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BORROWING CONSTRAINTS AND INTERNATIONAL
COMOVEMENTS*

ANTOINE CONZE, JEAN-MICHEL LASRY AND JOSE SCHEINKMAN**

1. Introduction

It is now well understood how the presence of borrowing constraints can affect the time
series properties of aggregate economic data. In particular the results in Scheinkman and
Weiss [9] show that borrowing constraints may cause the appearance of economic fluctua-
tions in an economy where, if the perfect risk sharing implied by a full set of contingent
claims markets was available, no aggregate fluctuations would be observed.

Departures from perfect risk-sharing across countries would also have several impli-
cations for the behavior of the international comovements of economic time series. Scheink-
man [8] suggested that correlation of consumption series across countries could be used
to test for the presence of a full set of contingent claims markets. Also, as it is shown for-
mally below, if the output of different countries are Pareto substitutes in consumption, in
a complete markets setting, the correlation of output series should be smaller (algebraically)
than that of the corresponding productivity series. In this paper we construct a formal
model of a two country economy that allows us to derive implications of the presence of
borrowing constraints on the behavior of economic time series. Simulations of the model
reveal that it is capable of generating significant positive correlation across output series
even in the presence of uncorrelated productivity shocks. This result suggests that borrow-
ing constraints can be used to explain the substantial positive correlation of output growth
across countries in the presence of almost no correlation of productivity growth series (cf.
Costello [5]). Further the model can generate a much lower consumption correlation than
that implied by a complete set of contingent claims market what again seems to be in ac-
cordance with empirical observations.

The model we use is a version of the one developed in Scheinkman and Weiss [9]. A-
gents in each country are engaged in the production of a single consumption good using
labor as its sole input but labor productivity is random. Their utility depends on the
consumption of the two goods and on leisure. They can trade their output for the other
country’s production or for a single durable “asset.” This asset is assumed to have a fixed
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nominal return of zero and is thus held solely to permit higher consumption level in “lean”
times. The absence of complete contingent claims markets gives rise to a precautionary
demand for wealth and, in particular to a non-zero price for the asset.

The qualitative features of the equilibrium can be described simply, especially in the
case where the utility function of each agent is separable and the marginal utility of leisure
is constant. Suppose each country has a high and a low level of productivity. Consider
an increase in the productivity of labor in country one. If complete insurance was present,
the price of good one would drop enough so that the consumption of good two would not
be altered. In our case the only form of insurance available is the holding of the asset.
On the average, when the productivity of country one goes from low to high, country one
individuals would have a small share of asset holdings and will now try to increase their
holding of the asset and this results is an increase in the price of the asset in term of good
one. Hence country two’s individuals will have a capital gain if we measure their wealth
with good one as the numeraire, and thus their holdings of money does serve as partial in-
surance. However, individuals in country two still face the same trade-off between leisure
and consumption of good two and hence the shock has no effect on their demand for good
two. Individuals in country one on the other hand will, at fixed prices, consume more of
both goods. The net result is an increase in output in country two as well as an increase
in the relative price of good two in terms of good one, although weaker than the relative
price change in a complete market economy. Thus the productivity shock in country one
causes, through its effect on the equilibrium price of good two an increase in the output
of good two generating a positive correlation of output across countries.

There are of course other ways in which one could generate these co-movements. If
intermediate goods were introduced, then an increase in the productivity in one country
could cheapen inputs in the other country sufficiently to generate an increase in output.
This would of course imply that these intermediate goods would have countercyclical
prices what seems to be countrary to the available evidence (cf. Murphy, Schleifer and
Vishny [6]).

The model has other implications for economic time series. Since increases in pro-
ductivity lead to a cheapening of the output in a country net exports are, in the model, pro-
cyclical. This seems to be at odds with the data (see e.g. Bachus, Kehoe and Kydland [1)).
Also the model generates a negative correlation between the value of exports and the relative
price of exportables in terms of importables. Though the data on aggregate export and
import prices is by nature unreliable this doesn’t seem to be rejected for the U.S.! In any
case, the mechanism proposed here is, at best, responsible for a fraction of the observed
patterns and deviations are to be expected.

The simulations also show that at least for certain parameter values the utility losses
incurred are small relative to the changes in output correlation observed. Individual’s
optimization seem to lead to large effects on quantities while avoiding big utility losses.
Since this model is too unrealistic to be matched quantitatively to actual data, this should
not be taken to mean that actual markets display in fact allocations that are almost optima,

! The correlation between quaterly changes in GNP between 1948 and 1987 and changes in the logarithm
of the price of exports devided by the price of imports is essentially zero but equals- 24 if we omit the years
of 1974 and 1979/80 when the two big “oil shocks’ hapenned.
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but rather that relative large changes in some observed statistics relative to what would
prevail in complete markets do not necessarily imply that large improvements are feasible.

The proof of existence of an equilibrium is entirely constructive and allows us to
simulate paths as well as to compute numerical statistics for sample economies. The par-
ticular algorithm we devised satisfy monotonicity properties that are used to compare
equilibria when parameter values are changed.

The paper is organized as follows: in section 2 we present the formal model and discuss
the competitive equilibrium with complete markets as well as the equilibrium in the pre-
sence of borrowing constraints. As in Scheinkman and Weiss [9] and in Conze, Lasry
and Scheinkman [4] the equilibrium under borrowing constraints is shown to be charac-
terized by a martingale property. In section 2 we also state the main propositions that
are used to show the existence of an equilibrium. Section 3 discuss the stationary distri-
bution of asset holdings, while section 4 presents simulations of the model. Section 5 dis-
cusses some conclusions and the appendix contains the formal proofs.

II. The Model

There are two countries of equal size and one good produced in each country. In each
country production displays constant returns and involves only the use of labor input.
The amount produced in country a (a=1, 2) by one unit of labor at time ¢ is given by a
random variable 67 that may assume any of a finite number of values o}, j=1,...,Ja. More
precisely we postulate the existence of a probability space (2,.%,P) and of two stochastic
processes {81}, {6%} defined on this space.

To simplify notation, we set I=J,J, amd 5,=(6%,6%). The process {s.} takes values in

{8, i=1,...,I} = {(aked), j=1,..., Jy, k=1,...,T5}.
We assume that the transition probability of {s.} is given by 2
P(sp.=54l5c=81)=24,;7 +0(7), j# . (1)

The consumer’s utility function for stochastic streams of consumption and labor is
given by

Ua:EHo*“e-f»ua(c;t, £ l;’)dt] (2)

where cf , (resp. c§,) is the consumption at time ¢ by the a-th agent of the good produced
in country 1 (resp country 2), and /{ is the amount of labor at time ¢ of the a-th agent. The
function u®, a=1,2 is assumed to be twice continuously differentiable on Ri'*, strictly in-
creasing in its first two arguments and strictly decreasing in its third argument.

Agents observe the history of the process {s.} ={(6}, %)} and make their choices con-

2 In all numerical simulations, we will consider the particular case where J,=J,=2 and {0}} and {0?}
are independent, with transition probabilities given by
P}, ,=af|0f=a])=P(6]  =af|6f=af)=i0c+0(r),a=1,2 ‘
In other words, in this particular case, productivities in the two countries are independent, can take two values,
and their switchwes are governed by independent Poisson counting processes. -
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ditional on these observations. We write &, for the information available at time ¢.3
2.1 The Competitive Equilibrium with Complete Markets

Before proceeding further with the competitive equilibrium under borrowing constraints,
we will briefly discuss some properties of the market allocation if there was a complete set
of Arrow-Debreu contingent markets. Such markets would allow agents to purchase at
time O at a price 71,.(w) (resp. =2,.(w)) the right to delivery of one unit of consumption of the
good produced in country 1 (resp. country 2) at time # in state 0 €Q.

The problem faced by agents of type a is to maximise (2) subject to the budget con-
straint

E U:”(nl,,c;z_, +rgucf ,)dt] <E U”na,,oglgdt] .
0

Since the competitive equilibrium is Pareto optimal, we know that its allocation solves
max {E[UY+yE[U?]}
subject to?

1 2 g1l
et 0y =001
1 2 __p2p2
Cy,¢F 3, =04l7.

with >0. Since the U%’s have not been specified, we can assume without loss of gener-
ality that y=1. Notice that in (2) the discount rate r is the same for both types of individ-
uals. Therefore the competitive equilibrium allocation {(c{ ,, ¢} ., ¢t ,, ¢ )} actually solves
at each instant ¢

1, .2 1, 2
max {u1<c}, cl, Cl-tcl >+u2(cf, 2, cztcz )}
(chebcdch Z 7

We wish to show that if labor and consumption are separable in the utility functions,
and if we assume that an increase in consumption of one good lowers the one period mar-
ginal utility of the other good, an increase in one country’s productivity leads to a fall in
the other country’s output. This in particular shows, that under these assumptions, if
complete markets prevails any positive output correlation must be explained by a positive
correlation of productivities. We assume that

u“(cl,c2,l)=v“(c1, CZ) - wa(l).
Let K, (resp. K,) denote output of country 1 (resp. country 2). (K;,K,) solves

max V(8, 6%, Ky, K») (3)
K, K2

3 je. consumer’s choices are % s-measurable where % ={.# :} is the minimal filtration generated by
{s¢}, o(5u,0<u<t).
4 Here and in what follows equalities and inequalities are assumed to hold with probability one.
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with

K.
V052 Ky, K)=max {(cl, ) — w(f )+ v, Ko=) —wi(—2 )o@
C C

K K,
=—w1( 011 )—w2< 7 >+max{v1(c1, e+ 3K, —cl, K—cd)}
2 C C

=_w1(_1<1_>_

01

w2< ’:; >+ UKy, Ky).

We also assume that the two goods are substitutable for both types of individuals, that

azvl 82v2
0C10Cs = dc10cy ~

V%Z = >
and that v and v? are strongly concave, w! and w2 are convex. Then in (3) and (4) the max-
imum is strictly interior, so that the optimum (K,,K,) satisfies 6V/aK;=0 and aV/aK,=0.
Differentiating with respect to 4%, we get

[— Uy +w'[(6Y)* — U, ] [aKl/aﬁl] _ [wl’/(ﬁl)z}
= Uy = Uga+ w2 [(69)2] L0 K /56" 0

where U;;=32U/(0Ki0K}).

We want to show that §K;/36'>0 and 8K,/36'<0. From (5) a sufficient condition
is that U,,<0, U,,<0 and U,,<0. It is clear that U is strictly concave, so we have the
two first inequalities. Now let (¢}, &}) be the pair such that

(5)

U(Ky,K3)=v(e1,¢3) + ViK1 ~ 1K — T3).
Then
aU ovt
a_K'l e, (Cl, c2 s

act | o

Un=th g, +"h g,

Also for a=1,2,

vt 51 21
ac. (cl, z) (K1—Cb K,—&)=0

which implies
[ i+ v ] [ d¢1/0K, ]=[ Vi ]
Vie+vi VitV 0¢3/0K, Vi
It is then easy to show that
ViglVi1ve— ()21 + Vialvl vy — (0)p)?]
4

Uis=
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where A=} +v2)(vh+vE) — (v}, +v%)? is strictly positive from the strong concavity of
vl and v&. Therefore U,,<0.

Notice that when U,,=0, aKz/aal—o and 9K,/962=0. . In this case the correlation
between K; and K, is zero if the shocks ' and #2 are uncorrelated. This limit case cor-
responds to the case where both v! and v? are separable in (cy,¢s).

2.2 The Competitive Equilibrium and Borrowing Constraints

We assume the existence of a fixed stock of “money” whose units are chosen such that the
average per-capita holdings equals one half. Agents are assumed to know the initial dis-
tribution of “money” holdings.

The typical individuals in country a takes as given the’ stochastic processes of prices
{p.:} and {p,.} for the good produced in country 1 and 2 respectively, and solve problem
(P%) (equations (6) to (9) below) in order to choose, among other things, the amount y¢
of “money’’ that he will hold:

max EU erun(cS,, 5, [9)dt ~ (6)
subject to 0 :
¥§ given (7)
VE=08Pa,dlf —P1,103 ; —P2.eC5 ¢ (8)
¥§20,1{>0, ¢f ,20, c§ ,>0. (9)

Notice that (9) implies that no borrowing is allowed. An equilibrium is a pair of stochastic
processes {(pa,e, pa,)} such that if {(3F, ¢f ,, ¢5 ,, If)} solves (P?), then for all 10,

yi+yi=1 (10)
¢ 4k =01}, (11)
C2,t+c2,t:0§l?' (12)

We will also assume that the marginal utilities of consumption at zero consumption
are infinite. This guarantees that ¢f ,>0, ¢§ ,>0 and /{ ,>0 for all ¢ and a=1,2.

Let {z:} be the stochastic process representing the average amount of ‘“money” held
by agents in the first country.

As in Scheinkman and Weiss [9] and Conze, Lasry and Scheinkman [4] we will first
motivate heuristically a candidate equilibrium. We should then prove that our candidate
is in fact an equilibrium.  The proof here would be completely similar to the proof of this
result for the models in Scheinkman and Weiss [9] and Conze, Lasry and Shceinkman [4],
to which the reader is refered.

Any competitive equilibrium at each instant ¢, conditional on the amount of “money”
received by the typical individual of country one from the typical individual of country
two, is Pareto optimal. Hence-the competitive -allocation {(c} ,, ¢}, ¢?,, c2 )} must solve
at each instant ¢
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1, 2 1, 2
¢ +c ¢+ ¢y
max {ul(c}, cl, ——)+r;u2 ct, c, - )}

(C}.c%,c:f,cg) 0% ;
Further if
1 ot g
' ¢
1 o A ot

t

that is {g?} is the stochastic process describing the marginal utilities of money of individual
a, then

o=k (15)
q;

We will assume that «* and #? are such that the function

1, .2 1, .2
1.1 .2 2 af1 1 1174 2 2 16
V(cy, e3, ¢, cz)—u1<cl, €2 py + ¥ e, €5, py
! !

is strongly concave, i.e. D2V is negative definite. Since by assumption its maximum is
interior it follows from the implicit functions theorem that

et =6}, 6% 70), (16)
¢}, e =)0}, 635 1)y 17
e} y=c}(6}, 6%, 70)s (18)
c§ =0}, 67, 12), (19)

and that all these functions are, at least, continuously differentiable.

We will look for an equilibrium in which (almost all) sample paths of {z;} are abso-
3
lutely continuous functions of ¢, that is z¢=L 24du for some process {%;}. Further, we

only consider equilibria in which each individual of a given type starts with the same amount
of “money.” With strict concavity, this implies that y} equals z, and y? equals 1—z,.
Since

Z; =p1,tcit_P2,tC%,ta
we may write, using equations (13) to (15) as well as equations (16) to (19),
Z :f(st, q}s qtz)

q? 1 qt
g (01, 6% )— gz(ﬁl, 62, ) (20)
PR g Lo TN g

)

where
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g'(e*, 6% x)=0"

out 1 1\ cie, 62 1/x)+cXot, 6% 1/x
2o, 0% 1) il 01, L), 2 Sty
1

1
X c%(&l, 82, T),

ou?
0Cy

x ca(8%, 62, x).

cl(6, 62, x)+ck(8', 62, x) >

1 —pn2
g2(0 > 62: X) =0 02

<C%(01’ 02’ x)’ 63(013 029 x):

Notice that from (20), fis homogeneous of degree-1 in (g1,¢2).

We will look for an equilibrium in which g!=q'(s;,z;) and g?=¢?(s;,z;). In this case,
from (20) we can infer that the process {(s:,z.)} is Markovian. We will now proceed to
further characterize this equilibrium.

As money yields no direct utility it is natural to guess that, in equilibrium, the expected
discounted marginal utility of money at t+dt, conditional on the information available
at time ¢, equals the marginal utility of money at time ¢, i.e. the processes {e"tqf}, a=1,2
are #-martingales. From the Markov property of {(s.,z.)} and (1) we get

Ele~r¢ogf, | F]

=Ele7¢+gf, |si, z,]

dg®
& (0 20f(s6, @Xsw 20, 455, e

=e~Ttq%(si, Z;) + e—”{

e T 4l (55 20~ g*(50 20 =rg*(se 20} £+ 0(2)

with s;=s;. When r—0, the martingale condition implies that

d a
(s, 20f(s1, 450, 20, 4%ss, 7))

+ § Zi,J[qa(sh Zr,) _qa(sf’ Zt)] —rqa(s‘h Z‘):O'
¥

Also the no-borrowing condition implies that 2[,-0>0 and 2z.],-1<0, that is for all
iell,...,I},
s, *(s1, 0), g%(s4, 0)) =0
f(si’ ql(si’ 1)’ qz(si> 1))S0
For simplicity of notations, we set vi=r-+ 3 ;«ids,;, gX(z)=¢(ss, z) and gX(z) =q%si, z).
Writing the previous results together, we obtain system (S) (equations (21) to (24)) on [0,1]:
for all i{el,...,I},

1
—‘i,qz" (2)f(s1, g}(2), g¥2)) + z izi,,q}(z)— vigh(z)=0 1)

dq?
dz

(@)f(ss, q}(2), 4}(2)) +j§i 4,19 5(2) — vigh(2)=0 (22)
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1(5,47(0),4%(0)) =0 (23)
Ss,q}(1),g2(1) <0 (24)

where f(s,q%,g%) is C* and homogeneous of degree-1 in (ql,q2)ERi”. For simplicity of
notations, we denote by g the vector of the 2I functions (¢},¢%icq,....n-

Notice first that system (S) always has the trivial solution ¢f=0, i=1,...,I, a=1,2.
This corresponds to the case where money has no value. In order to guarantee the ex-
istence of a non-trivial solution we need assumptions 1 to 3 below. As we explain below
assumptions 1 and 2 are satisfied in the separable case with constant marginal utility of
leisure whenever relative risk aversion is not too big.

Theorem 1 that follows states the existence of at least one non-trivial solution to sys-
tem (S) under certain conditions. Before going further, we make the following assump-
tions:

ASSUMPTION 1 |
oYsE (5, i=1,...,1}, VG*ERy ,, the function *€R, . f(s, ¢*, q?) is strictly increasing.
oySE (s, i=1,...,I}, V@' ER, ,, the function g*ER, . f(s, 4%, q%) is strictly decreasing.

Since we will look to solutions g such that g} is decreasing and qf is increasing, assumption
1 implies that z will be decreasing as a function of z.

ASSUMPTION 2 |
eyic{l,...,I}, f(s:, x, 1)>0 for xR, big enough.
eyic{l,...I}, f(si, x, 1) <O for x&R,, , small enough.

Assumption 2 is necessary in order for equations (23) and (24) to be satisfied.

We can get an idea of the restrictions imposed by assumptions 1 and 2 by examining
the separable case, with constant marginal utility of leisure and same utility function for
both groups. Without loss of generality, we can take the marginal utility of leisure equal
to 1, and the utility functions is

u(ey,col)=v(e) +wlcg)— 1.

In this case, we get

1 g 1 qt
S84 6% g% gH)= qor g1< g6t )_ 720 gz( PEE )

with g'=(")"! and g>=(w')~1. Since marginal utilities of consumption at zero consump-
tion are infinite, it is clear that assumption 2 is satisfied. Now since g! and g2 are strictly
decreasing, assumption 1 is satisfied if and only if x|—>xg1(x) and x+>xg?(x) are strictly de-
creasing functions, that is if and only if



32 HITOTSUBASHI JOURNAL OF ECONOMICS [December

v'(c) w"(¢)

VC>0, CT(C')—>—1 and ¢ W'(C) > -

1. 25)

Equation (25) says that the relative risk aversion is less than one.

From assumptions 1 and 2 and the fact that f(s,q%,¢%) is homogeneous in (g%,q?), there
exist for every s&{s,i=1,...,I} a unique A(s)>0 such that f(s,q%,g%)=0 is equivalent to
g*=qh(s). Moreover, f(s,94%,4%)>0 if and only if g><gh(s) and f(s,9%,¢®) <0 if and only
if g2> q*h(s).

To every application K:{l,...,]} —{1,2} we associate the real matrix Ix I defined by
M(K)=(m ;) where m, =0, and if j+#1,

A1 1 A4

ETRO) k=1, k(=2

At,9
My =—1" 1km=rpH+

Tjh(sj)lK(ikz, K(p=1
For every K, we denote by p(K) the greatest positive eigenvalue of M(K), which is well de-

fined by the Perron-Frobenius theorem (see for instance Nikaido [7]). Also we set p=

supx p(K).
THEOREM 1 System (S) has at least one solution q satisfying
vie(l, ..., I}, geC(0, 1) n C'((0, I\ {z}'}), (26)
vie(l, ..., I}, g€ C(0, 1D n C'([0, I\ {z}'}), e4))
vie{l, ..., I}, g} is strictly positive and strictly decreasing, (28)
viell, ..., I}, ¢ is strictly positive and strictly increasing, 29)

if and only if p>1, where z} is the only point in [0,1] such that
zf=0 if f(ss, g}(0), g}(0))<0,
zr=1 if f(s, g;(1), gZ(1)>0,
S(ss, gHzF), gX(z1))=0 otherwise.

Notice that in theorem 1, uniqueness of z;* follows from the fact that ze>f(s:,g}(2),g%(2)) is
strictly decreasing. The proof of the theorem is in appendix. It is very similar to the
proof of the main result in Conze, Lasry and Scheinkman [4]. We will refer to this paper
as much as possible.

In section 2.3 below we state the main propositions needed to establish theorem 1.
The proofs are in appendix.

The condition p>1 does not hold in all cases even under assumptions 1 and 2. In-
tuitively if agents discount the future heavily or if their productivities does not vary enough
across states then money commands a zero price. The fact that productivities vary enough
can be stated as:

ASSUMPTION 3 There exist i and j in {1,...,I} such that h(s;)>1 and h(s;)<1.
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In the separable case mentioned above, when w=v, it is easy to check that 4(¢,6)=1 and
that 9h/36'>0. Hence assumption 3 is verified provided there are two states with relative
productivities respectively greater and less than 1.

THEOREM 2 Assume 1 to 3. Then there exist >0 such that p>1 if and only if r<F.
The proof of theorem 2 is given in appendix.
2.3 Existence of an Equilibrium

The proof of existence of a solution to system (S) when p>1 is entirely constructive. This
allows us to establish results concerning the comparison of solutions as parameters change
as well as to obtain numerical simulations of the model that can be used to compute the
correlations among the different equilibrium prices and quantities.

The argument consists in transforming the problem of solving system (S) into a fixed
point problem. In order to do this let E (resp. F) be the space of strictly positive and strictly
decreasing (resp. increasing) functions which are defined in [0,1] and continuous. Let
5€10,1[x]0,1[ and »>0 be constants. Let (#7)cExF. We define the swtich point as-
sociated to (s,i,7) by

z¥=0 if [f(s, @#(0),%(0)) <0,
z¥=1 if f(s, a(1), $(1))=0,
(s, ii(z*), ¥(z*))=0 otherwise.

We introduce the following system, which we call reduced system (equation (30) to (34)
below):

2 s, u(2), v = u(2) + D=0, (30)
B @)1, u(2), W2~ D)+ =0, G1)
u(z*)= a(j*) if z%>0, (32)
vz = ﬁ(i*) if z*<1 33)
Fls.u(z?)9z) =0. (34)

Notice that if 0<z*<1, then v(z*)/u(z*)=%(z*)/ii(z*)=h(s) and (34) actually follows from
(32) and (33).

Given functions (g},g)€Ex F for each i=1,...,] proposition 1 below shows existence
and unicity of (¢l,g9)€E x F the solution to system (30) to (34) with s=s;, y=v; and

#H2)=3 2,47},
I=i
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N =2
(z)= Z _ZiJQj(Z)'
FEZ)

We may think of this as defining a map @ on (Ex F)?. Obviously a fixed point of @ is a
solution to (S).

The next four propositions establish the existence of at least one fixed point for ¢ and
a constructive method to compute the fixed point. Proposition 1 shows that in fact ¢ maps
(E x F) into (E x F)! and further that @ is increasing i.e. if §=> p then @(g)=@(p).* Proposi-
tion 2 shows that there exists a 7 such that @#(g)<g, i.e. g is a supersolution. Proposition
3 establishes the existence of a subsolution, i.e. of g such that &(g)>¢. Finally proposition
4 shows that if we let §,=®(g,_,) and §,=4 then g, is a decreasing sequence that converges
to a g, that satisfies #(g,)=q,. Also, if we let ¢,=@(¢.-,) and g,=¢ then ¢, is an increas-
ing sequence that converges to a g, that is also a fixed point of @. Further g, and g, are
solutions of (S) satisfying conditions (26) to (29).

Notice that we have thus obtained two solutions to (S). In all simulations we found
that g, =g, but we have no proof that this equality always holds.

The precise results are as follows.

PrOPOSITION 1 System (30) to (34) has a unigue solution (u,vYs Ex F with u and v in C[0,1]\
{z*}). Moreover, let (ii,,5,)eExF and (il,,5;)eEx F with ii,>{i, and $,>%,. Let (u;,v))
and (u,,v,) be the corresponding solutions of system (30) to (34). Then uy>u, and vi>v,.

PROPOSITION 2 For all (g',q?)ER? 2 e let
. . 2 1
f(g*, g*)=min {m.‘nf(si, 759% =g+ F} ‘
1

There exist a function ye E n C[0,1]) such that

L 76, N -rya)=0,

y(1)
S0y S n {itso, h(s)}

Define §=(34,8%icq,..n by §1z)=y(2) and g¢=y(1~2z) for all i=1,....]. Then q is a super-
solution, that is with q=0(3).qX(z) < q¥(z) and qXz)<q%(z) for all zE[O 1] and i {1,...,I}.

Proposition 3 Assume p>1. Let K:{1,...,I} —{1,2} such that o(K)=p. There exist a strictly
posztlve eigenvector [ai]E]RI (i.e. a;>0vi) associated to (M(K),p). Define (a},ab)icq, .. I}GR?{’*
by a,—ai if K()=1, al=a; if K())=2 and a}=a}h(s)). Then for ¢ and » small enough qg=
(¢5,9Dieq, .. deﬁned by q}(z)—e(a —772) and g4 z)=e(a@—7(1—2)) is a subsolution, that is
with q=0(9), }(z)=4}(2) and gX(z)=qX(z) for all z€[0,1] and i< (1,...,I}.

PrOPOSITION 4 Let the sequence G, =(¢7;,,,,17i,,,)ie{1,.~, nE(Ex F)! be defined by §°=q and 3, =

5 Here, g=>p means that for each a= (1,2}, for each i€{1,...,I}, for each z&{0,11,9%(2)=pf(2).
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O(Gn-1). Let the sequence 4, =(4; ,,9% Dieq,...n E(E X F)T be defined by 4,=q and ¢, =0(gn-1).
Then the first sequence is decreasing and converges 1o g, =(G} 4% Jieq,..n S(EX F)L,
the second sequence is increasing and converges to §,=(q} +.q% ieq,..n E(EXF)’. More-
over the convergence of (qj ,4:,) (resp. (g} .41 ,)) to0 (G} +,d% +) (resp. (] «.q: +)) is uniform
on [0.1N{z]} (resp. [0,1\{z]'}) where z} (vesp. z}) is the switch point associated to (si, G} 4,
‘7?, +) (resp. (si,g}’*,t_]z ), and (‘7},*,7?, +) (tesp. (g},*’ Q,?, ) is Ct on [0,1\{27) (resp. [0,1)\{z]'}).
d and q are solutions to system (S) satisfying conditions (26) to (29).

The method used to obtain the existence of a solution to system (S) yields several results
concerning comparison of solutions. These are illustrated by the following result:

PROPOSITION 5 If F>#>r and if q is a solution to (S) satisfying (26) to (29) when the discount
rate is r, then there exists a solution § to (S) satisfying (26) to (29) when the discount rate is
F such that §¥(z) < q#(z), ac {1,2}, i {1,...,1}, z€[0,1].

Proof: Let @, denote the application @ defined above when the dependence to r is made explicit.
Since q solves system (S), it is striaghtforward to check that (q},q%) solves the reduced system
(30) to (34) with v=4+ 3, 2:4, and

17(2)=(f—")¢1}(2)+§ 26,59 3(2)s ﬁ(Z)=(f—r)qzz(Z)+§] 2:,195(2)

Furthermore, #> 3 2,,9; and #= 3 ; 4,545, so that by proposition 1 95(¢)<g, i.e. g is a super-
solution to the fixed point problem associate with @;. Since 7>¢, theorem 2, proposition
3 and proposition 4 imply the existence of a solution to (S) when the discount rate is 7. From
proposition 4 this solution 4 satisfies §<g. Hence the result. []

III. The Stationary Distribution of Asset Holding

Starting from an initial distribution of asset holdings and state of labor productivity at time
ty, the distribution of asset holdings and labor productivity at time #, is random, as it de-
pends upon the realization of the random path of labor productivity.

A characteristic of the model is that the process {(z:,s;)} has a strong ergodic property,
that is there exist a unique probability measure = on [0,1] x {sy,...,s;} (together with the
Borel sigma-algebra) such that for all bounded function fon [0,1] x {sy,...,8z},

tlim E[f(z., 8|z, s0]=X Sf(z, 8)da(z, s) (35)

independently of the initial distribution of (z,,5,). This property is proved in Conze {3],
theorem 1. In particular, (35) implies the mean-ergodic property
. 1 (r
lim E[~ 7 1z, 59t) 20, 50] = 16z, ez, 5,
T—+o00 0
which enables us to use space averages to compute time averages. The ergodic distrunition
= is of course also invariant for the process {(z:,s.)}, that is for all >0,
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SE[ F(22y 50|29 =2, So=>5]da(z, s)=j f(z, )dn(z, 5).

Further, = can be characterized by a set of equations. Let p;=x#([0,1]x {s:}) and
F(z)=x([0,z] x {s:}). Conditional on s..4.=s5, the state s, takes value s; with probability
1— 2dt and value s, j #1, with probability 2;:d¢t. Hence,

pi=pi(l—=2dt)+ T p;sa;.dt,
FES]

that is
thi— .Z.ZJJPJZO. (36)

FE

Now if s,=j, then z;=z;, 4. — f(s,,q}(zt),qf(z,)), and a first order expansion leads to

Fi2)=|Fi)- e (50l aX(zNat ] (1= udt) + I F@ydr
Hence
dF;
€7 92, () + LF(2)— T 25:F(z)=0 (37
FEZ)
Moreover
F(0)=0if z¥>0 (38)
Ft(l) =pDi (39)

Here the derivation of system (36) to (39) was heuristic. Nevertheless, it is shown in Conze
[3] theorem 2 that there is a unique solution to this system satisfying p;>0 for all i {l,...,I},
T pi=1, F; positive, increasing and continuous on [0,1)\{z}}, and that (pi,Fieq,.,n cor-
responds to the invariant probability measure ». The discontinuity of F; at z¥ means that
the invariant distribution associates a strictly positive mass with the event s;=s; and z,=z]".
The explanation is that conditional on the productivity state being s, the point z} plays
the role of an attractor for the dynamics of {z,}.

IV. Simulations of the Model

In this section we present the results of the numerical simulations of the model that are used
to compute the correlation among the different equilibrium prices and quantities.

All the results exhibited here were computed in the following manner: first we apply
the fixed point algorithm that is used to prove the existence of a solution to system (S) to
calculate numerically the equilibrium marginal utility functions of theJasset g#(z). Once
we have obtained the functions g¢(z), we are able to compute all the relevant equilibrium
quantities or prices as a function of the productivity vector s and the average amount of
the asset held by agents in the first country z. In order to compute the relevant correla-
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tions, it now suffices to compute the ergodic distribution of the pair (s;,z;). This is accom-
plished by using a fixed point algorithm, as described in the proof of theorem 2 in Conze
[3].

The simulations are for the utility function u(cy,c.,l)=(cI+¢)/2+1, two states of pro-

ductivity for each “country” and independence of productivity changes across countries.

In the complete markets case, the output correlation is, as we proved above, zero. At
zero discount rates we have essentially complete markets (cf. Bewley [2]) and hence output
correlation is also zero. As the discount rate increases output correlation also increases
but is a concave function of the discount rate (cf. Figure 1). Though we do not have a
way of changing the stringency of the borrowing constraint it seems intuitive that the effect
of increasing the severity of the borrowing constraint should be similar to that of increasing
the discount rate. Hence it is reasonable to conjecture that a relatively mild borrowing
constraint would lead to a large level of output correlation. In Figure 1 we also plot the
effect of a change in the discount rate on average utility. A higher discount rate leads in-
dividuals to be less willing to work today in exchange for money to be spent in lean times
and this leads to a fall in the average utility.

Figure 2 shows that the higher the relative risk-aversion coefficient (1—g5) the lower
the output correlation obtained. The tendency towards risk-neutrality lowers, in equi-
librium, the value of money and hence increases the correlation of output.

Figure 3 plots the effect of risk-aversion on the correlation of (the value of) consump-
tion across countries. It is clear that in a complete markets equilibrium the correlation
of consumption across countries is unity. Here lower risk aversion may lead to a higher

FIGURE 1. OUTPUT CORRELATIONS AND AVERAGE UTILITY VERSUS DISCOUNT RATE
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FIGURE 2. OuTPUT CORRELATIONS VERSUS RELATIVE RISK-AVERSION
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FIGURE 3. CORRELATION OF CONSUMPTION ACROSS COUNTRIES VERSUS
RELATIVE RISK-AVERSION
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FIGURE 4. RATIO OF UTILITY UNDER BORROWING CONSTRAINTS TO THE UTILITY
IN A COMPLETE MARKET VERSUS RELATIVE-RISK AVERSION
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or lower correlation of consumption across countries. This results from a higher correla-
tion in output combined with less insurance across countries in equilibrium, the lower the
risk aversion. This last point is illustrated in Figure 4 where we plot the ratio of utility
of type 1 in equilibrium to the utility of the same type in a complete markets equilibrium,
as a function of the relative risk-aversion parameter. The results of the simulations used
to derive Figure 4 also point out to the fact that, at least for a range of parameters values,
large output correlations can be associated with very small losses in utility. Individuals’
optimization as well as market mechanisms seem to avoid much of the utility losses while
at the same time causing big changes in certain quantities.

Simulations also show that in the model “exports” are positively correlated with output
and negatively correlated with the relative price of the exported good.

V. Conclusion

This paper has presented a model where failure of perfect risk-sharing across countries can
be used to explain a positive correlation of output series in the presence of independent
productivity shocks.® In the model, the distribution of financial assets across countries

¢ The fact that no migration is allowed also plays an important role in generating the comovements. In
fact, in our model, the only risks that need to be shared are the shocks to the productivity of labor in the
different countries and if migration was costless wages in each country would equalize. Murphy Shieifer
and Vishny [6] used, in a static model, immobile labor to generate an increase in output in one sector in re-
sponse to an increase in productivity in another sector.
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evolves endogenously and in turn affects the distribution of outputs even after controlling
for the productivity shocks.

In order to focus on the effect of the borrowing constraints we considered the case
where the productivity shocks were independent and the utility functions in both coun-
tries were identical and separable. In this case we showed that the model was capable of
generating substantial positive cross-country correlation of output and a lower consump-
tion correlation than that implied under complete markets. Simulations also revealed
that the model generates a negative correlation between the value of output and the relative
price of exportables in terms of importables. This should not be surprising since most of
the output changes in one country would be the result of a change in productivity in that
same country. As mentioned in footnote 1 in the introduction, the correlation between
quarterly changes in US GNP between 1948 and 1987 and changes in the logarithm of the
price of exports divided by the price of imports? is not significantly distinct from zero but
if we omit the years 1975 and 1979/1980 when the two “oil shocks™ occurred it equals -.24.

Our model cannot accommodate the presence of intermediate goods as oil or any of
the monetary aspects that are surely important in determining the transmission of output
shocks. Nonetheless we believe it is useful in illustrating how incomplete markets can
help explain some of the aspects of this international transmission. Further the math-
ematical techniques discussed here should be useful in dealing with the missing ingredients.

UNIVERSITE PARIS-DAUPHINE AND UNIVERSITY OF CHICAGO
VI. Appendix

6.1 Proof of proposition 1

Here we prove proposition 1. The proof will first be done in the case 0<z*<1 and
then extended to the general case by using an approximation procedure.

When 0<z*<1, the reduced system (30) to (34) is equivalent to the two following
differential systems: a forward problem on [z*,1]

d
= (f(s, u(2), W) =vulz) - 2(z), zE12*, I

(5, u(2), W) =)= (2), 2% 1]
. (“0)
u(z*)zg
7(z%)

v(z*) =

7 The data is from the International Financial Statistics.
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and a backward problem on [0,z*]

B fts, u2), o) =)~ 2), 210, 2%

— = @)f(s, u(2), ¥@) =w¥(x) ~9(2), 2€00, 2*]

41
(e =" *

o) =)

We will only deal with system (40). The resolution of system (41) follows by changing z
in 1—z in (40).

Since f(s,u(z*),v(z*))=0, system (40) is degenerate. Let ¢>0. We consider the fol-
lowing system on [z*,1]:

B s 0D, v =)~ )

(s, w2, D)= ()= 7()

) )
ey =T

n(z =L

with fi(s,u,v) =f(s,u,v) —e. Notice that f,(s,u.(z*),v.(z¥))=—e <0.

LeMMA 1 System (42) has a unique solution (u.,v.) with u, (resp. u,) in CY[z*,1)), strictly
positive and strictly decreasing (resp. increasing). Moreover, for all z€[z*,1],
- _
) s

—ﬁ(i D )< ——ﬁ(f)

Proor: system (42) is a standard Cauchy problem. The proof follows the proof of pro-
position 5 in Conze, Lasry and Scheinkman [4], and is left to the reader. []
LEMMA 2 The family (u,) (resp. (v,)) is increasing (resp. decreasing) with «.
PROOF: let ¢'>¢>0. For all real pair (w,v)E[i#(1)/v,id(z*)/v] x [#(z*)/v,7(1)/v],
Sols, u, vy< fi(s, u, v)<O.
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Hence,
du, )< v (z)—ii(2)
dz \Er= fe'(s9 u;(Z), V,(Z)) ’
dv, v, (2)—¥(2)

dz D2 s @ v(2)

Let x(2) =(u.(2) — u,(2))2. + (v.(z) — v(2))%. where (.);=max(,0). Then

dx du, du, dv, dv,
Jz =2(us—u=')+(—gz“— p >+2(vsf—v‘)+( P )

Since (u,v)>(u—ii(2)/f.(s,u,v) and (w,v)->(vv—i(z))/f.-(s,u,v) are Lipschitz on [#(1)/y,
#(z*)/v] X [#(z*)/v,5(1)/v] uniformely in z&[z*,1], there exist R>0 such that

du, du,
dz - dz SR(Iu;—ug’l'FlV,"—V‘l)
du, du,
dz - dz ZR(lus_u.l"l’lv,'—v‘l)

and we obtain dx/dz<3Rx. From x(z*)=0 and Gronwall’s lemma x(z)=0 for all z in
[z*1]. O

Since u.(z) > i(z)/v and v(z) <¥(z)/v for all z in [z*,1}, the families (»,) and (v,) converge
pointwise to # and v respectively, satisfying for z€[z*,1]

i(z-i>u(z)2@,

(2)<

#(z*) <y ¥(z) .

LemMA 3 Let z>z*. Then (u,) and (v,) are Lipschitz on [2,1] uniformly in e.

Proor: the proof is guite simple, and is left to the reader. []

Using Ascoli’s theorem, lemma 3 and the convergence of (#,) and (v,) imply their uni-
form convergence to » and v on [z,1]. It is then straightforward to check that (w,v) is a
solution of (40) with u decreasing, v increasing, and both in C%[z*,1]) n CY([z*,1]). Also
the inequalities u(z) > fi(z)/v and w(z) < #(z)/v are in fact strict for z>z*. Therefore,

- .
) I (@3)

v

—ﬁ(f ) <v(z)<—iiz) . (44)

The strict monotonicity of u and v then follows. Similarly, we obtain a solution of (41)
on [0,z*] with u strictly decreasing, v strictly increasing, and both in C%[0,z*]) n CX([0,z*]),
and
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—‘7&2) >u(z)>—-a(i " 45)
—ﬁ(f) <v(z)<—g(i D (46)

Hence a solution to the reduced system (30) to (34) with ucEn C'([0,1]\{z*}) and vEFN
C([0,1]\ {z*}).

LeMMA 4 (u,v) is unique.

ProOF: let (i,7) be an other solution. We will prove that #=u and y=v on [z*,1]. The
proof is similar on [0,z*]. We start by proving #<w and $>v. Let ¢>0. For all (g,b)=
Ri'*, fs,a.b)<f(s,a,b). As in lemma 2’s proof, we get #i<u, and $>v. Taking the
limit in e,#<u and ¥>v. This implies f(s,#,7) <f(s,u,v) <0, and finally

dii du > Vit — vl
dz ~ dz < f(s,u,v)

>0, yze[z%1].

Hence, since a(z*)=u(z*), a=>u. Alsov<v. []

Hence the first part of proposition 1 in the case 0<z*<1. We now turn to the second
part of proposition 1. Let (#4,7,)€EX F and (#,,7,)€ExF with #,>#, and 7, >, Let
zf (resp. z;) be the switch point associated to (s,i#;,7,) (tesp. (s,i,,75), and assume that 0< z}* <
land 0<zy<1. Let (43,%,) and (u,,v;) be the solutions of (30) to (34) corresponding to re-
spectively (4,,7,) and (i,,7,).

LemMA 5 For all z in [0,1], u(2) = uy(2) and vi(2) = v(2).

PROOF: as in Conze, Lasry and Scheinkman [4], we only have to consider the case 7, =7,=7.
It is easy to obtain

’71(2?)2‘72(2;)
ul(z;f)Zul(Zf)Zuz(z;)zuz(zl*)

w(2)>uyz), VzE[z7F, 2]

n(2)=vy(2), VzE[z7, 2.
We want to prove u,>u, and v,>v, on [0,z5] and on [zf,1]. The proof will be done for
ze[zf,1].  Consider (uy,,,v,,.) (resp. (4s,.,Vs,.)) solutions of (42) with z* =z{ and (&,7)=(i,,5,)
(resp. z*=z; and (4,7)=(i,,7,)). As in Conze, Lasry and Scheinkman [4], one can prove
Uy, =Uy, and v, . >v,, on [z{,1], for all e>0. Taking limit in ¢ leads to the desired result.

O

To obtain proposition 1 in the general case, we use the following approximation pro-
cedure. Let

e>max {% , ( l)h(s)}
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and set

fle,n(2)=1i(z) + max {e—enz, 0}

¥..2(2)=V(z) + max {e—en(l —z), 0}

for all n&N,. It is easy to check that the switch point z} associated to (fe,n.Pe,n) satisfies
0<z}<1. Let (us,vs) be the solution of (30) to (34) for #=i,. and v=#... Then as in
Conze, Lasry and Scheinkman [4] section 5.2, (#,,v,) converges to (u,v) satisfying proposi-
tion 2.

6.2 Proofs of proposition 2, 3 and 4

To prove proposition 2, one may first check that £ is still homogeneous of degree -1, locally
Lipchitz and that £(1,1)<0, and then proceed as in Conze, Lasry and Scheinkman [4], pro-
position 2.

We now prove proposition 3. The existence of the vector [a;] follows from the Peron-
Frobenius theorem (see for instance Nikaido [7]). From [a;] < M(K)[a:] we get

vie{l,.., I}, af® < 5 205D, 47

Vi =i
Let
a},g(z) .=a|1 - 772’
a?' ”(Z)=a?— T/(l - Z),

,(2)= X 450} (2),
]#l
¥i2)=3 A.sa} ,(2)
J#i
Gery=(a} ¢ 1 @ o, ictl, .. n =0(D)s

and zf, be the switch point associated to (sid;,,.5;,,). Assume for instance K(i)=1. We
start with the case z}f,,=1. From (47), we get for  small enough

1 1
— e —— 1 1
. gi,e,,(1)= e j§'_ A4 (D =a; (2)+6, vzE[0,1]
with >0 independent of ¢ and ». Since g}, , is decreasing,
LI 1
. g; .. (2)=a; (2)+46, vzE[0,1]. (48)

In particular, gj, ,(2)>¢;(z). From (48), we get
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1 1

(D=, (DA(s)
>a} (1h(s:) + h(se)
> a,z,v(l) +6'

with §'=6h(s))>0. Let

5’
2 )

If z.=0, then q?, D= ea?,,)(z) for all z in [0,1]. If not, then for z€[0,2,],

. 1
2,~int {z€(0, 1) yyelz 1, ¢k, ()2 )+

L dgfy, 1 50,0 =is(2)
e O

€ € f(sis qil,e_n(z): quen(z))

. vih e De=Fin@)e
[l q} . (De, 4L, (2)e)

Also for z€[0,2,],

’ ’

1 1 ) )
2 22 a2 (5 e ? i
¢ qt,e,q(z)s € qi,s,y(z:)_ai,q(z')-l_ 2 Sai,r](l)+ 2
hence
1 1 g’ , i
4Dl D+ =8 < v (D
This implies for z&[0,2,]

S5t 8@ @ @2 (50D, Fi(D) = 5] >0

with 0 >0 independent of ¢ and 5, and we finally obtain for z&[0,2,],

’ ’

1, 1 _ 9 . d 9 0
422 —E*q,-z, o2 —Re=d} (2)+—— —Reza] (2)+—— —Re

with R independent of ¢ and 5. Hence, for ¢ and » small enough, ¢}, (2)=¢i(z). If
z},=0, then

Vi 2)= 3 X ja% ()28 (s = T %, ;a} (2)h(sq)
j# J#
and we get from (47) that

a ()< § 2,05 (2)+8, vz€[0,1]
j#i
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with §>0 independent of ¢ and 5. We then proceed as in the first case z;, =1. Finally,
if 0<z},‘,7< 1, then we proceed as in the first case for ZSij,] and as the second case when
z>zf . O :

From the monotonicity of @ and the existence of a subsolution and a supersolution,
proposition 4 is a well known result when ¢ maps a compact into itself. But here (Ex F)*
is not compact. Nevertheless, the proof doesn’t present any particular difficulty, and is
completely similar to the proof of proposition 4 in Conze, Lasry and Scheinkman [4], to
which the reader should refer.

6.3 The Case p<1

PROPOSITION 6 If p<1, there is no solution to system (S) satisfying (26) to (29).

ProoF: assume that p<1 and that there is a solution g to (S) satisfying (26) to (29). For
all i in {1,....0}, let a;=q}(1/2) if zF>1/2 and a;=q%(1/2) otherwise. If z}>1/2, then
S(s1,4}(1/2),4%(1/2) >0 and from (dg}/dz)(1/2) <0 and equation (21), we get

vig; (%) < E{ 4 j‘ﬁ'(—;—). (49)
Also
(5 )<a (5. (50)

If z}F <1/2, then f(s1,4}(1/2), ¢¥(1/2)<0 and from (dg?/dz)(1/2)>0 and equation (22) we get

uﬂ?(%) S;‘é’ li,jq§<-;_>. (51)
Also
Q?(‘%‘)zq}<—;->h(si). 2

Let K: {1,...,]} - {1,2} be defined by K()=1 if zF>1/2 and K({)=2 otherwise. From (49)
to (52)

[a:]< M(K)[a;:] (53)

where inequality between two vectors means inequality between their coordinates. If p<1,
then M(K)* is a contraction for »n big enough (see Nikaido [7]) and (53) implies that for all
i, a;=0, i.e. g}(1/2)=4g%(1/2)=0, which contradicts (28) and (29). If p=1 and [a:]+# M(K)[a],
there exist e>0 and meN, such that (1+o)[e]<MEK)™a;]. Also (M(K)"/(1+e)™ is a
contraction for n big enough (again see Nikaido [7]) and ¢}(1/2)=¢%(1/2)=0 for all i. At
least, if p=1 and [@;]=M(K)[a:], then from v;> X} ;.; 2,,; we have that g}(1/2)=g¢%1/2)=0
foralli. []
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6.4 Proof of theorem 2

Here we prove theorem 2. From the definition of the matrices M(X), it is obvious that
the o(K), and therefore p itself, are continuous and decreasing functions of ». By conti-
nuity, it is sufficient for theorem 2 to prove that p>1 when r=0.

Let X: {1,....1}—{1,2} and M(K)=(m, ;). From the Perron-Frobenius theorem, the
existence of ac R , such that M(K)a>a and M(K)a+#a is a sufficient condition to have
p(K)> 1.

Let a be the vector with all coordinates equal to 1. To get p>1, it suffices to prove
that there exist K:{1,...,/}— {1,2} such that

vie(l, ..., I}, & m;>1 (54
J

with strict equality for at least one ie{l,...,]}. Let K be defined by K(i)=1 if A(s)>1
and K(i)=2 otherwise. It is easy to check that m; ;>4 ;/v; for all (i,j)e{1,...,1}?, j#i. If
none of these inequalities is strict, then for all (i,j)e {1,...,7} x {l,...,1} either K;=K; or h(s;)=
1, which implies that A(s;)>1 for all i (1,...,I} or A(s;)<1 for all i€ {1,...,I}. This contra-
dicts assumption 3. []
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