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OPTIMAL GROWTH UNDER UNCERTAlNTY : 
A COMPLETE CHARACTERIZATION OF WEAKLY 

MAXIMAL PROGRAMS* 

SHlN-ICHI TAKEKUMA 

Abstract 

In rthis paper a general reduced model of capital accumulation under uncertainty is 

presented, and the existence of a price system supporting the weakly maximal program of 

capital accumulation is proved. Also, the conditions .under which such a price system is a 

sequence of integrable functions are shown. In addition, the weakly maximal program is 
characterized by using a price system. 

I. Introduction 

The purpose of this paper is to prove the existence of price systems for weakly maximal 

programs of capital accumulation [under uncertainty and to characterize the weak maxi-

mality of programs. The result established in this paper is a generalization of those of 

Radner (1973) and Zilcha (1976). Also it includes the results in deterministic cases by 

McKenzie (1986). 

In the economy considered in this paper, there is uncertainty in production technologies 

and utility functions. In each period in time, the current production technology and utility 

function are certain, but future technologies and utilities thereafter are uncertain. The 

economic model presented in this paper is a general reduced form which includes many 
cases of economic application. 

In proving the existence of price systems supporting weakly maximal programs, there 

are two key arguments. One is an induction argument for the proof of existence of prices, 

which has been developed by McKenzie (1986) in deterministic models and first applied 

by Zilcha (1976) to models with uncertainty. The other is a decomposition theorem on 

finitely additive measures by Yosida & Hewitt (1952), which has been used in proving 
the integrability of prices, first by Bewley (1972) in general equilibrium models, and also 

by Radner (1973) and Zilcha (1976) in growth models with uncertainty. In their growth 

models, uncertainty exists only in production technologies and is assumed to be stationary. 

* This paper was presented at the meeting on nonlinear analysis and mathematical economics at Research 
Institute for Mathematical Sciences, Kyoto University, Kyoto, in November, 1991. 
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In this paper we shall consider a general non-stationary model with uncertainty in both 

production technology and utility, and prove a general support price theorem for weakly 

maximal programs of capital accumulation. 
This paper is formulated in the following fashion. In section 2 we shall construct 

a general reduced model of capital accumulation under uncertainty. In section 3 an ex-

istence theorem of a price system for the weakly maximal program will be proved. In sec-

tion 4 the conditions under which price systems are integrable functions will be shown. In 

section 5 the weakly maximal program will be characterized by a price system. 

II. A Genera/ Reduced Model 

First we shall present a general reduced model of capital accumulation in which future 

utilities and production technologies are uncertain. 

Let (12, ~:, P) be a probability space. Each element in 9 denotes a possible state of 

nature, which may be interpreted as a stream of environments in all past, present, and future 

periods. Family ~ is the set of all possible events and P denotes the probability distri-

bution of states. 

Let T={O, 1, 2, . . .} be the space of time. The uncertainty of states is described by 

a filtration {~~ I teT}, i e., ~T is a a-sub-algebra of ~ such that ~~c~l+1 for all 
t e T. Each family ~~ is interpreted as the information about states that will become known 

up to period t. 
The production technology available at each period t>0 is described by a relation 

Dt : 9-~R~ x R~ that rs 

(oeQ --~ Dt(a,) c R~ x R~, 

where R~ denotes an m-dimensional Euclidean space. We assume that the graph of Dt de-

fined by 

G(Dt) = {(x, y, e,) I (x, y)eDt(a,)} 

is ~f (R~) x ~ (R~) x ~~:-measurable, where J~ (R~) rs the fanuly of all Borel subsets 
of R~. By Dt(a') we represent the possibility of transformation of capital stocks. That 
is, (x, y)eDt((o) means that under state a' it is possible to transform capital stock x at time 

t-1 into capital stock y at time t. 

The satisfaction in the economy at each period t>0 is described by a utility function 

u$: G(Dt)~'R U {- oo} ･ that is, 

(x, y, co)eG(Dt)-~ ut(x, y, (D)eR U { - co}, 

where R denotes the real line. We assume that ut is a ~r (R~) x ~; (R~) x ~~-measurable 

function, which may take value - oo . Value ut(x, y, (v) is interpreted as the maximum level 

of social welfare under state (o attained in period between time t- I to time t if capital stocks 

at time t-1 and time t are x and y respectively. 

In order to show a program of capital accumulation, we will use a stochastic process... 
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i.e., a function K: Txg2-R~ such that K(t. ･) is ~;-measurable for each teT. To denote 
a stochastic process K: Tx Q-R~, we also write as K={kt I teT}, where kt is a function 
defined by kt(a,)=K(t, w). In addition, we shall restrict ourselves only to essentially bounded 

processes, and namely assume that kteE~*(~~) for all teT, where ~(~~) is the set 
of all essentially bounded ~~:-measurable functions on O to R~ with respect to P. 

The set of all possible ways to transform capital stocks from time t-1 to time t is defined 

by 

~t = {Cf;, g)e2~~(~~_1) x ~~~*(~~) I (f((o), g(a,))eDt((~,) a.s.} . 

Definition 2.]: A stochastic process K={kt IteT} is called a program if kte~_(~~) 
and (kt_1(a'), kt(e,))eDt((o) a.s. for each t>0, i.e., (kt_1' kt)e ~t for all t>0. 

In a program K={kt I teT} , for each teET, kt is a random variable and kt(co) denotes 

quantities of capital stock planned to accumulate at time t in state co. Since Dt is ~l(R~) x 

~(R~) x ~~-measurable, production technology D, is perfectly known in determining 
capital stock kt at time t. However, in determining k,_1 at time t-1, production technology 

Dt is unknown. In this sense, uncertainty exists in production technologies. Similarly, 

utility function ut is perfectly known in determining capital stock kt at time t, but unknown 

in determining kt_1 at time t-1. Thus, uncertainty also exists in utility functions. 

For a program K= {kt I t e T} , we denore, by Ut(K), the sum of expected utilities that 

will be obtained up to time t by program K. Namely, under some appropriate conditions 

which will be shown later, we can define 

Ut(K) = ~ J u,(k._1((!')' k,(Q,), co)dP((t') . 

s=1 !? 

Since value Ut(K) may become infinity as t goes to ' + oo, the so-called overtaking cri-

terion should be used to evaluate programs. 

Definition 2.2: A program K={kt I teT} is said to be weakly maxima/ if any other 
program starting from the same initial condition can not overtake program K, i.e., there 

is no other program K'={kt' I t eT} with k0=ko' such that 

lim inf [Ut(K') - Ut(K)] >0. 

t-+ * 

The above definition is a generalization of maximization in usual problems where utility 

sums are bounded. 

III. Price Systems Supporting Weak/y Maximal Programs ~ 

In this section we shall establish a general version of the support price theorem. 

following are basic assumptions for the model. 
Th e 
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(A.1) (convexity) For each t and (,,, Dt((o) is convex and ut(x, y, (o) is concave in (x, y). 

(A.2) (boundedness) For each t, for any a>0 there exists a number p such that (x, y)e 

Dt(a,) and llxll ~a imply llyll ~ p and ut(x, y, a');~ p. 

Assumption (A.1) is the convexity of the model, and means that production sets are 

convex and utility functions are concave. Assumption (A.2) is the boundedness of the 
model in each period, and means that, if capital stock at time t- I is bounded, then capital 

stock and utility at time t are also bounded. 

Remark 3.1: Assumption (A.2) implies that given fe~;~=(~~_D, there exists a number 

bo such that llgl l- ;~bo and Cbut(f, g, ')dP~ bo for all g with (f, g)e ~t' 

We do not have to take into consideration programs which are obviously bad. Let 

us consider a program K*= {k*t [ te T} satisfying the following condition. 

(C.1) (Jut(k*t_1' k*t, ')dP> -oo for each t>0 

Remark 3.2: Under assumption (A.2), condition (C.1) implies that in program K* 

jut(k*t_1' k*t, ')dP is finite for each t>0. Thus, value Ut(K*) is well-defined, and the 

definition of weak maximality can be applied to program K*. 

Given program K*, for each teT Iet us define a normalized utility function, vt: G(Dt)-

Ru {- oo} , by 

vt(x, y, co) u,(x, y a') u (k t l((~') k*t(a'), a'). 

For each teT and fe2~*(g~), we denote by ~(f) the set of all feasible programs be-

ginning with capital stock f at time t, i.e., 

~:t(f)= {K= {kt I t e T} I K is a stochastic process such that kt = f 

and (ks, k*+1)e ~s+1 for each s~ t}. 

Now, by virtue of Remark 3.2, we can define a normalized value function. For each teT, 

let us define a function Vt : :~;~*(~~)-R by 

}
 

f. . r f for fe ~*(~~) . Vt(f)= sup llim mf ~ J v*(k*_1' k*, ･)dP 
K~~*(f) r-+*s=t+1 9 

Here, we should note that functions Vt are defined for a particular program K*, and 

they depend on the program. 

Remark 3.3: It can be shown by definition of Vt that for each teT, 
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Vt(f) ;~ Jvt+1(f, g, ')dP+ Vt+1(g) for all (f g)e ~:t+1 

In particular, if program K*={k*t I teT} is weakly maximal, we can show that program 
K* is agreeable, i.e., 

Vs(kt*)=fjvt+1(k*t, k*t+1' ')dP+ Vt+1(k*t+1) for all t e T. 

For each teT, we define the effective domain of function Vt by 

~~= {fe~c~-(~~) I Vt(f ) > - co} . 

Also, for each t, we define a set by 

~/jt={gl(f, g)e~t for somef}. 

Furthermore, we assume the following condition for program K*. 

(C.2) k*oeint ~lo and int(~Jt n ~~)~c for all t>0, where symbol "int" means the 
interior in the I I ' Il=-topology for space ~~~*(~~). 

By assumption (A.1), we can easily show that Vt is concave and ~~ is convex for each 

teT. Also, for each t>0, define a map ~rt: ~rt_R by 

J
9
 

~rt(f g)= ut(f(a'), g(co), a')dP . 

Then, map ~rt can be shown to be concave under assumption (A.1). 

For each teT, Iet ~**(~~) denote the dual space of ~~(~~), i.e., the set of all 

continuous linear functions on 2~=(~~) to R. For each teT and ke 2~=(~), we 
define the set of subgradients of Vt at k by 

aVt(k)={?Te!~~~**(~~)1 Vt(k)+1r'(f-k);~ Vt(f) for all fe~~}. 

Moreover, for each t>0 and (k, k')e~:~(~~_1) x 2~*(~~), we define the set of sub-
gradients of ~rt at (k, k') by 

a~rt(k, k')= {(1r, 7T')e ~i~~*(~~_D x ~~~**(~~) 1 ~rt(k, k') + IT '( f -k) + 7r" (g-k') 

~~lft(f,g) forall(f,g)eE~7t}' 

Let us define prices of capital goods in program K*. 

Definition 3.1: We call {1rt I t E T} a price system supporting program K*, if, for all teT, 

lrteaVt(k*t) and (Itt, -1rt+1)ea~rt+1(k*t' k*t+1)' i.e., 

(1) Vt(k*t)-I~t'kt*;~Vt(f)-1r'f forallfe ~~ 
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(2) ()ut+1(k*t, k*t+1' ')dP-1rt k +1rt+1 k t+1 

;~CJut+1(f, g, ')dP-7rt'f+1rt+1 g for all (f g)e:~rt+1 

Now we are ready to prove the existence of a price system supporting the weakly max-

imal program. First we shall prove the so-called induction lemma. 

Lemma 3.1: Let K* ={k*tlteT} be a weakly maximal program satisfying condi-
tions (C.1) and (C.2). Under assumptions (A.1) and (A.2), if ITt-leaVt_1(k*t_1)' then 

there exists ITteEaVt(k*t) such that (1rt-1' ~1rt)ealft(k*t_1' k*t)' 

Proof: Assume that lrt-1eaVt_1(k*t_1)' and define a number wt by 

= jut(k*t_1' k*t, ')dP+ Vt(kt*) --w ,* t-1 ' k*t_l 
= Vt_1(k*t_1) ~ ITt-1 ' k*t_1' 

Also, define two sets, 

A={(w, g)eR x ~_(~~) I w> wt - fJut(f, g, ')dP+1tt_1' f 

for some f with (.f, g)e ~rt}, 

and 
B={(w, g)eR x ~~~_(~~) I Vt(g) ~~ w} . 

Clearly, (Vt(k*t), k*t)eB, and (Vt(k*t), k*t)ebd A. By assumption (A.1), these sets 

are convex. In addition, since int ~~~ip by condition (C.2), set B has non-empty interior. 

Suppose A n B~c. Then there exists (f, g)e~t Such that 

j
 

Vt(g)>wt- ut(f, g, ')dP+1~t_1'f. 

By the definition of value function Vt, we have 

Vt_1( f ) - Irt-1 ' f > Vt_1(k*t_1) ~ ITt-1 ' k*t_1 ' 

which implies that lrt-1~lEaVt_1(k*t_D, a contradiction. Hence A n B=c. 

By a separation theorem [Dunford & Schwartz (1964), Thm.V.2.8, p. 418], there exists 

a non-zero c9ntinuous linear function (c, -1rt) on R x ~~(~1), i.e., a number c and a 

function lrte 2~**(~~) such that ' ' 

c.w-1Tt'g~;c'w'-1rt'g' for all (w, g)eA and (w', g')eB. 

This implies that 

(3.1) c[wt-utfJ(f, g, ')dP+1rt-1'f]-1rt'g~cVt(g')-1rt'g' for all (f, g)e~t andg:e~~. 

Suppose c=0. (3.1) implies that lrt '(g'-g)~O for all (f, g)e~t and g'e~~~. There-
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fore, by condition (C.2), ITt=0, which is a contradiction to (c, Irt)~0. Hence, since c;~0 

by the shapes of sets A and B, we can assume that c=1 without loss of generality. 

Put g'=k*t in (3.1). Then, 

jut(k*t_1' k*t, ')dP- Irt-1'k*t_1 +1rt 'k*t ~~ CJut(f, g, ')dP-2Tt-1' f + Irt 'g 

for all (f, g)e~t' This implies that (1rt-1' ~1r,)eEa~rt(k*t_1' k*t)' 

Moreover, put f=k*t_1 and g=k*t in (3.1). Then, 

Vt(kt*)-1rt'k*t~: Vt(g')-11:t'g' for all g e~~, 

which implies that lrte aVt(kt*). I 
Theorem 3.1: Let K* ={k*t [ teT] be a program satisfying conditions (C.1) and (C.2). 

Under assumptions (A.1) and (A.2), if program K* is weakly maximal, there exists 

a price system supporting program K*. 

Proof: The theorem can be proved by an induction argument. Since ko* eint ~i:o 
by condition (C.2), by a separation argument there exists lroeaVo(k*o)' Thus, by induc-
tion with respect to time t. Lemma 3.1 implies the existence of a price system {1rt I t e T] sup-

porting program K 

For each t> O and (k, k')e~~~*(J~~_D x J~~~~(g~), we define the set of partial subgradients 

of ~rt at (k, k') by 

al~rt(k, k')= [1re ~~~**(~;:_D I (1~, 7t')e alft(k, k')] . 

Then, we have the following theorem, which is usually called "the envelope theorem." 

Theorem 3.2: Let K* =[k*tlteT] be a program satisfying conditions (C.1) and 
(C.2). Under assumptions (A.1) and (A.2), if program K* is weakly maximal, then 
aV*(k*t) c al~rt+1(k*t, k*t+1) for all t e T. 

Proof: The theorem follows immediately from Lemma 3.1. I 

IV. Integrable Price Systems 

For each teT, Iet ba(~~) denote the set of all bounded finitely additive m-dimensional 

vector-valued measures on ~~ absolutely continuous with respect to P. Also, Iet 
~il(~~) denote the set of all integrable g~-measurable functions on 12 to R~. 

Remark 4.1: By a theorem [Dunford & Schwarts (1964), Thm.IV. 8.16, p. 296], 2~**(~~) 
can be identified with ba(~~), and for each lre~~~**(~~), 
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11' f =fj fdl: for all fe~~_(~~) , 

where lr is also regarded as an element of ba(~~). In addition, if lr is countably additive, 

then, by the Radon-Nikodym theorem [Dunford & Schwartz 1964, Thm.III.10.7, p. 18l], 
there is a unique derivative of lr, ~ay, pe~~:1(~) such that 

C C j fdlT = jp . fdP for all fe~:~(~~) . 

Thus, ~1(J~~) can be regarded as a subset of ba(~~), or 2~* (~~) 

Remark 4.2: If zreba(~~) is non-negative, then, by a theorem [Yosida & Hewitt (1952), 

Thm.1.23, p. 52], Ir can be uniquely decomposed into two parts, that is, there exist unique 

lr.;~O and ITp;~0 in ba(~;) such that ,,-, is countably additive and ITp is purely finitely ad-

ditive, and such that 

7:r=7r, +7tp . 

Therefore, by the Radon-Nikodym theorem, there is a unique derivative of lr,, say, pe 

~:1(~~) such that 

J fdlr.=] p. fdP for all f e ~~~ (g~) 

Since J~;~l(~~) c ~~~~*(~~), for pe~il(~~) we can write p eaVt(k) if and only if 

Vt(k)+fJP'(f-k)dP~; Vt(f) for all fe~~. Also, for pe~~~l(~) and p'e~1(~~:+1) we 

can write (p, -p)e a~rt+1(k, k') if and only if fjut+1(k, k', ' )dP + C] p ' ( f- k)dP - Ij p' . (g - k')dP~; 

i
 
ut+1(f, g, ')dP for all (f, g)e ~t+1' 

Now, we are interested in a price system {pt I teT} such that pte~1(~~) for all 

teT. 

Definition 4.1: We call {pt I teT} an ~fl~price system supporting program K*, if, for 

all te T, pte~1(~~), pteaV,(k*t)' and (pt' -pt+1)ea~rt+1(k*t' k*t+1)' i.e., 

(1) Vt(kt*)-~jpt'kt*dP~Vt(f')-fJpt'fdP for allfe ~~ . 

(2) {jut+1(k t, k*t+1' ')dP- jpt'k*tdP+CJPt~1'k*t+1dP 

:~Cjut+1(f, g, ')dP-jpt'fdP+]Pt+1 gdP for all (f g)e~:t+1' 

where Vt is the normalized value function for program K*, 

In order to get an 2~l~price system, the following lemma is useful. 
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Lemma 4.1 : If(1r, -,'-')ea~rt+1(k, k'), Ir~; O, and lr';~0, then (p, -p')e0'~rt+1(k, k'), where 

pe~:~l(~) and p'e~:1(~;+D are the derivatives of the countably additive parts lrc 

of 7t and sT" of IT' respectively. 

Proof Smce 7r>0 and IT ;~O, by Remark 4.2. Ir and x' can be decomposed uniquely 

into a countable additive part and a purely finitely additive part. Namely, Ic is decom-

posed into l~,eba(~~) and lrpeba(~T), and lr' into lr.'eba(~T+1) and Itp'eba(~~+D. 

Also, Iet us denote the derivative of IT* by p and that of lr.' by p'. 

Moreover, by a theorem [Yosida & Hewitt (1952). Thm.1.22, p. 52], for ,,-p there is 

a sequence A*e~~ such that A~ c A~+1 and ?Tp(A*)=0 for all n, and such that lim* P(A~)= 

1. Since tTp' is also a purely finitely additive measure defined on ~~, there is a sequence 

B~e~~ such that B* C B^+1 and lrp'(B*)=0 for all n, and such that lim~ P(B~)=1. De-

fine C~=A* nB Then C e~~, C c C +1 1~p(C~)=1rp'(C*)=0 for all n, and lim*P(C~)= 
1
.
 

Now, Iet (f, g)eE~t+1' For each ~, define functionsf* and g~ by 

(f.(a'), g.(a'))~[(k(a'), k'((L,)) otherwise, _ (f((~,), g(a')) for (,,eC~ 

Then, (f*, g*)e~t+1' And, since 1~p(C~)=1rp'(C*)=0, we have 

It ' (k - f*) =,,-. . (k - f~) + Irp ' (k - f~) 

=Jp'(k-f^)dP+J (k f)da 

[ ~ p'kdP p'f~dP 

and 

7r (k'-g~)=1rc"(k'-g~)+1Tp"(k'-g.) 

=Jp" (k' -g~)dP + Jc.(k' -g.)dlTp 

_T C ~ Jp 'k dP- bP"g~dP 

Thus, since (1r, -It')ea~rt+1(k, k'), we have 

ut+1(k, k', ')dP+ ~JP'(f. -k)dP- ~JP"(g. -k')dP>= Cjut+1(f~, g~, ')dP j
 

for all n. Since lim~ P(C~)=1,we have in the limit 

J . - -] '. - ' J J
 
ut+1(k, k', ')dP+ p (f k)dP p (g k )dP;~ ut+1(f, g, ')dP. I 

This comp]etes the proof of the lemma. 
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In order to insure the non-negativity of prices we assume: 

(A.3) (monotonicity) If (x, y)eDt(a'), x~x', and x~x', then (x', y)eDt(co) and ut(x, y, a') < 

ut(x', y, (v). . The above assumption is the monotonicity of utility functions with respect to initial 

capital stock at each period. Now, under this assumption, we are ready to prove : 

Theorem 4.1: Let K*={k*t I t eT} be a program satisfying conditions (C.1) and (C.2). 

Under assumptions (A.1), (A.2), and (A.3), if program K* js weakly maximal, then 
there exists an ~~~l~price system {pt I teT} such that (pt, -pt+1)eo*~rt+1(k*t, k*t+D for 

all teT. 

Proof: Theorem 3.1 implies the existence of a price system {rrt I teT} supporting 

program K*. Assumption (A.3) implies that 7rt ~~ O for all teT. Therefore, this theorem 

follows from Lemma 4.1. 

In order to prove the existence of an :~c:1~price system supporting a program K*, we 

need to assume the interiority of the program. For eachfe~*(~T-1)' define 

~/;t( f ) = {ge ~~_( ~) I ( f , g)e :~:t} ' 

At time t, given k*t_1' we choose k*t from set, ~~t(k*t_1)' The followmg condition 

means that k*t is chosen in the interior of ~~t (k*t_D. 

(C.3) (interiority) k*teint ~/;t(k*t_1) for all t>0. 

For a weakly maximal program satisfying the above interiority condition, we can prove 

the existence of an ~;;-price system supporting it. 

Theorem 4.2: Let K*={k*t I teT} be a program satisfying conditions (C.1), (C.2), 

and (C.3). Under assumptions (A.1), (A.2), and (A.3), if program K* is weakly max-

imal, then there exists an ~~rprice system supporting program K*. 

Proof: By Theorem 3.1 we have a price system {,-,t I t eT} supporting program K* 
i.e., ItteaVt(k*t) and (1rt, -1Tt+1)ea~rt+1(k*t, k*t+D for all t~~O. Assumption (A.3) implies 

that 7rt;~0 for all teT. Therefore, by Lemma 4.1, w~ have {pt I teT}, where pt is the de-

rivative of the countably additive part of :Tt for each t, such that (pt, -pt+1)ea~rt+1(k* 

k*t+1) for all t;~O. Therefore, it suffices only to prove that pteaVt(k*t) for all t;~0. 

Suppose that ITt Were not countably additive, there would exist a sequence of sets 

A*e~~ such that A~CA*+1 and ?Ft(A~);~IttCU hAk)-w for all n, where weR~+' and w~0. 
Let B* =A* U (9¥ U hAk). Then, U kBk=S2 and 

(4. 1) IT(B*) ;~ Irt(Q) - w . 

for all n. Definefe'~~(~~_1) by 

(4.2) f(a') =k*t_1(co) + ~w , 
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where 6 is a positive number. Also, for each n, define g*e~~(~) by 

(4.3) ~k*t((v) for (~'eB~ =[ * ~ otherwise . g* ((~') 

k t(Q')+~lTt-1(Q) 

Here, by condition (C.3), we can choose a sufficiently small ~ such that (k*t_1' g~)e:~t' 

Therefore, by assumption (A.3), (f, g~)e~t' Moreover, by assumption (A.3), fBut(k*t_1' 

k*t, ')dP< fjut(f, k*t, ')dP. Therefore, since lim. P(B.)=1, 

jut(k*t_1' k*t, ')< ~Jut(f, g., ')dP . 

for all sufficiently large n. Since (,,-t_1' ~'~'t t )eau (k*t_1' k*t)' we have, by (4.1), (4.2), and 
(4.3), 

0> CJut(k*t_1' k*t, ')dP-fJut(f, g^, ')dP 

~ 7tt_1 ' (k*t_1 ~ f ) - Itt ' (k*t -g*) 

= - 6lrt-1(9) ･ w + 6lrt-1(Q) ' ITt(g2¥B~) 

= ~ altt-1(9) ･ w + alTt-1(Q) ' (1Tt( p) - 1't(B*)) 

;~ - 6lrt-1(12) ･ w+ alTt-1(!2) ･ w=0, 

a contradiction. This proves the countable additivity of ITt' Thus, pt =1rt for all t>0. 

Therefore, pt e a Vt(k*t) for all t > O. 

In particular, we have shown that pleaV1(k*1) and (po' ~PDea~rl(k*o' k*1)' Let 

(f, g)e~t' Then, . '.. . 
Vl(k*1) + (J pl ' (g - k*1)dP> V (g) 

and 

ul(k*o' k*1' ')dP+ fJpo'(f -k*o)dP- fJpl' (g- k*1)dP;~ fjul(f, g, ')dP j
 

Hence, by the above two inequalities, 

l
 
ul(k*o' k*1' ')dP+ Vl(k*D + CJPo' (f -k*o)dP~ fJul(f, g, ')dP+ Vl(g) , 

Thus, by definition of the value function Vo' we can conclude that 

Vo(k*o) + Cj po ' ( f - k*o)dP;~ Vo( f ). 

This proves that poe aVo(k*o)' * l 
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V. Complete Characterization of Weakly Maximal Programs 

First we shall prove a fundamental theorem which shows a necessary and sufficient 

condition for weak maximality. 

Theorem 5.1: Let K*={k*t I t eT} be a program satisfying conditions (C.1) and (C.2). 

Then, under assumptions (A.1) and (A.2), program K* is weakly maximal if and 
only if limt Vt(k*t)=0 and there exists a price system {rFt ! t eT} supporting program 

K*. 

Proof: (Necessity) Assume that program K* is weakly maximal. Then, by Theorem 
3.1 we have a price system {,,-t I teT} supporting program K*. Also, since program K* is 

weakly maximal, by definition of Vt, Vt(kt*)=0 for all t eT. Therefore, Iimt Vt(k*t)=0. 

(Sufficiency) Assume that K* is a program satisfying conditions (C.1) and (C.2), and 

that limt Vt(k*t) =0 and there exists a price system {7rt I t e T} supporting program K*. 

First we shall show that program K* is agreeable, i.e., 

(5.1) Vo(k*o)= ~ Jv,(k* = 
t 1' k*t, ')dP+Vt(k*t) for all t>0 

s=1 

where vs's are the normalized utility functions for program K*. 

Suppose that (5.1) were not true. Then, by definition of Vo' there is t'>0 such that 

r
 Vo(k*o) > ~ Jv.(k* _ * l' k*t' ')dP+Vt(k*1') ' 

s=1 

Therefore, again by definition of Vo' there exists Ke ~~~o(ko*), e>0, and t">t' such that 

(52) ~ Jv(k k ･)dP+Vt(kt)> ~ Jv(k** 1' k*s' ')dP+Vt(k*t)+e for all t>t" ' ' '-1' s, * -
On the other hand, since {1Tt I t ~: T} is a price system supporting program K* 

Vt(kt*) - irt ' k*t ~; Vt(kt) - Irt ' kt 

and 

C
 ut(k*t_1' k*t, ')dP-1rt-1'k*t_1+1Tt'k*t;~ Jut(kt_1' kt, ')dP-,,-t_1' -

for all t>0. Since k0=ko*, These inequalities imply that 

~ Jv,(k*,_1' k*,, .)dP+ V,(k*t)~~ ~ Jv,(k,_1' k,,･)dP+ Vt(kt) 

s=1 s=1 

for all t>0. This contradicts (5.2). Thus, (5,1) has been proved. 
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Now, by (5.1) and by definition of functions vt's, Vo(k*o)=Vt(k*t) for all t>0. There-

fore, since limt Vt(k*t)=0, we can conclude that Vo(k*o)=0. Hence, by definition of vt's, 

Vo(k*o) = +~~Jv,(k* _ 
' 1' k**, .)dP . 

s=1 

By definition of Vo' this implies the weak maximality of program K*. I 

Now we can prove a useful theorem in the case where the sum of expected utilities is 

finite. We assume in addition the following: 

(A.4) For each t, (x, y)eDt((~') implies x;~0. 

(A.5) For each t and a', (O, O)eDt(a') and ut(O, O, a');~0. 

Assumption (A,4) means that capital stock must be non-negative. And, assumption 

(A.5) means possibility of inaction, namely that capital stock can be zero. 

Theorem 5.2: Let K*={k*tl t eT} be a program satisfying conditions (C.1) and (C.2), 

+= r 
and assume that ~ Jut(k*t_1' k*t, ')dP exists and is finite. Then, under assumptions 

t=1 
(A.1), (A.2), (A.3), (A.4), and (A.5), program K* is weakly maximal if and only if there 

exists a price system {1Tt I te T} satisfying the following conditions: 

(1) For each t>0, 

j ･k* _1+1rt'k*t ~ ~Jut(f, gt, ')dP-1lt_1' f + Irt 'g ut(k*t_1' k*t, ')dP-1rt-1 

for all (f, g)e ~t' 

(2) Iim lrt'k*t=0. 
t-+* 

Proof: (Necessity) Assume that program K* is weakly maximal. Then, by The-
orem 3.1 we have a price system {1rt I teT} supporting program K*. Therefore, for each 

teET, Vt(k*t)-Itt'k*t>= Vt(j')-1rt'f for all fe~1(~~), where Vt is the normalized value 

function for program K*. Hence, by puttingf:=0, we have 

Vt(k*t)- Vt(O)~lrt 'k*t for all t. 

In addition, by definition of Vt and assumption (A.5), 

+~ r Vt(O)~ +~~ jfvs(O, O, ･)dP~ - ~ tu,(k* _ ' 1' k*t, ')dP 

s=t+1 s=t+1J 
for all t>0, where vt's are the normalized utility functions for program K*. Thus, by the 

above two inequalities, we have 
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Vt(kt*) + +~co Jfus(k* _ 
8 1' k*s' 

s=t+1 

By Theorem 5.1, Iim Vt(k*t)=0. 
t-+eo 

+co lim ~ rus(k*s-1' k*t, 
t-+* s=t+1 j 

' )dP ~~ 7rt ' k* 

Also, since 

･)dP=0 . 

for all t>0. 

+~co Jut(k*t_1' k* 

t= I ' 
･)dP is finite, 

Hence, the above inequality implies that lim sup ?rt 'k*t <= O. On the other hand, (A.4) 
t-+ * 

impies that k*e ;~ O, and (A.3) implies that ITt;~0. Hence, trt'k*t~;O for all t>0 Therefore 

we can conclude that lim Itt'k*t=0. 
t-+ * 

(Sufficiency) : Let K*={k*t I teT} be a program satisfying conditions (C,1) and 
(C.2), and assume that there exists a price system {Itt I t eT} satisfying conditions (1) and 

(2) of this theorem. 

Now, Iet K={kt I teT} be a program such that k0=k*o' Since {Itt I teT} satisfies con-

dition (1) of this theorem. 

Jut(k*t_1' k*t, ')dP+ Irt-1' (kt_1 ~k*t_D -1rt '(kt -k*t) ;~ CJut(kt_1' kt, ')dP 

for all t>0. Since k0=k*o' by summing up we have 

lrt'k*t-1rt'kt~~ ~ Jfu,(k, l' t r 
_ k*, ･)dP- ~ Ju*(k**_1' k**, .)dP 

s=1 s=1 for all t>0. (A.3) and (A.4) imply that lrt'kt ;~ O. Hence, the above inequality and con-

dition (2) of this theorem imply that program K does not overtake program K*. Namely, 

program K* is weakly maximal. I 
HITOTSUBASHI UNIVERSITY 
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