida-Hewitt Decomposition Theorem (Bhaskara Rao and Bhaskara Rao, 1983,
p. 241). Put differently, ba is the direct sum of ca, the space of countably additive measures,
and pch, the space of pure charges. The space (£%,|+||) is also a Banach lattice or com-
plete normed Riesz space. Aa such, the ||s||.-topology is locally convex-solid and (£,
ba) is a Riesz dual system.

The second interesting pairing of 4> with a dual space is the (£=,4%) specification, where
£' is the space of all sequences X for which the norm

oo
X1 ="l
t=1

is finite. The evaluation (X,P) is the natural one defined by

X, Py=Y pixe.
t=1

This pair constitutes a symmetric Riesz dual system.

The pair{ £=,6*) has several interesting topologies. For example, the =(£=,£')-topology
and the weak*-topology, ¢*(4>,f'), have been used in economic applications.’® Another
important topology is the strict topology defined by seminorms of the form

8 Banach limits are an example.
9 See Bhaskara Rao and Bhaskara Rao (1983) for details on the properties of ba.
10 Aloaglu’s Theorem implies that the order intervals of ¢~ are weak*-compact.
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|lX||,=Sltlp [xerel,

where lim,y,=0. Conway (1967) proved that £~ endowed with the strict topology is a strong
Mackey space.!! Consequently, the strict topology is the finest locally convex Hausdorff
topology for the dual pair {(£=,£'),

A third class of examples is based on consideration of the principal ideal A, defined
for w=(a,a%...) when a>1. The case a=1 corresponds to the situation where A,=¢>.
Let 5>« and define the g-weighted 6= norm (or g-norm),||s||s, by

IIXII,s=S:1p [xe/ B},

The g-topology on A, is the norm topology induced by the g-norm. If a=g, then |||,
is called the a-norm and the corresponding topology is the a-topology. The space A, en-
dowed with the a-norm is an AM-space with unit.'> The a-normed space A4, is lattice iso-
metric to £~: the mapping £:4,—£>, defined by

E(xyy Xgy vevy Xty )= s Ta e e T

<x1 X X
a’ a a’

’

is a linear isometry. The a-norm dual of A4, is denoted by A.; clearly A, is isometric to
ba (written A, ~ba). For g>a, the g-norm is a lattice norm and the B-topology is a locally
convex-solid topology on 4,.® The normed Riesz space (4.,||+||s), 8>a, may be embedded
lattice isometrically in ¢, (endowed with the supremum norm). Here c, is the space of

real-valued sequences convergent to 0. Indeed the mapping ¢:4,—c, defined by

X, Xa Xt )

(X1 Xgy oeny X, ...)=(—‘B—, g ?,
is a lattice isometry. Moreover, ¢(4.,) is dense in ¢,.** It follows that the norm comple-
tion of ¢(4.,) is ¢, and the norm completion of (4.,||+|]s) is lattice isometric to ¢,. Let A*
denote the g-norm dual of 4,. Since 4% and the dual of the norm completion of (Aaosll*lls)
coincide, A7 is lattice isometric to #'=c§. Finally, note that the g-norm dual (8> a) is one
of the seminorms used to define the strict and Mackey topologies on 4=, so the p-topology
is weaker than the strict (or Mackey) topology on £*.

We will frequently use a family of weighted norms and weighted ¢= spaces. Let 6=
{6:} be a sequence of strictly positive numbers. Define the (=) ©-norm by | X|s =sup;| X;|/6..
The associated weighted £ space is £(@)={X:|X|s is finite}.1> Consider the mapping
V defined by (VX),=x,/6.. Clearly V is an isometry of £=(®) onto £. Since £= is a Banach
space, so is ().

* The Mackey topology is the topology of uniform convergence on the weak*-compact, convex, circled
(balanced) subsets of £!. The strong Mackey topology is the topology of uniform convergence on the weak*-
compact subsets of 4.

12 The lattice norm || X [[=inf {21>0:)X|<aw} coincides with the a-norm.

13 Recall that all the lattice norms turning 4. into a Banach lattice are equivalent [see Aliprantis and Bur-
kinshaw (1985, p. 170)]. The space (A,||+||g) is a normed Riesz space but not a Banach lattice when > a.

1 coD¢P(Aa)Dego and ¢y is a supremum norm dense Riesz subspace of ¢,.

13 This is the Riesz ideal of Re generated by &, and | X|e is the associated lattice norm.
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We will mainly focus on the case §,=pg¢~* for some g=1. These norms can be thought
of as having the discount factor 1/g built in.?¢ 1In this case, the positive orthant of £<(9)
will be denoted by £3(8) and the @-norm by |X|,. The sets £3(8) play an important role
throughout this paper.

4. Preference Orders

A dual pair { &, &> is chosen for the commodity-price duality. We require { &, &' to
be a Riesz dual system with & a Riesz subspace of R*. The preference relation of the plann-
ing agent is denoted by . The planning agent might be a central planner as in optimal
growth theory or an infinitely lived household in an intertemporal market setup. It is assumed

PREFERENCE RELATION,
(U1) = is a reflexive, complete, and transitive binary relation;
(U2) > is a monotone relation, i.e. X> Y in &, implies X Y;
(U3) = is a convex relation, i.e. the set {Y & &,: Y X} is convex for each X & .

Properties (U1)-(U3) of the preference relation are based on the algebraic structure
of &. Topological considerations will be introduced shortly in the form of continuity
hypotheses. The derived strict preference relation > is defined by X > 7Y if XY and not
Y>=X. The indifference relation ~ is defined by X~Y if X>>Y and Y>=X hold.

Endow & with a linear topology . Continuity of the preference relation says roughly
that programs that are close to one another are ranked similarly with respect to other pro-
files. More formally:

(U4) x is a continuous relation, i.e. the sets {Y& &, : XY} and {Ye &, : X <Y} are
z-closed.

The continuity hypothesis is fundamental. The variety of alternative topologies for
Z'raises the question of whether or not there are behavioral implications implicit in the choice
of a particular topology for &. We will take up many of these issues in Part III.

It is worth noting that there are examples of preference orders which fail the continuity
test on all of R~. Consider the dual pairing (R*,cq,> where R> has the Fréchet metric
topology. The preference order

X =Y if and only if inf x,>inf y,.
¢ t

is known as the maximin order’” 1t is not continuous in the Fréchet distance, although
{(Ye &,.: Y-X} isdp-closed. The problemisthat {Ye &, : XY} need not be a dp-closed
set.

Consider the following relation on RY:

XxY ifand onlyif > ot1x1> > o+l
t=1 t=1

16 Topologies of this type have been used by Chichilinsky and Kalman (1980) and Dechert and Nishi-
mura (1980) to study optimal paths.
17 This preference relation was introduced by Rawls (1971) and is also known as the Rawisian criterion.
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where §,7(0,1) and da”<1. In this example, « is a parameter representing the growth
rate of capital in the optimal accumulation model or the growth rate of the endowment
in an exchange economy. Beals and Koopmans (1969) showed this preference relation
is not continuous at the origin of RY in the dr metric. However, it will turn out that this
relation is continuous on a subset of the commodity space consistent with the feasible
allocations. This fact is, in part, the source of our interest in the principal ideal 4,,.

Continuity of the preference relation is important for establishing the existence of
optimal allocations.® Continuity of > also is critical in demonstrating the existence of
a utility function which carries the properties of the preference relation in a convenient
analytical format. Since most of optimal growth theory is cast in the framework of a
utility representation of the planner’s preference order, it is natural to present conditions
sufficient for the existence of a continuous representation of .

A function U: x—R is a utility function representing = on a set xC &, provided

X=Y ifand onlyif U(X)=U(Y).

The following theorem of Debreu (1954,1959) gives one answer to the representation prob-
lem.

SEPARABLE REPRESENTATION THEOREM. Suppose a preference relation = satisfies (Ul)

and (U4) on a separable connected set X. Then = is represented by a continuous utility
Sunction U.

The Separable Representation Theorm applies to preference orders on x=RY where
X is given the relative product topology inherited from R~. As R> is a separable space,
a continuous utility function exists given (Ul) and (U4). Another application occurs in
the case & =4, equipped with the g-topology (8>a): ¢, is a separable Banach space. Set
A(w)={X€R=: |X|<w} and note 4,=U ;>,24(w).

LemMA 1. Let a<p and o,=a*. The g-topology and the relative product topology coincide
on 1A(w) for each 1>0.

Proor. Clearly the g-topology is stronger than the product topology on A,. Suppose
C*—C in the product topology. Given ¢>0, choose M such that i(e/g)¥ <e. Since C*—s
C, thereis an N with sup{|c} —c|/g*: t< M} <e for n> N, and C*—C in the g-topology. But
then [|C*— C|l;<2e for n>N, and C*—C in the g-topology. The two topologies are iden-
tical. [

It is crucial that g>«. Majumdar (1975) gives an example illustrating way norm-
bounded feasible sets are not compact in the norm topology. The same sort of problem
occur here if f=a. In fact, f=a=1 is precisely Majumdar’s case.

The coincidence of the relative product and g-topologies for §>a on the set x=A4}
implies X is a separable and pathwise-connected subset of a normed linear space. There-
fore, the Separable Representation Theorem yields a g-continuous utility function for each
p-continuous preference relation.

18 Clearly, only the set {Y&&.: Y =X} need be z-closed for the existence of optimal allocations in the pres-
ence of a r-compact constraint set.
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As a topological space, (4,]|+||) is not separable. Thus, even if 3 is ||+||.-continu-
ous on ¢~, we cannot apply the Separable Representation Theorem in order to represent
Z by a continuous utility function. However, Mas-Colell (1986) exploited the order
structure of & and the monotonicity axiom (U2) in the manner of Kannai (1970) to deduce
the existence of a continuous utility representation of > on a portion of the program space.

MONOTONE REPRESENTATION THEOREM. Suppose a preference relation = satisfies (Ul),
(U2), and (U4) on a non-empty order interval xc & .. Then there is a continuous utility
Junction U: x—[0,1] representing the preference relation 25.1°

Proor. Let x=[A,B] where A,B€ & .. Since B> A, (U2) implies Bz A. If AzB, there
is nothing to prove. So, let B>>A4. Consider the set

J={94+(1—0)B: 0<9<]1]}.

Since 6—04+(1—6)B is a homeomorphism from [0,1] to J, the separable representation
theorem yields a continuous f: J—[0,1] such that f(4)=0, f(B)=1, and f(X)> f(Y) whenever
X,YeJ and X2Y. For any X<y let v(X) be such that w(X)=J and w(X)~X. Because
J is connected and a subset of the union of the closed sets {¥: YzX} and {Y: Xz Y}, such
a v(X) must exist. Now set U(X)=f(»(X)). Obviously, U is a utility function. Since U
is onto [0,1], given any ¢t E[0,1], there exists an X €% such that U(X)=t. The sets

Ut 0)={Y: Y =X}
U~ o0, t]={Y: XY}
are closed by (U4). Therefore U is continuous. []

The Monotone Representation Theorem handles many of the examples we shall discuss.
For w=(1,1,...), the Monotone Representation Theorem applies to the Beals-Koopmans
example when 2=[0,0] and A4, has the a-topology. In the optimal growth model, the order
interval is defined by taking » to be the path of pure accumulation with seed k,. If there
is a maximum sustainable stock >0 and the production function is stationary, then the
order interval [0,0] with w.=b works. The Monotone Representation Theorem implies
that a preference order defined over &, may only admit a continuous utility function on
[0,0). This order interval is sufficiently “large’ enough to contain all economically relevant
consumption programs. Paths offering consumption C&[0,0] cannot be realized by any
feasible plan of accumulation given the initial stocks. As such, those programs may be
ignored for the theory developed to analyze the existence and characterization of optimal
allocations. Finally, we remark that the order property of & was the critical structural
feature of the choice space used to obtain the representation of the preference relation.

The existence of support prices or a competitive equilibrium price system in infinite
dimensional commodity spaces is another point where finite horizon results do not readily
carry over to the infinite horizon models. The familiar separation theorem argument pro-
ving the Second Fundamental Welfare Theorem for a discrete time finite horizon .model
relies on the fact that the positive cone of a finite dimensional Euclidean space has a non-

19 The proof is a slight repackaging of Mas-Colell (1986, p 1044).
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empty norm interior. Debreu (1954) showed the Second Fundamental Welfare Theorem
could be demonstrated for economies modeled on infinite dimensional spaces with this
property. The positive cones of the spaces (£%,||+||l~) and (A.,||¢|]l.) have non-empty
interiors; Debreu’s theorem applies to these cases.?® Unfortunately, the positive cones
of the spaces (R*,dr) and (A.,}}+||s), 8> a, have empty interiors. The interior of £% is also
empty in the =(4~,4")-topology. Nearly thirty years after the publication of Debreu’s paper,
Mas-Colell (1986) gave a demonstration of the Second Fundamental Welfare Theorem
for spaces whose positive cone, £, has an empty interior. He required & to be a topologi-
cal Riesz space. He introduced a new restriction on preference orders, called properness,
which restricted marginal rates of substitution in a manner allowing use of the separation
theorem from convex analysis to deduce the welfare theorem. A detailed survey of the
welfare theorems for infinite dimensional commodity space models may be found in Becker
(1991a). We briefly review the notion of proper preferences in order to discuss an appli-
cation of myopic utility functions in an exchange economy setting and to contrast properness
to other restrictions on the marginal rates of substitution in Part III on impatience and
discounting,.

Let & be a Riesz space equipped with a locally convex linear topology ¢ and X a prefer-
ence relation on &,.%

UNIFORM PROPERNESS. We say that = is a uniformly t-proper preference relation on & if
there exists a non-empty z-open convex cone I' such that

a) I'n(— &+¢; and
b) X+D)N{Y:Y>X}=¢ forall X &,.

A uniformly proper preference relation bounds marginal rates of substitution and is
intimately linked to the possibility of supporting a weakly preferred set by a continuous
linear functional. Formally:

Remark. If > is a convex z-proper preference relation on £, then there exists a P€ &,
P+0, such that (X,PY><<(Z,P) for all Ze {Y: YZX}.

For preference relations defined on either a space &, with non-empty z-interior or &
is an AM-space with unit, then uniform properness is a strengthening of the monotonicity
axiom.??

Preferences on (A4.,|{+|l.) and (£=,||*||) are uniformly norm-proper if 2 is strictly
monotone as in axiom (U2') below.2®

MONOTONICITY.

(U2’) x is a strictly monotone relation, i.e. X > 7Y, X+ 7, in & implies X > Y.

20 Majumdar (1975) derives support prices for the one sector optimal growth model in discrete time using
a separation argument in the spirit of Debreu’s paper for the commodity space (£,]]+|]=).

21 To simplify our exposition, we take the Properness Characterization Theorem due originally to Mas-
Colell (1986) and presented in Aliprantis, Brown and Burkinshaw (1989, p. 117) as the basis for our defini-
tion of properness.

22 See Aliprantis, Brown and Burkinshaw (1989, p. 118) and Mas-Colell (1986, p. 1043).

3 The maximum order is a monotone, but not strictly monotone preference relation.
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Preference relations defined on RY are not, in general, uniformly proper. In fact,
there are no utility functions on RY which are strictly monotone, quasi-concave, dgr-con-
tinuous, and uniformly dp- proper 24 This means that the preference relation defined by
the utility function

UO)=Y s-1u(cy), | (1)
=1

is not uniformly dr-proper on RY for 0<d<1 and u bounded, strictly increasing, and
strictly concave on [0,c0). The parameter § is called the discount factor and 5-1—1=p is
called the pure rate of time preference. The function u is known as the one-period reward
or felicity function.?> 1In order to guarantee convergence in the series (1), we temporarily
assume  is bounded. Since this U is an important member of the recursive utility class,
the properness condition would seem to have limited applicability in the intertemporal
framework. However, the following result from Becker (1991b) illustrates the potential
for the g-topology to yield a positive result.

ProrosiTiON 1. If U is strictly monotone, f-norm continuous utility function on A} for o=
o', then the underlying preference order - is a uniformly a-norm proper preference relation,

Proor. Since the g-norm is a lattice norm on 4,, the g-topology is coarser than the a-
topology; it follows that the preference is a-norm continuous. Hence a g-norm continuous
utility function is continuous in the a-topology. Let 27 be the open unit ball in 4,, i.e. ¥ =
{X€4.:[|X]l.<1}. LetT be the cone generated by the set (—w+ 27). Clearly, I'cAg,
the negative cone of 4,. Notice that YT implies ¥<0 and U(X+Y)<U(X). Hence
X+DN{Ze4,: UZ2)>UX)}=¢. O

It is useful to record the fact that > is uniformly proper in the a-topology in the case
where u obeys a classical Inada condition at zero in (1). For example, set u(c)=arctan
(v¢). A result due to Back (1988) shows examples of utility functions of the form (1) obey-
ing the Inada condition at zero would fail to be uniformly proper in the (£ 4)-topology.

5. Recursive Ultility: The Koopmans Axioms

Theories of intertemporal decision making further specialize the axiom system (Ul)-
(U4) to capture the essential role of time in the preference order. The purpose of this section
is to present an axiomatic basis for a recursive utility representation of 3= to exist. Before
developing this axiomatic structure, it is worthwhile to introduce the recursive utility con-
struct through three examples.

A familiar objective in optimal growth theory is the time-additive separable (TAS)
utility function (1). The TAS form has two interesting properties. First, the marginal
rate of substitution between any pair of adjacent dates depends only on consumption at
those dates. Formally,

* See Aliprantis, Brown and Burkinshaw (1989, p. 174).
* u is usually assumed to be twice continuously differentiable on (0,00).
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w(ce)

MRS, ,141(Ceon)= o' (Cerp)

In particular, for constant consumption profiles denoted by C=Con(c;=c for all 1),
MRSt,t+1(Ccon):5_1, ( 2 )

which is independent of Ccon.

The second property is that U is recursive. The behavior embodied in the TAS spec-
ification of U has a self-referential property: namely, the behavior of the planner over the
infinite time horizon t=1,2,... is guided by the behavior of that agent over the tail horizon
t=T+1,T+2,... (for each T) hidden inside the original horizon.?¢ For the TAS functional,
recursivity means the objective from time 7+1 to + oo has the same form as the objective
starting at T=0 (except for some time shifts in consumption dates). Formally, (1) may
be rewritten as
=53 T oo
Zé“lu(ct) =Z§‘"lu(ct) + 67 Za‘_lu(CH—I‘)- ( 3 )
t=1 t=1 =

t=1

For T=0, (3) coincides with (1).

An important implication of the recursive structure found in the TAS utility specifica-
tion is that intertemporal planning in a stationary environment is time consistent in the
sense first used by Strotz (1955). If the planner is free to revise his decisions at some time
T>0, then his decisions at 7 will depend on the past only through accumulated assets de-
fining the current magnitude of the state variable. Decisions at 7 will not depend directly
on past consumption patterns. Indeed, recursive utility is the intertemporal analog of
weak separability of future consumption from present consumption as formulated in standard
finite horizon demand theory.?’

The TAS objective functional has been criticized by various authors, dating back to
Fisher (1930), on grounds that the pure tare of time preference should not be independent
of the size and shape of the consumption profile. When preference are time-additive, this
independence is a direct consequence of the strong separability property embodies in (2).
Hicks (1965, p. 261) argued against the TAS formulation on grounds that successive con-
sumption units should exhibit a strong complementarity between them. The force of the
Hicksian critique is that the amount of consumption in period 1 the planner would be wil-
ling to give up to increase consumption in period T should also depend in some way on
the planned consumption in adjacent periods (e.g. periods 7—1 and 7+1). The additivity
hypothesis denies this connection. In essence, Hicks argued that the potential for smooth-
ing consumption in the presence of complementarity between priods is lost in the acceptance
that felicities are independent as found in the TAS specification of utility. Lucas and
Stokey (1984) argued that the only basis for studying the TAS case is its analytic tractability.

Koopmans (1960) laid the foundation for eliminating both deficiencies of the TAS

26 We are transposing Gleick’s (1987, p. 179) characterization of recursive structure into an economic
context. .
27 Consult Blackorby, Primont, and Russell (1978) for details on finite horizon discrete time demand theory.
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functional by introducing recursive preferences. The recursive utility class 1s designed
to introduce a degree of generality that is consistent with Fisher’s time preference views,
offers time consistent .optimal planning, and preserves much of the analytical convenience
of the TAS case.

The second example of a recursive utility functional is based on an uncertain lifetime
model. Let p, denote the probability that the agent dies at time ¢ and let g.=1—p, denote
the survival probability at r. Let Uy=U(0...) be the utility of the agent if dead. Epstein
(1983) showed that

U(O=-) expl- £ u(c)] (4)
t=1 T=

is a von-Neumann-Morgenstein index.22 We may use (4) to calculate the expected utility
of a consumption stream C, EU(C). Assuming the probability of death is independent of
t, a routine calculation yields the expression

EU(C)=pU,—(1 —on)ZeXP[— [u(c)—log(l—p)]] (5)
t=1

Equation (5) may be further transformed into the equivalent representation
EUXC)=-} exp[~ X [u(c)~log(1-p)IL. (6)
t=1 T=

The expected utility function EU* converts the preferences of the agent in the stochastic
lifetime problem into the equivalent deterministic payoff functional (6). The utility func-
tional embodies in (6) is a member of the recursive class. Indeed, following the derivation
of (3) in the case (6) leads to?®

(=] T
=Y el B uell=—3 exp[- 5 u(c]
t=1 = t=1 =

T
“Sexpl- 5 ule)] 3 exp - % ue)
t=1 =1 =T+l

i=T+1

which is a time-shifted version of (4). We call this the (EH) utility function after the con-
tinuous time form introduced by Epstein and Hynes (1983).3°
The third example is based on the maximum functional defined by

U(C)=inf . (7)
Clearly,

t=2T+1

-U(C)=inf ¢,=inf {¢,, inf ¢;} =inf {c},Cqs..., cp, Inf c.}. (8)
t 3 >2 .

28 See Epstein and Hynes (1983) for a deterministic account of this functional in continuous tlme
2 We assume p=0 for sunphmty
% The EH utility function is closely related to the continuous time Uzawa (1968) functional.
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This computation shows the maximum functional also enjoys a recursive structure in com-
mon with the TAS and EH cases.

Given a preference order 2= on %, a utility representation, U, of 2 is a recursive utility
Junction if there is a real-valued function u defined on R, and a real-valued function W de-
fined on u(R,) x U(x) such that

U(C)=W(u(c1), U(SC)). (9)

The function W is called the aggregator and equation (9) is called Koopman’s equation.
We refer to v as the felicity function. A recursive utility function expresses the weak
separability of the future from the present.3* Fisher’s two-period conception of an agent
contemplating current consumption and future utility may be modeled by recursive utility
functions.

The three examples introduced above fall under the recursive utility definition. For
the TAS case, the aggregator is W(C,y)=u(c)+d5y. The EH functional has W(cy)=
—(1+p)exp(—u(c)) as an aggregator. The maximin aggregator is W(c,y)=min{c,y}.

We turn to describing sufficient conditions for 2z to exhibit a recursive utility repre-
sentation. The axiom system employed differs slightly from those in Koopmans (1960).
Let x be a path connected subspace of &,. The notation (z,X) denotes the sequence (z,x,,
Xs,...). We assume the shift operator S defined on & is continuous as is the embedding
z1—-(z,X) of X into & for each X. The projection of &, onto the first coordinate subspace
is denoted = &,. The Koopmans axioms are:

KooPMANS AXIOMS.

(K1) z is a stationary relation, i.e. (z,X)Z(z,X") if and only if X>X' for all zex & ;

(K2) z exhibits limited independence, i.e. for all z,z',X, and X',(z,X)=(z’,X) if and
ounly if (z,X")xz(z’,X");

(K3) = is a sensitive relation, i.e. there is an X &, and a z,z' €z &, with (2, X)=(z,X).

Axiom (K1) states the preference order is independent of calendar time. Axiom (K2)
says that preferences between present consumption alternatives are independent of future
consumption and that preferences over future consumption streams are independent of
the level of consumption. The combination of axioms (K1) and (K2) implies that merely
postponing a decision between two programs will not alter the rank order. The time
inconsistency problem raised by Strotz (1955) does not arise when preferences are stationary
and satisfy limited independence. Axiom (K3) rules out complete indifference between
levels of current consumption. It ensures that the preference order is non-trivial. Note
that sensitivity follows from strict monotonicity (U2').

Koopmans’ (1960) result is that (K1)-(K3) are sufficient for 2 to have a recursive utility
representation. In such cases, we say that utility is recursively separable.

RECURSIVE REPRESENTATION THEOREM. Suppose a preference relation zZ satisfies (Ul)-
(U4) and (K1)-(K3) on a path-connected set XC & .. If 2o has a continuous utility repre-

31 We use standard terminology from demand theory, c.f. Blackorby, Primont, and Russell (1978).
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sentation U, then there are continuous functions u and W with U(C)=W(u(zC),U(SC)).
Further, W is non-decreasing in both u and U.

Proor. Take Cysx and define u(z)=U(z,C,). Note that wu(z)=u(y) is equivalent to
U(z,Cy)=U(y,C,) which is in turn equivalent to U(z,C)=U(y,C) for all C by (K2). Since
U depends only on u(z), there is a function F with U(z,C)=F(u(z),C).

Now if U(C)=U(C"),U(z,C)=U(z,C’) for all z by (K1). Thus F depends only on U(C)
and there is a function W with U(z,C)=W(u(z),U(C)).

To show W is non-decreasing, consider z and z’ with u=u(z)>u(z")=u'. Then
U(z,Cp)= U(z',Cy) so U(z,C)=U(z',C) for all C. Applying the definitions to the last in-
equality yields W(u,U(C)= W' ,U(C)). A similar argument shows that W is non-de-
creasing in U. Continuity follows from the following lemma. []

LemMA 2. If U is continvous, then u and W are continuous.

Proor. Since u(z)=U(z,C,), u is continuous.

We next show W is separately continuous in # and U. Fix u=u(z) andlet U, T U. Take
C, and C with U(C)=U, and U(C)=U. Let {C(t)} be a path from C, to C. Since % is
a path-connected space, C(t)ex. Clearly U({C(2)})2[U,, U] since U({C(#)}) is connected.
Take t, with U(C(t,))=U.. Let t* be any cluster point of {t,}. As C(t,)—C(t*), we have
W, Us)=U(z,C(1,))— U(z,C(t*))=W(z,U). This also applies to U, | U, so W is continuous
in U for fixed . Similarly, W is continuous in « for fixed U.

Now let (#n,Un)—(w,U). Define v, =sup s nttn, Vo =UDm>nUn,yn =i0f > 4ttm, and Y,=
infp~p,Un, soO

W(vn, Vo) = W(ttn, Un) = W(pn, Ya).
Fix m, then for n>m:

W(m, V)2 W(¥n, Va) = W(u, U).
By letting n— co and using the continuity of W in U, we see that

W(vm, U)Zlim W(v,, Vy)= W(u, C).

Note that LimW(v,,V,) exists since {W(v,,V.)} is a non-increasing sequence. Now let
m— oo to get the result. Using a similar argument on (y,,Y,) completes the proof. []

RrMARK. If monotonicity axiom (U2) is strengthened to (U2’), then W is strictly increas-
ing in future utility.

Koopmans (1960) and Koopmans, Diamond, and Williamson (1964) assume > is
continuous with respect to the supremum norm topology. However, as noted subsequently
in Koopmans (1972b), this type of uniform continuity is not required for the Recursive
Representation Theorem.

The Recursive Representation Theorem assumes > has a continuous utility repre-
sentation. If x is an order interval and (U2) is strengthened to (U2’), then the Monotone

Representation Theorem implies utility is recursive.
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COROLLARY. If X is an order interval in &, and (Ul), (U2’), (U3), (U4), and (K1)-(K3)
hold for a preference order =, then ZZ has a recursive utility representation.

If x is a separable space, then this is also holds by the Separable Representation The-
orem. For example, consider the space £<(a) endowed with the ||+||;~norm, and having
B>a. This is a separable space and pathwise-connected normed linear space. Therefore,
any preference order on £*(a) which is g-continuous, stationary, obeys the limited inde-
pendence, and sensitivity axioms must have a recursive representation.

The role of Koopmans’ sensitivity axiom is to insure a non-trivial representation of
U in terms of the aggregator. If sensitivity fails, then utility functions such as U(C)=A(C)
on X=4¢> are admissible where A is a Banach limit.3?

BANACH LIMIT. A Banach limit is a linear functional such that:
(B1) A(O)=0if C>0; ,
(B2) A(C)=A(SYC) for N=1,2,...);
(B3) lim inf;c, < A(C) < lim sup;c,.

~ An example of a utility function which can be extended to a Banach limit on ¢3 is the
average consumption function

1 Z
Banach limit utility functions yield W(u,U)=U by property (B2) and are not really repre-
sented by the aggregator: any Banach limit satisfies this recursive relation,3?

Koopmans’ Recursive Representation Theorem says that a recursively separable utility
function determines a unique recursive aggregator W. Streufert (1990) investigated the
converse: does W uniquely determine U?% This uniqueness problem can be cast as an
investigation of the uniqueness of a solution U to Koopmans' equation given W. Streufert
introduces the notions of biconvergence and tail-sensitivity to provide an affirmative answer
to this issue. Biconvergence of U is defined for a fixed order interval [0,0]C &, where o
has strictly positive components. Biconvergence requires both that a “poor” consump-
tion profile cannot be preferred to a program eventually offering a “tail” of » (upper
convergence) and a “good” consumption profile cannot be preferred by another eventually
offering 0 consumption in the tail (lower convergence). The biconvergence property of
U is invariant to continuous monotonic transformations of U. The basic intuition for
tail insensitivity is similar., The difference between the two concepts is that tail sensitivity
is an ordinal property of the utility scale. Streufert proved that under the biconvergence
hypothesis, U is the unique “admissible” solution to Koopmans’ equation in W. His
converse proposition says that if U is not biconvergent, then Koopmans’ equation has mul-
tiple: “admissible” solutions. In this sense, biconvergence is the weakest condition de-

32 A Banach limit is an example of a pure charge on ¢=.

33 | ooking ahead to Part 1V, a Banach limit utility function has §f7=1 whereas we require §f7<1 for
the aggregator framework.

3-The aggregator was first taken as a primitive for preferences on £ in Lucas and Stokey (1984). The
subsequent analysis of Boyd (1990) extended their results to larger sequence spaces. Lucas and Stokey as
well as Boyd attacked the uniqueness problem. Their approach is the heart of Part IV.
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livering a unique solution to the Koopmans equation in W. .

Fix an order interval [0,0]C &.. The choice w=(a,a?...), =1, is possible. ~We assume
w:>0 for each ¢, so @>>0. The function U is said to be upper convergent over [0,s] if for
every C€j0,0] ‘ '

2]im U@TC, STw)=U(C).
The limit always exists since U is monotone and (z7C,S7w) = (x7+C,S7+e). The function
U is said to be lqwer convergent over [0,o] if for every C&[0,0]

Tlim U(z?C, ST0)=U(C).
The limit always exists since U is monotone and (z7C,ST0)<(z7+1C,S7+0). The function
U is said to be biconvergent over [0,0] if it is both upper and lower convergent over [0,w].
Notice that if U is a Banach limit, it is not lower convergent: let C=(1,1,...), then A(z7C,
S70)=0 for each T and A(C)=1. We also notice here that 0 has a special role in the de-
finition of biconvergence. In particular, the TAS from with logarithmic felicity cannot
be lower convergent on [0,w].

Let U;:p & —[0,00] denote a utility representation of . U; need not be monotonic
or stationary, hence it does not have to equal U-—the primitive in Koopmans’ Recursive
Representation Theorem. Such a function U, is a gereral solution to Koopmans’ equation
(here u(z)==z) if there exists a sequence of subutility functions (U,,Us,...) such that for all
Ce &, and for all t>0:

U(S"™ 1) =W(c:, Ursa(S*C)).

A general solution U, is admissible if for all C&[0,0], U(0) < Uy(C) < U(w).
The following example drawn from Streufert (1990) illustrates the need for the admis-
sibility qualification. Let w=(l,1,...) and U have the TAS form

U(O)=>_ o .
=1
U is biconvergent over [0,0]. The aggregator W(c,U)=c+6U has the inadmissible solution
defined by
U(S*10)=U(S*1C)+ 45—
when S$*-1Cec,, and
U,(St-1C)=U(St-1C)

otherwise. Streufert’s first theorem is:3%

35 Streufert (1990, p. 81) notes the aggregator is strictly increasing in future utility is weakly increasing,
after-period-1 separable, and stationary. The maximum utility function generates an aggregator that is
only non-decreasing in future utility. We use a weaker form of limited independence than Streufert. For
this reason we require (U2") instead of (U2).
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BICONVERGENCE THEOREM. If U is biconvergent over [0,0), and z satisfies (U2'), then for
any admissible general solution U, to Koopmans’ eugation, U;=U over [0,0].3

ProoF. Choose C€&€[0,w]. Admissibility implies for each t>1 that U, (S*C)=>U(0),
otherwise W strictly increasing in future utility would imply
U,(z*0, StC)=W(0, ... W(0, U,,(S¢C))...)
<W(O, ...W(0, U, 0, ...))...)=U(0),

which would contradict admissibility. Similarly, admissibility implies that for each t;
Ui11(StC) < U(Stw).
These two bounds on U,.,(StC) imply for each ¢ that:

Ux*C, Stw)=W(cy, ... W(c:, U(S*w))...)
> Wey, ... W(cr, Uisi(S*C))...) =Uy(C)
> Wiy, ... W(ci, U(S0))...)=U(x‘C, S0).

Biconvergence implies these upper and lower bounds on U,(C) both converge to U(C).
Therefore U and U, agree on [0,w]. [

Streufert also proved a converse to the Biconvergence Theorem.

NON-BICONVERGENCE THEOREM. Suppose that for every C=[0,0] and every period t > 1, U(z*C,
[0,Stw]) is an interval. Then if U is not biconvergent over [0,0], there exists an admissible
solution U, to Koopmans’ equation in W such that U,# U over [0,0].

Proor. See Streufert (1990, Theorem B). [

Banach limits provide a family of non-biconvergent utility function examples. Any
TAS utility function which is not bounded below on [0,w] is not lower convergent, hence
it also must fail to enjoy the biconvergence property. The aggregator for these utility
functions cannot uniquely determine U over [0,0]. The question of uniqueness is further
discussed in Part IV where the focus is on the aggregator as the primitive concept.

Koopmans’ (1972b) explored the existence of a recursive utility representation of a
preference order. He showed that under a slight strengthening of (K2), so that all com-
plementarities between adjacent periods consumption could be excluded, utility must be
additive across time periods. Given the stationarity axiom, he concluded that utility took
the TAS form. The key to the additive representation is the following axiom:

EXTENDED INDEPENDENCE,
(K2") = exhibits extended independence; for all z,w,z’,w’,C, and C".

(z, w, O)z(z’, w', C) if and only if (z, w, C)z(=', w', C').

Extended Independence says that preferences over the first two periods consumption

3 After Streufert (1990, pp. §3-84).
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are independent of consumption from period three onwards. The axiom responsible for
the TAS representation is:

COMPLETE INDEPENDENCE.
(K2*) z exhibits complete independence; axioms (K2) and (K2') hold.

ADDITIVE REPRESENTATION THEOREM. Let & =A, for some constant sequence o=cwqon>0.
Endow & with the topology induced by the lattice norm. Assume 2 satisfies axioms (Ul )-
(U4), (K1), (K2*), and (K3) on &, with w>>0. Then there is a continuous TAS utility func-
tion U representing - on & .. Moreover U is unique up to a positive linear transformation.

The proof of Koopmans’ Additive Representation Theorem is lengthy. However,
the essential idea is to construct U in several steps. First, define a utility function Ur on
the set of all programs Ce &, having STC=(zr4;,27,...) Where Z is a fixed reference pro-
gram. Consumption paths restricted to this subspace may be ranked by an induced pre-
ference order on a subset of R7; standard utility representation theorems for independent
factor spaces may be invoked to yield an additive utility function on this subspace.’” Sta-
tionarity implies that utility on RZ has the form

T
Ur(ey, €a, -oos )= 0" u(cy). (10)
t=1

Koopmans then extends Ur to the subspace of programs which are eventually constant,
i.e. S7C=(c,c,...) for some T. Let %, denote the space of all eventually constant pro-
grams. The tail of any program Ce2,,, is shown to contribute an amount §7u(c)/(1—45)
to the utility of a program in (10). Thus CeX,,, implies
uo)=u(,. ..., cr, ST-1C)
8Tu(c
=u(c))+ ou(cy)+ ...+ 67 u(cr) + T(a)

The function U is unique up to a positive linear transformation. The final step is to show
that U may be extended to &,.3® An application of the Additive Representation Theorem
occurs for the case weon=(1,1,...) implying 4,=£>. An interesting open question arises:
Does the Additive Representation Theorem hold for a general 4M-space with unit? For
example, can the Additive Representation Theorem be extended to cases of growth in o
as would occur if w=(a,a%...) and a>17%°

Variations on the recursive axiom system (K1)-(K3) are possible. Rader (1981) shows
that adding homotheticity to the hypotheses of the Additive Representation Theorem
implies the felicity function u is homogeneous or logarithmic. The homogeneous case
was also conjectured by Hicks (1965). Epstein (1986) introduces the class of implicity

37 See Koopmans (1972a), Debreu (1960), and Fishburn (1970).

38 A careful reading of Koopmans’ Proposition 3 (pp. 89-91) shows that his requirement that C be bounded
in utility is equivalent to 0<C<Awcon for some 1>0. This holds here since & is the principal ideal generated
by weon. The lattice norm topology coincides with the supremum norm topology utilized by Koopmans.

39 This case has recently been answered in the affirmative by Dolmas (1991).
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-additive utility functions as an alternative to the additive class based on the Independence
Axiom. In his setup, the Independence Axiom states that the marginal rate of substitution
between period ¢ and t’ consumption depends on the entire consumption path but only
through the value of its lifetime utility U(C).*® In Epstein’s formulation, there is scope for
a limited degree of complementarity between adjacent periods consumption. He also
‘weakens the stationarity postulate in order to express the idea that the passage of time does
‘7ot have an effect on preferences so long as lifetime utility is constant. This means U(c,C)=
U(C) where (¢,C)=C’ is the program defined by ¢{=c, ¢;=c:—1(1>2). The resulting utility
function has the form

U(C)=>_ (s(w)yglec),
=1

where u=U(C), (w)<(0,1), g(-,u):R,—R is strictly concave, continuously differentiable
with a positive derivative, and g(0,u)=0. '

_ Several writers have explored the consequences eliminating the Independence Axiom.
Majumdar (1975) gave the example

U(C)=W(C]_, Coy ouny CT) + Z 5(t)vt(cl3 Coy oney C;),
t=1

defined on £ where 5(¢)>0 for all 7, 3 5(t)=1, w:RT —R; is continuous, quasi-concave, non-
decreasing in each argument, and {v;} is a sequence of quasi-concave, continuous functions
from R, to Ry, each v being strictly increasing in all its arguments and the sequence being
uniformly bounded above. There is special significance accorded to consumption in periods
1,...,T as measured by the w function. Moreover, history counts since the felicity given by
¢, at time ¢ depends on the consumption enjoyed in all previous periods. He argues U is
7(>=,6Y)-continuous under the maintained conditions. Clearly, this U is not representable
by an aggregator when w is non-trivial and v,=v and §(t)=(1—¢§)s* 1.4

III. Impatience, Discounting and Myopia

An impatient consumer or planner prefers earlier rather than later consumption. The
question of discounting versus non-discounting of future consumption as a property of
‘a planner’s preference order has been a central theme in capital theory dating to the seminal
paper of Ramsey (1928). He argued (p. 543) that discounting was a “practice which is
ethically indefensible and arises merely from the weakness of the imagination.” It should
be recalled that Ramsey also investigated the implications of discounting in his model.
Indeed, his heterogeneous agent model operated with different agents distinguished by dif-
ferences in their subjective discount rates. Ramsey seemed to distinguish the property
of discounting for a social planner from the presumption of discounting on the part of private

4 Epstein defines the marginal rate of substitution in terms of the Gateaux derivatives of U in each co-
ordinate direction. We return to this approach in Part III on impatience.
41 The factor (1 —§) arises in order for {3(¢)} to satisfy the normalization Y §(t)=1.
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agents. Ramsey’s view of impatience for consumers was in tune with classical perspectives
in capital theory. Various writers [e.g. Bohm-Bawerk (1912), Fisher (1930), and Rae (1934)]
advanced the impatience hypothesis. Modern research workers have distinguished several
forms of impatience.#2 The terms discounting, time perspective, and myopia have been
used in slightly different senses in the literature.

The infinite horizon structure of the choice problem raises problems regarding the
presence, degree and forms taken by impatience. We will focus on three aspects of these
questions. We discuss the linkage between continuity of the preference order and myopia
in Section One. In Section Two, we review Koopmans’ notions of impatience and time
perspective, following this with a discussion of marginal impatience along a consumption
profile in Section Three. Section Four concludes this part with a brief discussion of myopia
and the properties of support prices for optimal allocations in an exchange economy.

1. Myopia and the Continuity Axiom

The basic intuition for the link between continuity and impatience may be seen by
looking at the definition of continuity for a utility function U:R7—R where R> has the
product topology. The function U is continuous in the product topology at C<RY if
for every ¢>0 there is a 6>0 such that the relation C'eN(C,3) implies |U(C)— U(C)| <e.
Here C'€N(C,5) means there are t,t,,...,4 such that |c, —c,|<3d (k=1,...,K). The choice
K=1 is allowed so U is continuous at C if C*—C coordinatewise implies U(C")-U(C).
If U is continuous at C in this topology, then U is not sensitive to variations in consumption
c; for t sufficiently large. This is a strong impatience idea: utility is sensitive to changes
over finite segments of the planning horizon. For ¢ sufficuently large, the variations in
consumption are “discounted” to yield no significant incremental contribution to utility.
Total utility is dominated by what happens in only a finite number of periods.

Continuity of U (or the underlying preference order) in the product topology on & +=
RT has important economic consequences. We recall Diamond’s (1965) Impossibility
Theorem. A utility U is equitable if for each C,C'e &+, U(C)> U(C") if and only if U(IIC) >
U(IIC") where 11 is the permutation operator mapping & into & acting on finitely many com-
ponents of a vector. Diamond proved that there did not exist an equitable and strictly
monotone utility function that is continuous in the product topology. In other words,
equity is incompatible with product continuity.®®* You cannot treat all periods equally
if you have product continuous preferences. Epstein (1987b) argues that the correct inter-
pretation of Diamond’s impossibility result is that the choice of the product topology has
strong ethical significance given it precludes the possibility of an equitable preference order.

Svensson (1980) gives a disconnected metric topology for A(w) with w=(1,1,...) and
exhibits a preference ordering that is continuous in it. This preference order is monotonic
and equitable. His ordering is based on a generalization of the overtaking criterion, and
cannot be represented by a utility function. Campbell (1985) also explored the equity ques-
tion by introducing a stronger topology than the product topology. His aim was to con-

%% See Epstein (1987b) for an excellent discussion of impatience.
43 Tf (U2) is employed instead of (U2'), then the maximum functional is an equitable utility function. How-
ever, it is not lower semi-continuous in the product topology.
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struct a topology suitable for application of the classical Weierstrass Theorem promising
the existence of maximal elements of a utility function which is upper semi-continuous over
a compact constraint set. His topology is a metric topology but it does not turn the com-
modity space into a topological vector space. He also demonstrates an impossibility
theorem: a preference relation > satisfying (Ul) is continuous in Campbell’s topology if
and only if X~ Y for all programs X,Y. In his setup, continuity is inconsistent with any
form of the monotonicity axiom.

Diamond’s Impossibility Theorem was one of the first indications that the continuity
axiom on 2 in the discrete time finite horizon case carried behavioral implications when
translated to the infinite horizon setting. Mathematically speaking, the problem is that
the topologies utilized in intertemporal analysis are not identical when there is an open-
ended horizon. A finite dimensional vector space admits only one (up to equivalence)
Hausdorff linear topology whereas the sequence spaces under consideration here admit
several Hausdorff linear topologies. For instance, in the case of £, convergence of a
sequence in the sup norm topology implies convergence in the Mackey topology and Mackey
convergence implies convergence in the relative product topology inherited from R~. The
converse is false: there exist sequences convergent in the product topology which are not
convergent in the Mackey topology. Similarly, there exist Mackey convergent sequences
which are not convergent in the supnorm topology. Economically speaking, the continuity
axiom (U4) takes on a different meaning depending on the choice of a topology for a given
commodity space. In the £= case, a product continuous = is Mackey continuous and a
Mackey continuous 2z is sup norm continuous. As before, the converse implications are
false. In the product topology case, only finitely many periods really count in determining
whether or not two sequences are close to one another. In the Mackey case, there are
restrictions on infinitely many coordinates in order to test if two sequences are close to
one another.%4

Bewley (1972) suggested an explicit link between the Mackey topology and impatience,
Brown and Lewis (1981), Stroyan (1983), and Raut (1986) formalized myopia concepts
as requirements. Their ideas were later subsumed in a general framework offered by
Aliprantis, Brown and Burkinshaw (1989). They define myopia in terms of the order
structure of the commodity space. We will pursue their approach in order to connect it
to preference orders and utility functions typically encountered in capital theory.

Brown and Lewis (1981) focused on the space 4. They call > strongly myopic if for
all X,X', and Y,Y',and Z< &+, X > Yimplies X > Y+ (z¥0,S¥Z) for all N sufficiently large.%
In words, if Z is pushed far enough into the future, adding it to ¥ does not change the pre-
ference for X over Y. This type of myopia follows from continuity in the topology. How-
ever, there is also an order theoretic property that is hidden in the definition of a strongly
myopic preference relation. The sequence of consumption programs {(z¥0,SVZ)}%_, is
decreasing: {(z70,5")} | 0. The sequence Y¥=(Y+(z¥0,S%Z)) is also a decreasing se-
quence: Y¥ | Y. It follows that |Y¥—Y|=|(z"0,57Z)| | 0 as N—oo. But this is an ex-

¢ A program Y is in a Mackey neighborhood of X if there is an €>0 and Tk = {7;,};=1Ec, with k=1,
1., K such that supe{supe|7e.(ve. —xe.)|} <e.

4 Brown and Lewis (1981) also studied a form of weak myopia where the vector Z is a constant sequence
in the strong myopia definition.
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ample of an order convergent sequence. Brown and Lewis’ strong myopia idea can be
recast as stating X > Y implies X > Y¥ for N sufficiently large when Y% is order convergent
to Y (written Y% Y).46

Sawyer (1988) considers upward and downward myopia. Upward myopia coincides
with Brown and Lewis’ definition of strong myopia. Downward myopia occurs whenever
X >7Y implies for all Z there exists an N such that (z¥X,S¥Z)>Y. Downward myopia
says that if Z is pushed for enough into the future, then eventually switching plans from
X to Z does not change the preference for X over Y. In particular, if Z offers a lower con-
sumption than X in the distant future, then the preference for X over Y is not reversed since
the reductions in consumption are sufficiently postponed. Downward myopia also implies
the truncation condition proposed by Prescott and Lucas (1972, p. 417). Their condition
follows from downward myopia if Z=0. The maximum order clearly fails to satisfy the
downward myopia hypotheses of either Sawyer or of Prescott and Lucas. Sawyer calls
a preference order fully myopic if it is both upward and downward myopic. Clearly down-
ward myopia also contains an order convergent property along the same lines as the Brown
and Lewis strong myopia condition. Sawyer ultimately rejects the downward myopia
property on grounds that it is implausible. He argues that downward myopia implies all
future consumption beyond some date would be exchanged for an arbitrarily small first
period consumption followed by no consumption into the indefinite future.

The fundamental insight of Aliprantis, Brown and Burkinshaw (1989) is to take order
continuity of a utility function as the defining characteristic of myopia. The advantage
of this approach is to free myopia from direct topological considerations by basing it solely
on the lattice structure of the commodity space.

A utility function U is order convergent whenever a net X <% X'in &, implies U(X: )5 U(X).
An order convergent utility function is said to be a myopic utility function. An order con-
vergent utility function is taken as the abstraction of the myopia properties introduced by
Brown and Lewis (1981) and their followers. We say U is r-myopic if U is r-continuous.
In general, there exist myopic utility functions which are not r-myopic on a space £ and
there are z-myopic utility functions which are not myopic.*’

The topology = for a Riesz dual system is order continuous if = is locally solid and X2

X implies X=5X. Symmetric Riesz dual systems form an important class of spaces with
an order continuous topology.®® Another important example of an order continuous top-
ology arises in the case of an order continuous Fréchet lattice. These are spaces which
are Fréchet lattices and have an order continuous topology. A space & is a Frechet lattice
if it is a complete materizable locally-convex solid Riesz space. The space R~ is a Feéchet
lattice endowed with the dr-metric; the dual pair (R%,cqo> is a symmetric Riesz space and
hence the dr-metric induces as an order continuous topology.

Remark. If U: &, —R is --myopic and z is an order continuous topology, then U is myopic.

4% Formally, a net {X«} in a Riesz space E is order convergent to some element X, denoted X «2, X, whenever
there exists another net {Ya} with the same indexed set such that Y« | 0 and | X«—X|<Y« holds for each a.

47 Aliprantis, Brown and Burkinshaw (1989, pp. 121-122).

48 See Aliprantis, Brown and Burkinshaw (1989, p. 102).
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ProrosiTION 2. If & is a Frechet lattice and U is myopic, then U is tT-myopic. <3

Proor. In a Fréchet lattice every r-convergent sequence has an order convergent sub-
sequence.®® [ ) :

The following Corollary is an obvious application of the above results.
COROLLARY. 4 utility function U:RT—R is myopic if and only if it iis dp-myopic.

The Corollary implies that the maximim utility function is not myopic on RY since
it is not lower semicontinuous. This agrees with economic intuition. Another application
yields a corollary to Diamond’s Impossibility Theorem: there does not exist an equitable
and strictly monotone myopic utility function on R%.%

Myopic utility functions enjoy a’strong continuity property on A4,,.

ProposITION 3. If U:RT-R is a myopic utility function, then U is ||+||.-myopic on A,.5!
ProoF. Let wcRY, and let {Y"} be a sequence contained in 4, such that ||Y"— Y|[.—0.

Put
en=sup {{|Y*—Y]|e:i=n}.

Notice that ¢, | 0 and that |Y*—Y|<e,0 for all n. Since e,w | 0, it follows that Y3 Y,
and so by the order continuity of U, we see that U is {|+||-continuous at ¥. []

Proposition 2 implies that every myopic utility function on 4% is sup norm continuous.
A myopic utility function on ¢ implies the underlying preference order satisfies the strong
myopia condition proposed by brown and Lewis (1981). The definition of myopia requires
that U(X<)->U(X) for any net {X<} 2 X. The Brown and Lewis strong myopia property
only demands order convergence for a specially chosen sequence. A similar comment
applies to Streufert’s biconvergence criterion for utility functions on [0,»]. It is clear that
myopia implies biconvergence. The truth of the converse implication is open.5?

2. Impatience and Time Perspective

Koopmans (1960) introduced a formal notion of impatience. Given a recursive utility
function U with aggregator W and felicity », a program C meets the impatience condition
if u(c;) >u(c,) implies

W(uley), W(u(es), U(SECN) > W(ulca), Wiu(er), U(S*C)).

Reversing the timing of first and second period felicity from consumption lowers lifetime
utility if it places the second (smaller) felicity in the first period. This is impatience over

4 Aliprantis, Brown and Burkinshaw (1989, pp. 121 and 125). .

50 Tt seems reasonable to conjecture on the basis of the maximin example that there are no equitable and
monotonic myopic utility functions.

51 This is adapted from Aliprantis, Brown and Burkinshaw (1989, p. 122).

52 Streufert (1990, p. 83) argues that biconvergence of U is equivalent to product continuity on the space
[0,w,] X [0,w,] X -+- where each factor space has the discrete topology.
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one period; it can be easily extended to any initial segment of the horizon. Koopmans’
definition of impatience is a form of eventual impatience since changes in consumption levels
over a finite number of periods are reflected in the condition.

" The standard TAS form of the utility function satisfies this impatience property as
6€(0,1). Koopmans went on to demonstrate that the postulates (U1)-(U4) and (K1)-
(K3) imply the existence of ““zones of impatience” in the three dimensional payoff space
(uy,u5, U S%), where U-S((C)=U(S2C). Koopmans found that the limit of the utility of
a sequence of programs defined by shifting an arbitrary reference program and the repeated
insertion of a fixed N-period consumption segment equals the utility of the program con-
sisting of the infinite repetition of the N-period consumption vector. Koopmans (1960,
p. 115) expressed surprise that his notion of impatience arose as an implication of his axiom
system since the presumption in the literature dating back at least to Bohm-Bawerk was
that impatience was a psychological characteristic of economic agents.53

Koopmans, Diamond, and Williamson (1964) explored another notion of time pre-
ference which they called time perspective. In words, a recursive utility function exhibits
weak (strong) time perspective if the difference in the utility levels achieved by two programs
does not increase (decrease) if the programs are delayed one pefiod and a common first
period consumption is inserted. The use of utility differences in the definition meant that
this was a cardinal property of utility whereas the impatience concept was ordinal. How-
ever, they did demonstrate the existence of an ordinally equivalent representation of U
satisfying the axioms (U1)~(U4) and (K1)-(K3), labelled U*, such that U* exhibited the
weak impatience property. Sawyer (1988) also investigated impatience properties of the
utility function along the lines initiated by Koopmans. He showed the existence of a class
of stationary recursive utility functions which are not downwardly myopic but nevertheless
exhibited zones of impatience analogous to those found by Koopmans. Streufert (1990)
also drew an analogy between time perspective and biconvergence: the utility levels realized
in the future from following the paths » and 0 respectively appear to the observing agent
at the beginning of the horizon as though they converge as time passes. Time perspective

becomes the economic analog of tunnel vision.

3. The Norm of Marginal Impatience Conditions

Any two distinct TAS utility functions which are dp-continuous on R are myopic
by the Corollary to Proposition 1. Suppose U, and U, are TAS functions with identical
felicity functions but have §,>4,. Both have identical myopia properties but the first has
a higher discount factor than the second. Intuition suggests that U; discounts the future
less than U,. Put differently, U, is more impatient than U;. The Norm of Marginal Im-
patience was introduced by Becker, Boyd and Foias (1991) as a refinement of the myopia
idea. They were motivated to consider this sharper notion of impatience in order to de-
monstrate an equilibrium existence theorem for a model with heterogeneous agents having
utility functions drawn from the recursive class as well as allowing some non-recursive

elements. We present two additional axioms below in order to develop the norm of mar-

3 Recall, the utility function ||«|»-continuous in this setup.
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ginal impatience. The axioms are placed directly on the utility function. For simplicity,
we only consider the case U:RT—R for U dr-continuous. We note that a utility function
satisfying (U1)-(U4) is quasiconcave. For the remainder of this section we use the stronger
monotonicity axiom (U2’) without further mention.

CoNcAvITY,
(U5) U is a concave function.

One implication of property (U5) is that the left- and right-hand partial derivatives
of the utility function exist. These derivatives are denoted by U;~(C) and U;*(C) respectively.
The right-hand directional derivative of U at C in the direction of E,=(0,0,...,0,1,0,...) where
1 is in the #** place, is defined as

U#(C)= lim U(C+eE)—-U(C) .

-0+ €

The left-hand partial derivative is defined by substituting e—0~ in the limit. The concavity
of U implies U} (C)< U (C). If equality holds, we write U,(C) for the common value and
call this the partial derivative of U at C with respect to the #** coordinate. For technical
reason, we also require the following axiom:

DIFFERENTIABILITY.
(U6) The partial derivative U, of U exists for every ¢.

We start developing the Norm of Marginal Impatience by fixing a reference program
o which is strictly positive. The order interval [0,w] plays a crucial role in the following.
We view [0,w] as the relevant domain of U in the sense that [0,w] strictly contains all feasible
allocations. We assume that U is a recursive utility function. If U has a C' aggregator,
then U. exists and is found by the formula.

U(C)=Ws(c1, US*CYWo(cs, U(S*C)).... Wlcrm, US*IONW(cr, U(SHC)), (1)

where W, and W, are the partials of W with respect to the first and second coordinates.

The next condition restricts the marginal rates of impatience between adjacent time
periods over a portion of the program space. Given t,t+1, we define the marginal rate
of impatience at C, R;,..,(C), by the relation

14+ R;, 011 (C)=U(C)/Uc11(C).>*

This definition yields the usual measure of the marginal rate of substitution in adjacent
periods along a fixed utility contour.
In the differentiable aggregator case we use (1) to obtain

Ui _ Wi(c:, U(SC))
Ui~ Wole, ,USE O)Wi(Cesy, U(SHHC))

54 The concavity and strict monotonicity properties of « imply #;>0. Notice that the Rawlsian utility
function ¥(C)=inf{cs: t=1,2,...} violates the strict monotonicity axiom and v; can be 0.
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Note that R;,(C)=R,,(S*-1C). We will denote R;, by R. Since S2C only affects R, ,
through U(S2C), R can alternatively be regarded as a function of ¢;,c, ,and U, The
specific condition we impose on utility is given below.

BOUNDED NORM OF MARGINAL IMPATIENCE CONDITION. There is a 6<(0,1) such that 1/5=
Sups=1,2... {1+ Ri,e4:(C): CET 2 [0,0¢), Ctor=0t).

The supremun of the 1+ R;.;,, which depends only on the ordinal properties of U,
is called the norm of marginal impatience. We require this to be uniformly bounded on
a subset of the program space containing, in particular, all feasible consumption programs.
The TAS case is easily seen to satisfy this condition; the norm of marginal impatience is
the reciprocal of the discount factor. The norm of marginal impatience restricts the mar-
ginal rate of substitution in a different way than properness. Typically, proper preferences
cannot satisfy the Inada condition at 0 whereas this may occur with a bounded norm of
marginal impatience.

Many aggregators also satisfy 0<g<W,<&<1, a strong version of Koopmans time
perspective axiom. In this case, we also have

U, Wz, U(S*C))
Ur = aWi(z, UGSHC)) * (2)

when ¢;=c¢,.;=z. If Cis a constant program, then the marginal rate of impatience at C
is bounded from above by 1/3. But other sequences are admitted in the Bounded Norm
of Marginal Impatience Condition. Suppose w is a constant sequence with w.=w. The
ratio on the right hand side of (2) can blow up only as z—0+ since z<w. This does not
happen if there is a number M such that

. W]_(Z, y)
lim ————+— <M. 3
zi{)r}!' Wl(zsy) ( )

for y and y’ in the range of the corresponding utility function U. The commonly used ag-
gregators satisfy (3). For the TAS class, M=1 will do. The EH utility function and cor-
responding aggregator satisfies (3). Consequently, the EH utility function satisfies the
Bounded Norm of Marginal Impatience Condition.?® Thus two EH utility functions may
be consistent with the same myopia property and possess different norms of marginal im-
patience.

One implication of the Bounded Norm of Marginal Impatience Condition is recorded
below. This result says that the rate of marginal impatience is not increasing over a portion
of the program space.

PROPOSITION 4. Let u be a utility function satisfying the Bounded Norm of Marginal Im-
patience Condition. Then

,Sup {1+ R.,t41(C): Ce [] [0, i, cora< e} =1/s.
=1,2. =1

® In Part IV, the aggregator is taken as primitive. Many other aggregators satisfy (3). For example,
the KDW aggregator will satisfy this restriction,
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Proor. Let C€[0,0] with ¢, <c.. Consider o(x,p)=u(Cy,Ca,...,Ct_1.X,Y,Cern,-..). Notice
there exists a€[c;yq,¢] such that g(e,a) =u(C)=¢(c:ci41). Introduce the indifference curve
y=q¢(x) such that o(x,¢(x))=u(C). It is easy to show —¢'(x)=gps(x.y)/0s(x,y)=8(x,y)
for y=¢(x) and thus 0(x,¢(x)) is nonincreasing in x. For a=¢(a) and c¢;>a we have
6(cesCer)=0(ce,(c)) < O(a, (@) < 1/6. [

Steady-state impatience may be defined by considering the marginal rate of substitution
along constant programs. We defer discussion of steady-state impatience to Part V on
optimal growth. There, we explore the connection between steady-state impatience and
stability of optimal paths.

4. Myopia and Support Prices

Consider the commodity-price duality (4<,ba) where ¢~ has the sup norm topology.
As noted in Part II, a linear functional on this space may take the form of a pure charge
(e.g. a Banach limit). Countable additive elements of ba have £! representations denoted
by P. The value of a commodity X is (X,II). A natural question in equilibrium analysis
and welfare economics is when does a price system in ba have an 4* representation?® There
are clear indications in the literature that some form of myopia and the possible representa-
tion of prices by elements of ¢} are related properties. For example, Prescott and Lucas
(1972) as well as Brown and Lewis (1981) introduced their myopia hypotheses in order to
solve this problem.5” We will illustrate the way in which this problem arises in an example
of an exchange economy developed by Becker (1991b). The pasic model is originally due
to Peleg and Yaari (1970). We exploit the g-myopia of the utility functions of consumers
in the sample economy to derive £ price supports for a weak Pareto optimal allocation.

The economy is defined by the triple {{4.,4.>,Zi,0}, where Z; is the preference rela-
tion of consumer i(i=1,...,m) and o is the social endowment vector. We assume o=
(a,02,...,a%,...) and a>1. The space A4, is the pirncipal ideal generated by ». The com-
modity-price duality is specified by the Riesz dual system (4.,4,) where 4 is the a-norm
dual of 4,. The maintained assumptions on preference orders are (Ul), (U2'), (U3) and
(U4). An allocation is a nonnegative m-vector (Xy,...,Xn) in the commodity space satisfy-
ing 27, X:<w. A Pareto optimal allocation has the usual meaning.

PROPOSITION 5. Let {{A,,A.>, 0} be an exchange economy where each agent has a g-
myopic utility representation of . If (Xi,...,Xn) is @ Pareto optimal allocation and > a,
then there is a PE(, such that for each i

Zp,zt/ﬁ‘z Zp,xi,/ﬁ‘ for all ZZ{X{.
=1 t=1

Proor. The maintained assumptions on preferences imply each agents preference order

86 Jg there an economic interpretation of price systems which are pure charges? See Gilles (1989) and
LeRoy (1989) for an affirmative answer. o - R

57 There is a voluminous literature on the price representation problem dating back to early work on inter-
temporal efficiency. Radner (1967) seems to have been the first to raise the question.
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is uniformly a-norm proper (Proposition 2.1). Mas-Colell’s Supporting Price Theorem®®
implies there is a price system P in ba such that (Z,P)>(X:,P) for all Z>.X;. Since each
agent has strictly monotone preferences, P>0 and o is extremely desirable for all 7, it follows
that P is g-myopic on [0,] and order continuous on 4, [see Aliprantis, Brown and Burkin-
shaw (1989, p. 147). Therefore, since the g-norm dual is isomorphic to £' as noted in Part
II, P has a weighted 4! representation. [

Many recursive utility functions are g-myopic, so Proposition 4 applies to exchange
economies with those preferences. Characterizing support properties of Pareto optimal
allocations in heterogenous agent economies with capital accumulation (both with a max-
imum sustainable stock and sustainable growth) for recursive utility maximizing agents
would seem to be a natural follow-up problem for investigation.

IV. The Aggregator Approach to Recursive Utility

In Part II, we saw that recursive preferences give rise to an aggregator function that
combines present consumption (or felicity from present consumption) and future utility
to obtain present utility. This chapter takes that aggregator as a primitive,

In fact, there is a pre-Koopmans literature on recursive utility that uses the aggregator
exclusively. An early example is Fisher (1930). Much of Fisher’s analysis is carried out
using a 2-good model. Utility depends on both current and future income. Early in the
book, he explains that income is ideally thought of in utility terms, thus we should really
think of current felicity and future utility combining to yield overall utility. This is pre-
cisely what the aggregator function does. Hayek (1941) also took the aggregator as a
primitive, and even addressed stability issues in this framework.

The first modern paper to take the aggregator as primitive was Lucas and Stokey (1984).
They started with an aggregator, and showed how a recursive utility function could be con-
structed from an aggregator function W, under the assumption that ¥ was bounded. They
then used this to characterize equilibria and examine stability when consumers have recursive
preferences.

Taking the aggregator as fundamental provides detailed information about preferences
in a compact form. First, it is a lot easier to specify an aggregator than a recursive utility
function. Koopmans, Diamond and Williamson (1964) found an aggregator that had
a specific property (increasing marginal impatience), but the corresponding utility function
cannot be explicitly computed. It does not have a closed form expression. Second, the
aggregator, with its sharp distinction between current and future consumption, often makes
it easier to incorporate hypotheses about intertemporal behavior. It can be quite difficult
to translate axioms into usable conditions on the utility function. The normality condi-
tions used by Lucas and Stokey (1984), Benhabib, Jafarey and Nishimura (1988), Benhabib,
Majumdar and Nishimura (1987) and Jafarey (1988) to study equilibrium dynamics are
most eaisly imposed directly on the aggregator.’® Finally, if we impose behavioral con-

58 Mas-Colell (1986, p. 1048).
8 Epstein (1987a) has discovered conditions on the utility function that imply a similar normality con-
dition in models with continuous-time recursive utility.
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ditions as axioms, there is the question of their consistency. With aggregators, this is never
a problem. Once the utility function exists, consistency is automatic.

Of course, the use of the aggregator does partially obscure the actual utility function
and its properties. Fortunately, the aggregator usually contains all the information re-
quired to construct the utility function. Lucas and Stokey (1984) made the aggregator
approach feasible when they showed that the utility function could be reconstructed when
the aggregator is bounded. Boyd (1990) introduced a refinement of the Contraction Map-
ping Theorem, the Weighted Contraction Theorem, which applies to a much broader class
of utility functions that includes many standard examples. For many aggregators, this is
enough to recover the utility function. Aggregators that allow —oo as a value require
further treatment. Boyd combined the weighted contraction with a “partial sum” technique
to construct the utility functions.

We will follow Boyd’s (1990) treatment to find the utility function. In Section One,
we examine the basic properties we require of the aggregator. Section Two gives a general
existence and uniqueness theorem for the corresponding utility function when the aggre-
gator is bounded below. Section Three illustrates the use of this theorem, and Section
Four employs Boyd’s “partial sum” technique to obtain existence for general aggregators.

1. Basic Properties of the Aggregator

As in the preceding parts, we assume that there is a single all-purpose good available
in each time period for simplicity. The aggregator maps X xY to Y, where X is a subsee
of R, ={x&R: x>0} and Y is a subset of R. Aggregators will appear in the second argu-
ment, so W must take values in Y. Recall the projection » and shift S are given by zC=
¢; and SC=(cy,¢y,...) for C&R>. The key property that makes a utility function U re-
cursive is that U(C)=W(zC,U(SC)). Intuitively, we can find U by recursively substituting
it in this equation. This substitution is performed by the recursion operator Ty defined
by (TwUXC)=W(zC,U(SC)). Thus (THO)C)=W(cy,W(cs,...,W(cw,0))...)). The recursive
utility function is the unique fixed point of Ty.

The most familiar aggregator is W(c,y)=u(c)+ 5y, which yields the additively separable
utility function U(C)=3x72, 6 lu(c;). Obviously, U(C)=u(c,)+sU(SC). Other aggre-
gators include the KDW (Koopmans, Diamond and Williamson, 1964) aggregator W(c,y)=
(1/6)log(14 scr+6y), and modified Uzawa (1968) aggregator W(c,y)=(— 1+ p)exp[—u(c)]
used by Epstein and Hynes (1983). This last aggregator yields the utility functions®

U(C)== > exp[— ‘. u(c)]
t=1

from Part II since

(~1= 2 expl— Btoae)) exp [~ule)l== > exp [~ Z{_, u(cl
=2 t=1

This form particularly intriguing since consumption only affects discounting, but

% Epstein and Hynes actually work in continuous time, but this is obviously a discrete version of their
utility function.
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does not seem to yield direct utility. Epstein (1983) considers a discrete-time formulation
that permits uncertainty. His generalized Uzawa aggregator is W(c,y)=(v(c)+y)e~*.
The Epstein-Hynes form is the special case v(¢)=-1.

Without loss of generality, we may assume 0cY. In fact, if there is a yeY with
W(0,y)=y, we may even assume W(0,0)==0. If W(0,y)#y, then U(O)—y Now consider
the utility function U(C)=U(C)~ U(0). The adjusted aggregator, W(c,y)= W{(c,y+ U(0))—
U(0) yields this utility function since W(c,,U(SC))= W(cl,U(SC)) U0)=U(C)-U(0)=
U(C). Both aggregators generate equivalent utility functions, and W (0,0)=0.

When applied to the Epstein-Hynes (EH) aggregator, this yields

U0)=W(0, U0))=(—1+ U(0))e—»,

so U(0)=1/(1—e*®). The adjusted aggregator is then W(c,y)=[y—ev©®/(1 — eu®)]e~ue> 1/
(1 __eu(O)).

oo ¢
Um:; et [1 _exp ( - ; [u(c.)~ u(0)])] :

which is the discounted sum of functions depending on past consumption. Note the contrast
with the original form of the utility function where consumption seemed to only affect dis-
counting. This form also shows us that even though recursive utility is forward-looking,
the functional form may superficially appear to be backward-looking.

AGGREGATOR. A function W:X x Y—Y is an aggregator if:
(W1) Wis continuous on X x Y and increasing in both ¢ and y.
(W2) W obeys a Lipschitz condition of order one, i.e., there exists §>0 such that
[W(c,y)— W(c,y)|<s[y—y'| for all cin X and y,)" in Y.
(W3) (TH»)(C) is concave in C for all N and all constants yeY.

When W is differentiable the Lipschitz bound in (W2) is §=sup Wy(c,y). This uni-
formly bounded time perspective is similar to the time perspective studied axiomatically
by Koopmans (1960) and Koopmans, Diamond and Williamson (1964). It insures that
future utility is discounted by at least 5. In the additively separable case, W, is the discount
factor. In the EH case, the fact that W is increasing in ¢ implies #'>0 since W<0. The
Lipschitz bound then becomes e*®. We do not yet impose §<1 since we may want to
consider undiscounted or even upcounted models.

The sole purpose of condition (W3) is to guarantee concavity of the utility function.
It is not required for the existence results. Curiously, the aggregator need not be jointly
concave in ¢ and y for the associated utility function to be concave. Although the EH
aggregator is not concave, the corresponding utility function U(C)=— 32, exp[— 2 !_, u(c.)]
is concave. Epstein previously (1983) gave sufficient conditions for the concavity of gener-
alized Uzawa utility functions. In the EH case, '’ <0 is sufficient. More generally, when
the utility function is the limit of the functions T5(0)(C), (W3) insures concavity is inherited
by U. Thus,

LemMA 3. Suppose (W3) holds and T S(0)(C)—U(C). Then U is concave on its domain.
If, in addition, W is strictly concave in ¢ and strictly increasing in y, then U is strictly concave.
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Conversely, if U is concave, condition (W3) holds for all y in the range of U.

2. The Existence of Recursive Utility

When trying to construct the utility function, the first problem we confront is what
domain to use. Obviously, the utility function will live on a subset of RT. The question
is, which subset? Since one of the motivations for studying recursive utility is to admit
non-degenerate equilibria, we must use subsets that are appropriate for equilibrium prob-
lems—Ilinear spaces.5t

Even in the additively separable case, it is unreasonable to expect the utility function
to be defined on all of R*. Consider the additively separable aggregator + ¢ 4§y where
§<1. The utility function only makes sense when ¥ 92,41 ¥/c; converges. This will not
happen for all vectors in RY. For example, the sum does not converge when c:=45-%.
This is where the weighted #= spaces come in. In this case, the utility function will only
exist on £3(g) for <92 Our strategy will be to find a g so that the utility function exists
and is g-continuous on 43(8).

Let AcR= with (U 5_;S¥A)cX.%2 Both the shift S and projection z are continuous
in any topology on A that is stronger than the relative product topology, as are the g-too-
ologies. Given a positive function ¢, continuous on A, let & be the space of continuous
functions from A to Y, and &, be the corresponding space of p-bounded functions.®® Since
all the functions involved are continuous, Tw: &,— & .

CoNTINUOUS EXISTENCE THEOREM. Suppose the topology on A is stronger than the relative
product topology, W:X xY—Y obeys (W1) and (W2), ¢ is continuous, W(zC,0) is ¢-bounded,
and 3||p°Sll,<1. Then there exists a unique U& &7, such that W(zC,U(SC))=U(C). More-
over, (THOYC)—U(C) in %,

ProoF. Since W is increasing in y, the recursion operator Ty is increasing. Now
[ Tw(O)/o(C) = W(cy, 0)l/p(C) < o0
because W(zC,0) is p-bounded. Finally,
Twl§ + Ap)=W(cy, §(SC) + 4p(SC))
< W(cy, ¢(SCY+ Adp(SCY < Twé + 46| S0(C).

The Weighted Contraction Theorem, with §=4||p°S||, <1, shows that T is a contraction,
and has a unique fixed point U.

Now consider [JU(C)—(THO(O|, < s¥|USYOll, < 11Ul (6llgeSIl,)¥. As the last term
converges to zero, (TH0)(C)-U(C). O

In fact, the full force of (W1) was not employed in the proof. The aggregator need
not be increasing in ¢ for the theorem to hold.

81 An alternative, as used by Streufert (1990), is to focus purely on capital accumulation problems. This
allows him to further restrict the size of the subsets, and thus expand the range of aggregators he can use.
-  This insures that the recursion operator always makes sense on Z(AY).

83-See the appendix for details.
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3. Examples with the Aggregator Bounded Below

The easiest application of the Continuous Existence Theorem is to a- bounded aggre-
gator with §<1 and A=£7(1). Take ¢ as the constant 1, and use the product-topology.
As in Lucas and Stokey (1984), this yields a recursive utility function that is not only g-
myopic for all §>1, but also continuous in the relative product topology on £3(1). In
partiular, this applies to the EH aggregator with u(0)>0.

Another application is to W with 0< W(c,0)<A(l1+¢7) as in the case where W(c,0)
has asymptotic exponent or asymptotic elasticity of marginal felicity [see Brock and Gale,
(1969)] less than »>0 with §g7<1. In this case, take A=£%(8) and @(C)+1=|[C]|[}. Then
ll@oSll,=p7, and the recursive utility function is g-myopic. This applies to the aggregator
W(c,y)=c+4y. The utility function 332, 6*7Xc7 is continuous on each 43(8) for s78<1.

When 0< W(c,0)< A(1+log(l+c¢)), a similar argument shows that U is g-myopic for
all p<co. Take >0 such take 5(y +logg)/r <1 and set p(c)=y+log(l+c). Then

3(lISCllp) =47+ log(1+|SCll5)
<or+alog(1+8lIClle)
<dr+48log B(1+]IClls)
<dr+d log g+ log(1+]|Clls)
<r+d log(1+||Cll) < o(||Clle)-

In fact, when W is concave in ¢,W(c,0)< W(1,0)+a(c—1) for some supergradient a.
(If differentiable, a=W,(1,0).) Thus we may set p(C)=1+]|C||; for a g-myopic utility
function when the aggregato is concave in ¢ with §g<1.

Relaxing the condition 7§ <1 risks losing existence on £5(8). Again, the additively
separable case makes this clear. Let W{(c,y)=c7+4dy and take §=¢5"V». The utility func-
tion cannot be defined when C is given by ¢;=g'. No utility function can be constructed
from the aggregator on £%(8). A smaller space must be used.%

4. Unbounded Aeggrgators

The Continuous Existence Theorem can also be used indirectly to deal with aggregators
that are not bounded below, such as W{(c,y)=logc+4dy. These obey:

(W1) W is increasing in both ¢ and y, upper semicontinuous on X x Y, continuous when
¢>0 and y> — oo and obeys W(c,— c0)=W(0,y)=— o for all ceX and yeY.

For aggregators satisfying (W1’), paths that are near 0 can pose problems for the con-
tinuous existence theorem. When W(c,y)=log c+ 5y these problems result in a utility func-
tion that ts upper semicontinuous but not lower semncontinuous. However, they are not
severe enough to preclude existence of the utility function.

6¢ However, Streufert (1987) has discovered cases where $76<1 and U exists. These seem to require
W22:<0, and may not be continuous on £3(8).
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To circumvent the problems posed by paths that are too close to zero, Boyd (1990)
considers a region that excludes them as the set A. More precisely, choose y<g <o, and
set ,||C||=inf|c:/y*")| if 0<y and ||C|l|=oco. Then take A=£7(8,r)={CERT:0<,||C||
and ||C||s;<o}. This is the set of paths that have a growth rate between y and 8. Thus
£3(8,0) is just our old friend £3(8).

To make this clear, consider the logarithmic case. For any such path, ,||C||y¥71<
c:<||C|ls8+7t. Thus

Z st~ 1) log y +,lICHI< Z ot-tloge, < Z (t—1)o*(r— 1) log g+ IClle)-
t=1 =1 t=1

Since Y92, 6t lloge, is squeezed between convergent series, it converges. However, the
limit need not be continuous since the convergence is not uniform. We can get g-upper
semicontinuity. It is enough to show this for each ball {C=43(8): ||Cll;<x}. On this
ball, ©; 7,6 Y(logc.—(t—1)log 8—log«) has non-positive terms. Each of the partial sums
is upper semicontinuous, and so is the limit. Since the limit differs from the original utility
function by a constant, the utility function is upper semicontinuous too. In fact, we have
escaped the lower bound on consumption by taking partial sums. Some sequences may
even have utility —co. Nonetheless, the logarithmic case is well-behaved.

We are now forced to admit —co as a possible value for utility. This causes some
unpleasantness. Amazingly, U(C)=— oo satisfies the recursion too. The obvious solu-
tion is not the only one. Fortunately, we can restrict our attention to £3(3,7) and see that
this is not a reasonable solution.

The general case is similar. Intuitively, we expect to obtain the utility function by
recursive substitution, as the limit of (THu)(C)=W(c, W(cs,...,W(cw,u)...)) with u constant.
In fact, under appropriate conditions, the Continuous Existence Theorem applies on 43(8,7),
yielding a unique p-bounded utility function ¥. Of course, the iterates Thu converge to ¥
on £3(8,7).

By using a process analogous to partial summation, ¥ can be extended to a utility func-
tion on all of ¢%(). This extension is upper semicontinuous and recursive. Further, it
is the only recursive upper semicontinuous extension of ¥ to £3(g).

UPPER SEMICONTINUOUS EXISTENCE THEOREM. Suppose W:XxY—Y obeys (WI'), the
Lipschitz condition (W2) holds whenever W is finite, and there are increasing functions g and
h with g(c)< W(c,0)<h(c). Set ¢(C)=max{h(||Cl|s),—gGIICll)} and suppose ¢>0 with
d|lpoS|l,<1 for some g>7>0 with §=1. Then there exists a unique U that is g-bounded
on 053(8,7), obeys W(xC,U(SC))=U(C) and is g-upper semicontinuous on £3(B).

Proor. First, temporarily give A=/£%(8,7) the discrete topology. As all functions are
continuous there, and W(c,0) is clearly o-bounded, the Continuous Existence Theorem applies,
yielding a unique ¢-bounded recursive utility function ¥:£7(8,7)—R.

Second, let Z be an arbitrary element of 45(3,7) and define the ‘“‘partial sums” on all
of £3(p) by

Yy(C; Z)=[THE(SYZ)(C)=W(cr, W(ca, -, W(ew, T(S7Z))...))-
Now for Z,Z'€43(B),
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[Tn(C; Z)—Tn(C; Z) <67 |U(S¥Z) - W(S¥Z")|
<Y M[p(S¥Z) + o(S¥ Z")]
SM'(GllpoSll,)Y

for some M’. The first step uses the Lipschitz bound (W2). The second uses the p-bound-
edness of ¥ on £3(8,7), and the third uses the fact that o(S¥Z)<(||¢°S||,)¥¢(Z) for any
Zel3(B,y). It follows that if limy_. ¥#(C;Z) exists, it must be independent of Z. Note
that for C€£3(8,7), ¥x(C;C)=¥(C), so limy_. T¥(C;Z) exists on £(8,7) and is equal to
T there.

The third step is to show U(C)=limy_., ¥»(C;Z) exists and is g-upper semicontinuous
on all of £3(8). For « arbitrary, take C=43(8) with ||C|l;<x and set z;=«p"1. Since
¢.<2,¥4(C;Z) is a decreasing sequence. Its limit U(C)), which is also infimum, must exist.
Further, each of the Wy is the composition of non-decreasing g-upper semicontinuous
functions, so their infimum U(C) is also g-upper semicontinuous on {C:||C||;<«x}. Since
upper semicontinuity is a local property, U is g-upper semicontinuous on all of £32(8).

The next step is to show that U is recursive. If zC=0 or if U(SC)=— o0, (W1’) implies
W(zC,U(SC))=— 0o =U(C). Otherwise, we have

W(zC, U(SC))=W(zC, lim Wx(SC; SZ))
N—oo
= lim W(zC, ¥x(SC; SZ))
N-ooo

— lim Ty ,4(C; Z)=U(C).
N—-co

Therefore W(zC,U(SC))=U(C) for all C=43(p).

The last step is uniqueness. Let @ be a g-upper semicontinuous recursive utility func-
tion that is p-bounded on £3(8,y). Since ¥ is unique, @, ¥ and U agree on £3(3,y). When
2,=||Cl|s,C<Z and so V(C)< ¥x(C;Z). Thus O(C)<limp oo Tx(C;Z)=U(C). If ¢;=0
for some {,U(C)=—co=®(C). If ¢;>0 for all ¢, set z;=max{;*~%,c,} and consider the
sequence C"==(Cy,...,CnsZnt1,Zn42,-..). By construction, ¥(C")=¥,(C;Z). Since y<p,C*—
C in the g-topology. By upper semicontinuity of @, ®(C)=lim, . ¥.(C;Z2)=U(C). It
follows that ®(C)=U(C), and thus U is the unique such function. [7]

Aggregators with —1+min{0,logc} < W(c,0)<a-+log(1+c) fall into this framework.
Given 6<1 and g>1, the constant ¢ may be assumed large enough that s(a+log g)la<1.
Take y=1 and let o(C)=max{a+log(l1+||Clls), 1—min{0,log,||C|]}}. As 6p(SC)/e(C)<
é(a+logp)/a<1 since ,||C|| <,||SC|| and ||SC}|s < 8l|C|ls the utility function exists on 23081
for any 8. In other cases, upcounting (5>1) may be allowed. When —c7<W(c,0)<0
with <0, we set p(C)=,||C||" so sp(SC)/p(C)<sp7<d77<1. As <0, <1 and there
are y that permit §>1. The Upper Semicontinuous Existence Theorem applies to these
examples.

As Boyd notes, the “partial sum” approach works on a wider range of aggregators
than considered in the theorem. For example, if there is a function v(c) with v(c)=W(c,w(c)),
“partial sums” can be defined on {C:||C||;<«#} by [THw(x)(C). These form a decreasing
sequence, so their limit is an upper semicontinuous function U(C). As W(c,,U(SC))=
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lim[TH*'(x))(C)=U(C), this yields a recursive utility function. This recursive utility func-
tion may fail to be lower semicontinuous. One such example is W(c,y)=—1+e~°y so that
Wc)=—1/(1—e¢) and utility is U(C)=— T2 exp(— Z{_yc.). Consideration of the sequence
Cr=(c;...,¢x,0,...), where c,=2log(z+ 1)/t, shows that this utility function is not lower semi-
continuous since U(C")=— « but U(C)> —~ . Note that §=1 in this example.

V. Properties of Optimal Paths

Once we have a utility function, we can ask whether optimal paths exist. In the re-
cursive case, the same conditions that guarantee existence of the utility function will also
yield optimal paths, and a value function that satisfies Bellman’s Equation. Our next task
is to characterize these paths via Euler equations and a transversality condition, and then
investigate their properties. Are optimal paths monotonic? Do they enjoy a turnpike
property?

Section One shows that optimal paths exist, and are continuous in an appropriate to-
pology. Section Two shows how dynamic programming may be used on recursive utility,
and that the value function is the unique continuous solution to Bellman’s equation. The
transversality condition is taken up in Section Three. Monotonicity and the turnpike pro-
perty are examined in Section Four. We conclude with a brief discussion of equilibrium
models and the long-run distribution of income in Section Five.

1. The Existence and Sensitivity of Optimal Paths

Existence is quite straightforward. The existence of optimal paths is just one of the
useful facts that follow from continuity of the utility function and compactness of the fea-
sible set. When the aggregator defines a continuous utility function, a modern version
of Weierstrass’ theorem, the Maximum Theorem [see Berge (1963); Klein and Thompson
(1984)] can be used to show continuity of optimal paths.> For example, when the budget
set (and hence the optimal path) depends continuously on a parameter vector w, the max-
imizer correspondence m(w) will be continuous.

MaxiMuM THEOREM. Suppose B(w) is p-lower semicontinuous in w and g-compact-valued.
(1) If U is g-upper semicontinuous, there exists a C*&B(w) such that U(C*)=sup
{U(C): CeB(w)}.
(2) If U is p-continuous, the value function J(w)=supU(B(w)) is continuous and the
maximizer correspondence m(w) is upper semicontinuous. Further, if U is strictly
concave, them m(w) is a continuous function of w.

This form of the maximum theorem will also demonstrate continuity of the optimal
paths and value function. The remainder of this section shows how to employ the g-to-
pologies in the one-sector model. The first step is to show that the feasible set is actually
compact. This turns out to be fairly easy, since the g-topology often coincides with the

¢ Magill and Nishimura (1984) also use the Maximum Theorem to obtain continuous policy functions
with recursive utility.
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product topology, which is quite easy to work with, In fact, Lemma 1 of section II.4 shows
that the g-topology and product topology coincide on any a-bounded set whenever a<§8.

One application is to a one-sector model of optimal capital accumulation {Ramsey
model). In the classical Ramsey model, the technology is described by a (gross) production
Sunction. The production function f is a continuous, non-decreasing function f:R.—R;.
Note that f(0)>0. In the time-varying Ramsey model, the technology is described by a
sequence, {f;};>,, of such production functions. Given this production technology, the
set of feasible paths of accumulation from initial stock k (the production correspondence)
is F(k)={CeRT:0<k:<fy(ke-y), ko=k}. The set of feasible consumption paths (the con-
sumption correspondence), B(k) is {CERT:0< ¢, < filki—)—k, for some KeF(k)}. Define
f* inductively by f1=f, and ft=f,of*"\. The path of pure accumulation is {f*(k)};>,. Both
B(k) and F(k) are closed in the product topology and B(k)cF(k)c IT72,[0,f*(k)]. As this
last set is compact by Tychonoff’s Theorem, B(k) is also compact in the product topology.

When lim[f*(k)/a’] < o, both F(k) and B(k) are «-bounded subsets of £3(8). More
generally, we call the technology a-bounded if F(k) is a-bounded. This happens in the
case of exogeneous technical progress where fi(x)=e™xe. The path of pure accumulation
grows at asymptotic rate exp {#/(1 — p)}, so the technology is a-bounded for a>exp (n/(1—p)}.
As any concave production function obeys f(x) < f(@) + &(x—a) whenever ¢ is a supergradient
at a (e.g. £=f"(a)), it is a-bounded for any a«>¢. Thus, any stationary, concave, produc-
tion technology is a-bounded for all a>f'(e0). Provided U is upper semicontinuous on
£3() for some g>a, Lemma II1.4.1 and the Maximum Theorem combine to show existence
of at least one optimal path.%¢

Let’s temporarily confine our attention to the case where there is a unique optimal
capital-consumption path {k.(k),c,(k)};=,;. This will occur if the production function 1s
concave and the utility function strictly concave. Define the consumption policy function
glk)==c,(k). The policy function gives the optimal consumption level as a function of
the previous period’s capital stock. The maximum theorem guarantees that g exists and
is continuous. There is an associated capital policy function h(k)=f(k)—g(k). The op-
timal paths are then c(k)=g(k,(k)) with ¢,=g(k) and ky(k)=h(k,—,(k))=F(k:_.(k))—
glke-1(K)).

To obtain continuity of the value function and policy functions, it is enough to show
that the production correspondence F(k) is product lower semicontinuous since the set of
feasible paths is the continuous image of the production correspondence. For k' near
k, F(k"YcF(k+1). Locally, everything takes place in an a-bounded set, and we may use
the product topology.

For lower semicontinuity, it is enough to show lower semicontinuity for the basic
open sets Z(Y,e,N)={XcR%: |x,—y,| <e for all t<N}. Lete, N>0 be given. Take Ye
F(k). By continuity of the f;, we can choose ¢ with |ft(k")—f(k)|<e for all <N when
[k—k’|<s. Forany such k', take the path x,=min{y,,f*(k")}. Note that ft{(k)+e>f*(k)=

% In fact, we could use the weaker condition that U be continuous on £3(®) with & the path of pure ac-
cumulation, i.e., 8;:=f%(k). Continuity of U can be obtained for a general class of aggregators and produc-
tion functions by using upper and lower approximations like those used by Streufert (1990). Alternatively,
a brute force calculation will also often show W(c;,W(cs,...)...,) converges uniformly to a continuous utility
function in this case.
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y: for t<N, so y;>x,>y,—e for all t<N. Hence X€ £(Y,e,N). Further, fi,(x:)=
min{fy,(ye),f*1(k")} = x4, and x; <fi(k), so X€F('). It follows F(k)n Z(Y,e,N)+# ¢
whenever |k —k’| <8, establishing lower semicontinuity.

An immediate application is to demonstrate g-continuity of optimal paths as a function
of initial capital stock. One consequence is that c,(k) is continuous in k for each ¢. In
general, this only holds for §>a. For g=a, it can fail even in models with additively sep-
arable utility. Amir, Mirman and Perkins (1991) and Dechert and Nishimura (1983), using
a non-convex stationary technology, find that optimal paths converge to zero if the initial
capital stock is below some critical value. Optimal paths starting above the critical value
converge to a steady state that lies above the critical value. They assume a maximum sus-
tainable stock, so a=1 will do. The optimal path is not norm (a=1) continuous because
of the long-run jump as you cross the critical value.

Variations on this are possible. Stronger forms of the maximum theorem allow the
utility function to depend on the parameter w. If the bounds of Part IV hold uniformly
in o, the optimal paths will be continuous in .5 A simple example is an optimal growth
model with additively separable utility W(c,y)=u(c)+4dy. Take (k,8)=0c =R, x[0,8]
with a strictly concave, bounded » and §<1. With a stationary concave production func-
tion f, a unique optimal path {c.(k,s)} exists. Further, {c,(k,5)} is g-continuous, hence
ci(k,d) is a continuous function of (k,5) for all (k,6)eQ. A non-separable example in a
similar vein is the EH form W(c,y)=[—1+e*~*y]. When §<u(0), this yields a g-con-
tinuous utility function for any g>a.

‘When the turnpike property holds, g-continuity of optimal paths will imply a-continuity.
In fact, if optimal paths starting in some interval of initial stocks converge to the same steady
state, a-continuity follows on that interval,

2. Recursive Dynamic Programming

The limited separability in recursive utility is sufficient to do dynamic programming.
Not surprisingly, the weighted contraction theorem is also useful here. The usual Principle
of Optimality applies, yielding Bellman equation J(k)=sup {W(c,J(f(k)—c):0<c< f(k)}.

Define the Bellman operator by

(Te)(k)=sup {W(c, e(flk)—0)): 0<c<f(k)}.

When W is continuous on [0,c0), the maximum theorem shows that the Bellman operator
maps continuous functions into continuous functions. Further, the supremum is actually
attained for each continuous function &. A function solves the Bellman equation if and
only if it is a fixed point of the Bellman operator. A contraction mapping argument will
now show that the Bellman operator has a unique fixed point, which must be the value func-
tion.

Suppose u is continuous on R+, and let ¢ >0 be increasing and continuous with W(f(k),
0)/¢(k) bounded. The Bellman operator is clearly monotone. Further,

(TO)(k)=sup {W(c,0): 0<c<f(k)} =W(f(k), 0) <p(k).

%7 Details may be found in Boyd (1986).



1993] RECURSIVE UTILITY ; DISCRETE TIME THEORY 87

Finally,
T + Ap)(k)y=sup {W(c, £(f(k)—c)) + Ap(f(k) — )} <(TEXK) + Adp(f(K))

since ¢ is increasing. Provided that & sup. o(f(x))/e(x)<1, the conditions of the weighted
contraction theorem hold. In sum, we have the following proposition:

PropPOSITION 6. Suppose W(.,0) is continuous on Ry and there is an increasing continuous
>0 with 6 =5 sup. [p(f(x))/e(x)] <1 and W(f(x),0)/o(x) bounded. Then the Bellman equation
has a unique continuous solution.

The fact that T is a contraction actually gives more information. Consider £,(k)=
T*0)(k). Then ||¢,—TJ|,<0|éa-1—J|l,» By induction, we obtain [|&,—J||,<8"|{&q—
JH,=0%|J]|, since &,=0. Thus ¢,—J in %,. This fact allows us to numerically approx-
imate the value function to any desired degree of accuracy.

A class of models covered by proposition 1 are those where f(x)<a+pgx with g>1
and u(c)=c7 for O<yp<1. Set p(x)=2+4+x7 where i obeys 1+a7/A<pg7. Then o(f(x))<
2+ (a+pxy <2+ ar+ frxr < (A4 x1) =p7(x). The Bellman equation has a unique solution
provided g76 <1.

One example is the case where u(c)=cv and f(k)=pk with 0<y<1 and g6<1. This
satisfies the hypothesis of Proposition 1. The value function has the form A4k». The con-
stant A4 can be determined by substituting this functional form in the Bellman equation,
and solving for 4. The fact that Ak” solves the Bellman equation verifies that it is the value
function since Proposition 1 guarantees that solutions to the Bellman equation are unique.

Streufert (1990) provides an alternative to contraction mapping methods. He con-
siders the case where there are best and worst paths. These yield upper and lower partial
sums, He considers the case where they both converge to the recursive utility function
(biconvergence). He shows that the value function is the unique admissible solution to
the Bellman equation, where admissibility rules out certain obviously absurd functions.

3. Characterization of Optimal Paths

We call an optimal path (C*,K*) regular if ¢j>0,kf>0 for all . For simplicity, this
section focuses on regular optimal paths. The analogous results for non-regular paths
may be found in Boyd (1990).

Optimal paths for the Ramsey model are characterized in this section. A useful en-
velope theorem and the Euler equations are developed first. We then proceed to the main
result that the Euler equations, together with the transversality condition, completely char-
acterize optimal paths for a large class of aggregators.

The following assumptions will be maintained throughout this section. The utility
function U obeys U(0)=0 and is concave and p-bounded on £3(8) for some ¢ with ||p-S]|, <
1/6. In addition, the feasible set B is generated by an a-bounded technology for some
a<p given by a sequence continuous, concave, increasing production functions {f;} with
f:(0)=0. As aconsequence, the theorems of the previous sections apply. The value function
J(») is defined and continuous in initial income y=f;(k). When U is differentiable with
respect to consumption at time ¢, denote §U/dc: by U.. Except as noted, assume U is dif-
ferentiable at each time.
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ENVELOPE THEOREM. The value function J is non-decreasing and concave. If U is differ-
entiable with respect to consumption in period 1, and optimal paths are regular, then J is dif-
ferentiable and obeys dJ(y)]dy=U,(C) where C is any optimal path from y.

Proor. The value function is increasing since the feasible set grows when the initial stock
increases. Concavity follows since U is concave and aB(k)+ (1 —a)B(k)CB(ak+(1 - a)k’)
for 0<a<l.

Differentiability is established as follows.®® Let 2>0, H=(4,0,...), and let C be an
optimal path with initial income y so that J(3)=U(C). Clearly, J(y+h)=>U(C+H) and
thus J(y+h)—J(y)= U(C+ H)— U(C). Dividing by 4 and taking the limit shows that the
right-hand derivative J'(y+) satisfies J'(y+)= U, (C). Since C is regular, ¢, is non-zero.
We may then repeat this with —c¢,<h<0, to show J'(y—)<U,(C)<J'(y+). As Jis con-
cave, J'(y+)<J'(y—), thus J'(»)=U,(C). O

CoROLLARY. Suppose U is recursive, the aggregator is differentiable, and optimal paths
are regular. Then dJ(y)/dy=W,(c,,U(SC)) where C is any optimal path from y.

Henceforth, assume that U is differentiable at each time ¢, and that the optimal path
is regular. Now let C* be optimal and let K* be the associated sequence of capital stocks.
Set BN={KEB kNZk;t]} . Let VN(K)=U(f;[(ko)_kp---,fN(kN—l)—kN,fN+1(kN)_k7v+1, fN+2
(k%D —knyo2--)- By the Principle of Optimality, K* solves the problem of maximizing
Vw over By. Setting the derivative with respect to k; equal to zero for t=1,....N—1, we
obtain the necessary conditions

Uer(CHf (ki) — U(C*)=0.

These are referred to as the Euler Equations.
Since U(C)/Ues1(C)=1+ R:,:+1(C), we can rewrite the Euler equations as:

S o1& =1+ Re21,(C*) =1+ R(S*-1C*).

I.e., the net marginal product of capital is equal to the marginal rate of impatience. In
the additively separable case 1+ R 11(C)=u'(cs)/6u’(ce11), 0 these reduce to the usual Euler
equations.

The Euler equations, are instrumental in proving the Transversality Theorem.

TRANSVERSALITY THEOREM. Suppose U is recursive and differentiable at each time. A regular
path C* is optimal if and only if the Euler equations hold and k} U,( C*)—0 as t— oo (the Trans-
versality Condition).

Proor. Suppose C* is optimal. As above, the optimal path must satisfy the Euler equa-
tions. Note that k>0 for all ¢ by regularity. Let y}=f,(k;_,) denote the income stream
associated with the optimal path C* and J; denote the value function at time ¢ with ¢ >0.
Since J:(0)=0, and J, is concave, J:(y) > yJ{(») for all y>0. Setting y=y; yields

ki Wilc} U(S' C*) <y Wil US| CN < (7). (1)

% This method is adapted from Mirman and Zilcha (1975).
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Now Ji(y)=U(S*-1C*). Multiplying through by ¢'-! and using the Euler equations
yields

0<kFULC¥) < 5 1U(S-1CH).

Combining the ¢-boundedness of U with 4]|peS||,<1 shows k} U, (C*)—0 along any
subsequence with ¢,>0. The sufficiency of the transversality condition is implied by Lemma
2 since U is continuous. []

LeMMmA 4. Suppose U is concave and product lower semicontinuous on the feasible set. Then
a path K* is optimal if it satisfies the Euler equations and the transversality condition is satisfied.

Proor. Consider an arbitrary feasible path K with associated C. Define an approximate
utility function 2y by Zw(C)=U(Cy,....Cx,Ch141,Chr420---) Where C* is the consumption
path corresponding to X*. Since U and f are concave, we have

N-1
Q)= U(CHZ Y (U/oklks— k]~ Un(kn—k3)

i=1

Now 3U/ak,=0 by the Euler equations. Thus Z/w(C)—U(C*)< — Un(ky—kx) < Unki,.
Letting N—oo and using the transversality condition shows lim sup Zx{(C)<U(C*). By
lower semicontinuity of U, U(C)<lim sup Zx(C)<U(C*) for all feasible C. Therefore
C* is optimal. [J

If U is not differentiable, a similar result could be obtained by using supergradients
instead of derivatives. In fact, Malinvaud’s (1953) sufficiency proof doesn’t even need
recursivity.

4. Monotonicity, Stability and Turnpikes

Beals and Koopmans (1969) have given conditions where a convex technology would
yield monotonic optimal paths in the one-sector model. A necessary and sufficient condition
for monotonicity is not known with more general technologies, although progress has been
made by Benhabib, Majumdar and Nishimura (1987). More is known about the additively
separable case, where Dechert and Nishimura (1983) carried out an analysis of monotonicity
in a reduced form model.

In this section we assume the feasible set B(k) is a-bounded and convex, that U is strictly
concave, satisfies the Inada conditions, and is g-continuous for some g>«. Optimal paths
are then unique, and the policy correspondencestare functions. The Inada conditions imply
that the optimal path is strictly positive for £>0. Recall that the Euler equations are 1+
R(S*1C)=f"(k,) where R=R,;,,.

MonoToNICITY THEOREM. Suppose dR/dc,<0. For any initial stock k, k.(k) is a strictly
increasing function of k and the optimal path is strictly monotonic.

Proor. Let k<k’, and let K and K be optimal from & and k', respectively. Suppose k,=
k. Consider the path k" defined by ky =k, and k; =k; for t=1,2,.... This path is optimal
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by the Principle of Optimality. Further, ¢ =f(k)—k <f(k)—k,=c; and ¢ =f(ki{)—
ky=c; Thus c;=c; for t=2,3,.... The Euler equations yield 1+ R(c;,c;,..)=f"(k{)=
f'k)=14R(c,cp...). Since c;=c; for t=23,.. ,R(c;,cy,...)=R(ci,cy,...). But this is
impossible since R is decreasing in ¢; and ¢;" <¢j. Thus k,+# k.

Now suppose k,>k;. Since k(0)=0<k;<k,(k), and k,(k) is continuous, there is
a k" with 0<k’" <k and k,(k’)=k;. This is impossible by the preceding argument. There-
fore k, is strictly increasing. Since k.(k) is the #¢* iterate of ky, it too is strictly increasing.
Now if ky<k, ky=k,(k)) <ki(k)=k,. Tteration shows k>k;>k,>.... The case k;>k is
similar. [

The condition on the rate of impatience says that, all other things equal, we become
more patient (the rate of impatience decreases) when current consumption rises. This
seems quite intuitive, and holds in the addivitely separable case where 14 R(C)=u'(c,)/
éu'(c,) and v’ <0. In fact it holds whenever W;,>0. This condition on the aggregator
is not necessary for a decreasing rate of impatience, since the EH aggregator has W;,=
—u'(c)e 2 <0. Yet 1+R(C)=1'(c))(—1+ U(SCO)/[u'(c)(— 1+ U(S2C))] is decreasing in ¢;
since u”'<0. We obtain a turnpike result for these cases. Optimal paths either converge
to a steady state, or to oo.

The next question of interest is stability of the steady states. Define the steady-state
rate of impatience, p by p(c)=R(Coon) Where Ceon=(c,c,...). This is the marginal rate of
impatience, evaluated along the constant path C.,,. Of course, p>0.2° For convenience,
define @(c) to be the utility of the constant path C,.,. The rate of impatience is then o(c)=
1/Wy(c,®(c))—1. With additively separable preferences (W(c,U)=u(c)+5U) this reduces
to the usual rate of impatience p=¢-1—1. Epstein’s generalized Uzawa aggregator W(c,U)=
(v(€) + U)e= has ®(c)=w(c)/(e*>—1) and p(c)=e*>—1. This exhibits increasing steady-
state impatience (o’ >0), as does the KDW aggregator where p(c) =0/ —1.

Initial stocks can be divided into three disjoint sets. Let 7 °={k: k=0 or f'(k)=
L+o(f(k)=k)}, Tr={k: f'(lk)>1+p(f(K)—K)}and T~ ={k:f'(k)<1+p(f(k)—~k)}. For
k. 779, the Euler equations and transversality condition are clearly satisfied by the sta-
tionary path k,=k. Thus every element of 779 is a steady state. The Euler equations
also show that all steady states are in & °. Accumulation is definitely possible in 7+
since f'(k)> 1+ o(f(k)—k)>1.

One way to think about 1+ p(f(k)—k) is as the long-run (steady-state) supply price
of capital. The marginal product f’ gives the long-run demand price. Thus long-run de-
mand lies above supply in .7+ and below supply in .7 ~. Intuitively, the quantity should
rise in the long-run in 7, and fall in . ~. That this intuition is correct is the content
of the turnpike theorem below.

Since both %+ and .9~ are open, they are the countable union of open intervals.
The end points of these intervals must be in . 7% Now label the endpoints k. such that
ki<kiy,. If k(K ki), the optimal path cannot cross the steady states at the endpoints,
s0 kie(ki,k:y,). Further, since k; is monotonic, it must converge to some k. Taking

6 Buckholtz and Hartwick (1989) consider a generalized Uzawa aggregator with w(c)=a[e*% —1], which
is not increasing in ¢. The constant function U(C)=a is the only utility function satisfying the recursion.
Obviously p=-0/0 is then undefined. Buckholtz and Hartwick reject this interpretation, and argue for the
use of an overtaking criterion, which has a zero rate of impatience.
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the limit in the Euler equations shows f’(k)=1+p(f(k)—k). The optimal path converges
to one of the endpoints. Similarly, if k is greater than all of the steady states it either con-
verges to the largest steady state, or to oo. The next theorem shows that k,—%;., when
ke(kiki)c 77+ and k,—k; when ke(ki,ki)c 77—, However, we need a preliminary
lemma before proceeding to the turnpike resuit.

NON-OPTIMALITY LEMMA. Suppose ke 7+ (k€. ) and k, <k (k,>k) for t<n with k,=
k for t>n. Then U(C)<D(f(k)—k) and K is not optimal.

First suppose ke 77+ and let W(k)=®(f(k)—k). That U(C)<W(k) is trivial for n=1.
We proceed by induction. Suppose U(C)<W¥(k) when n=m>1 and consider a path K
with k,<k and k,=k for t>m+1. If kn=k,U(C)<¥(k) by the induction hypothesis, so
we may suppose kn < k.

Consider the path K’ defined by k;=k for t#m and k,,=k+4. Obviously f'(k)>1,
so this path will be feasible from k for >0 small enough. Taking a Taylor expansion shows
U(C) =Y (k) =W (W)™ [W,f" — 1156 +0(5)s where all derivatives are evaluated at k. Since
1+ p(f(k)~k)=1]W(k,¥(k)) < f'(k), 5 may be chosen small enough that U(C")>¥(k). Note
that remaining at k& cannot be optimal.

Now take 2. 0<i<l with 2(k+6)+(1—-2)kn=Fk. Then K”’'=iK'+(1—1)K satisfies
the hypotheses of the lemma for n=m, so U(C"")<W(k) by the induction hypothesis. Now
V()= U(C)22U(C)+(1-)U(C)> 2% (k) +(1—-6)U(C). Thus ¥(k)>U(C). The inequali-
ty holds for all » by induction. Further, since the stationary path k,=k is feasible and
not optimal, K cannot optimal.

The case of k€ 77~ is similar. []

TURNPIKE THEOREM.  Suppose 6R/3c,<0. The optimal path from k is stationary if ke 77,
increasing if k€ 7 * and decreasing if ke T .

Proor. Consider the case where k€ 97 +. We know that k, is strictly monotonic. Sup-
pose k. | k’. Take a sequence of feasible paths K* such that K*—K in the product topology
with kj<k for all ¢ and k;=k for large ¢t. (This is possible since f'>1 on [k},k].) Then
U(K)<Q(f(k)—k) by the Non-Optimality Lemma. Since U is product continuous on
the feasible set, U(K) < @(f(k)— k), contracting the fact that K is optimal.

The case k€. 7~ is similar, except that the optimal path may simply be truncated to
obtain the desired K*. []

Benhabib, Majumdar and Nishimura (1987) examine long-run dynamics in two-sector
models. They find monotonic convergence to a steady state under a normality condition
and a condition on factor intensity, and oscillation if either condition is reversed.

5. Long-Run Income Distribution in Dynamic Economies

One big contrast between general recursive utility and additively separable models
comes when we examine dynamic equilibrium models. In the additively separable case,
the most patient agent(s) end up with all of the capital, while relatively impatient agents
use all of their labor income to service their debt. This is obviously absurd since the im-
patient agents would not be able to survive, much less pay the interest on their debt.
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This occurs since the long run capital supply is perfectly elastic at the (fixed) steady-state
rate of impatience. If the interest rate is above the rate of impatience, agents will lend as
much as they can. If the interest rate is below the rate of impatience, agents will borrow
as much as possible. The long-run equilibrium thus has the interest rate set at the most
patient agent’s rate of impatience, and all others borrow as much as possible.

With recursive utility, the steadt-state rate of impatience varies depending on long-run
consumption. All agents can have the same rate of impatience in the steady state. The
consumption levels are non-zero, but vary across agents depending on their respective rates
of impatience. If the steady-state rate of impatience is increasing in steady state consump-
tion, the more patient individuals consume more (and have higher wealth) is the steady
state.

To see this, consider the case where each individual earns wages w and faces a fixed
interest rate r. Steady-state consumption is w+rk is net savings. Consider the case of
two agents, with p'(c)<p%c) for all ¢ (agent one is more patient). In steady-state equi-
librium, pl(c;)=p%cs)>pY(cs). With p! increasing in ¢, w+rk,=c,>cy=w+rk, thus k,>
k,. Curiously, if the rate of impatience were decreasing in consumption, the more patient
individual would own less capital.”

For these considerations to be relevant, we also need a stability result. The equilib-
rium must converge to the steady state. The stability of recursive dynamic equilibrium
has been investigated in a number of papers. The simplest case is a representative agent
economy. In that case, the equivalence principle holds [Becker and Majumdar (1989)].
The equilibrium problem is equivalent to a planner’s problem with the same preferences
as the representative agent. Since the solution to the planner’s problem is stable, so is
the equilibrium.

The heterogeneous agent recursive case was first rigorously examined by Lucas and
Stokey (1984), who considered a two-agent, one-good exchange economy. They assumed
that both current consumption and future utility were normal in the sense that Wi(c,y)/
W(c,y) is decreasing in ¢ and increasing in y. They also required an increasing steady-
state rate of impatience.”” Jafarey (1988) has found that decreasing impatience insures
instability, and that more generally, stability depends on the relative rates of impatience
at zero and at the endowment. In the increasing impatience case, this last condition merely
insures there is an interior steady-state equilibrium.

Both set up a dynamic programming problem that generates the equilibrium. The
idea is that any equilibrium is Pareto optimal, and so solves a social planner’s problem for
some set of weights. This is then recast in a dynamic programming framework. This
results in some complication, but can be done. To see the complication, consider the ad-
ditively separable case where U{Ci)=2X17, 8! Y uy(ca) for i=1,2. The planner’s objective
is 2,U(C)+2,U(C,). This objective can be rewritten Ayuy(cy)+ Aous(c2)+24,6,U(SC) +
2.0,U,(SC,). The weights on future utility are different from the weights on current felicity.
This problem can be circumvented by explicitly including future utility in the planner’s
objective, as detailed in Lucas and Stokey. The planner’s problem then contains the needed

7 Boyd (1986) examines such cases in a Ramsey equilibrium framework.
1t Hayek (1941) was the first to point out the importance of increasing impatience for stability, although
his argument does not meet modern-day standards of rigor.
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information on stability.

Benhabib, Jafarey and Nishimura (1988) study the long-run behavior of production
economies -with heterogeneous agents. They again set up the planner’s dynamic program-
ming problem, but then use a linearization to study stability. As in the single agent case,
increasing marginal impatience combines with a normality condition to yield stability. )

A comprehensive analysis of the planner’s problem has been carried out in a series
of papers by Dana and Le Van (1989, 1990, 1991). They find (1990a, b) that a similar pro-
gramming problem can be set up in a general model with many agents and many goods.
They then obtain the Euler equations, and examine the uniqueness and stability of steady
states of the planner’s problem. The other paper (1989) examines equilibria corresponding
to initial endowments. This amounts to picking the correct social welfare function. They
obtain detailed information about this mapping of endowments into weights.

V1. Conclusion

The upshot of all this is that many of the results and techniques we take for granted
in the additively separable model carry over to recursive utility. Although we concentrated
on one-sector models, many of these methods have applications to multi-sector models.
Koopmans’ original results on representation were shown in a multi-sector framework.
The weighted contraction technique also applies to multi-sector models. Just replace ab-
solute values by R™ norms, and work in subsets of (R®)». Existence of optimal paths and
continuity of policy functions easily follows by the Maximum Theorem. Similarly, the
characterization via Euler equations and transversality condition is easily extended. Of
course, the stability results of Benhabib et al. and Dana and Le Van are already in a multi-
sector framework, although the statement of necessary conditions for stability may get quite
complex.

Throughout the paper, we have focused on the theoretical aspects of recursive utility.
In case the reader is wondering about empirical work on the subject, we close by mention-
ing the paper by Zin (1987). He finds empirical support for recursive preferences exhibiting
increasing impatience in United States macroeconomic data.

INDIANA UNIVERSITY AND UNIVERSITY OF ROCHESTER

Appendix: The Weighted Contraction Theorem

Let f= &€ (A,B), the space of continuous functions from A to B. Suppose o= & (A;B)
with BCR and ¢>0. A function fis p-bounded if the p-norm of f|| f|],=sup{|f(x)|/e(x)}
is finite. The same isometry trick we used on *(8) shows that &,(A;B)={y€ € (A;B).f
is p-bounded} is a Banach space under the g-norm. Just set (Vf)(x)=/f(x)/¢(x). In par-
ticular, &,(A;B) is a complete metric space. Recall that a transformation T: &, — &, is
a strict contraction if || Tx— Ty||,<6||x—yl|, with #<1. For such 7, we have:

CONTRACTION MAPPING THEOREM. A strict contraction on a complete metric space has a
unique fixed point.
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The proof is well-known, and can be found in various standard references [e.g., Reed
and Simon (1972), Smart (1974)].

In applications, the main problem is to show that T is a strict contraction. An easy
way to do this is by using monotonicity properties, as is common in dynamic programming.
In the weighted contraction context, this yields the following form of the theorem.

WEIGHTED CONTRACTION MAPPING THEOREM (MONOTONE FORM). Let T:&,— & such
that

(1) T is non-decreasing (¢ < ¢ implies Tt < T¢).

2 TOE Z,.

() T(+Ap)<Te+ Abp for some constant 6 <1 and all A>0.
Then T has a unique fixed point.

ProOF. Forall ¢,¢€ &l — gl <116~ dllop. S0,6<¢+]6—¢llsp and ¢ <&+]]6—¢]|op. Pro-
perties (1) and (3) yield Te< Tg+6||6 — ¢ll,0 and Ty < Te+0|16 —¢llop. Thus ||[Te—Tg|l, <
ollg —¢ll,.

Setting ¢=0, we have ||T¢—T(O)|l, <6ll¢ll,, and so || T¢ll,<6ligll,+]ITOll,<oo by
property (2). Hence T: ¥,— %,. As 6<]1, T is a strict contraction on %,. By the con-
traction mapping theorem, it has a unique fixed point. [
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