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ANOTHER RESAMPLlNG PLAN BASED ON 
THE POLYNOMIAL APPROXIMATION* 

HAJIME TAKAHASHI 

Abstract 

We shall propose a method somewhere between the jackknife and the bootstrap. It 
works under weaker conditions than that of the jackknife, while it requires less numerical 

computation than that of the bootstrap. Our method is based on the heuristic use of the 

theory of functional Taylor series expansion of Reeds (1976) and the theorem of polynomial 

approximation to the bounded continuous function due to Bernstein. 

I. In trod uction 

Let Xl' ' ' " X* be a sequence of i,i,d, random variables on Rk (k~~ l) with unknown 

distnbutron function F and 6 6(F) denote a parameter of mterest. We shall denote e = 
6.(Xl' ' ' " X.) an estimator of 6.. And we shall consider calculating the variance, VAR 

(C ) EF{6~ EF {O*}} and the bias BIAS(C ) EF{C*} e of e*. Although some ofthe 
results have been announced in Takahashi (1985b), we shall restate these for the reference. 

We suppose that there is a statistical functional T on M1 for which e=T(F) and e.=T(F) 
for all n=1, 2, . . . , where F denotes the empirical distribution function of Xl' ' ' " X~ and 

M1 is a sufficiently rich convex set of distribution functions on Rk containing F and all the 

point mass one at x, 6. (xeRk). By the theory of functional Taylor series expansion, if T 

is compact differentiable at F (with respect to some topology on MD, then we may assume 

that there is a kernel function ip(1)(x,F)=ip(1)(x,F,T) of the derivative of T at F such that 

l " ( I ) Ti~lip(1)(Xi, F)+Rem 1 e* =e + 

( 2 ) EF {c(1)(X1' F)} =0 , 
where Rem I is the remainder [cf. Fernholz (1983), Reeds (1976), Takahashi (1988)]. By 

the central limit theorem for i.i.d. random variables, if 0<t2=EF {ip(1)(Xl'F)} 2 is finite and 

(3) VTReml l. O as n-oe 
Then, 

* The present version of the paper was supported in part by Nippon Keizai Kenkyu Josei Zaidan. 
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d
 (4) ~T(e*-6)--~N(O, r2) as n-eo , 

where N(O, ?2) denotes the normal dlstribution with mean O and variance lr2. The sufficient 

conditions for (3) are discussed by several authors [cf. Fernholz (1983). Reeds (1976)]. The 

above results suggests us to use r2 for estimating VAR(e*). It follows that 

( 5 ) n ' VARASYM(e.)= : i~]l [ip(1)(Xt, p)]2 

may be a reasonable estamator for VAR (e*). 

To obtain an estimator for BIAS(e*), we shall suppose that T is twice compact differ-

entiable at F with kernel function ip(2)(x,y.F)=c'2,(x,y.F.T) for the second order derivative 
j
j
 

of T at F, for which c(2)(x,y,F)dF(x)dF(y)=0 and 

(6) e. e+ ; ,~:lc(X F)+ 12 ~ ~h2(Xt,Xj,F)+Rem2, 
2n i=1 j=1 

where Rem 2 is the remainder and 

h2(x, y, F)=ip(2](x y F) J[c(2)(x, t, F)+c(2,(t y F)]dF(t) 

Note that EF {h2(Xl'X2,F)} =0 holds. Thus, if 

( 7 ) EF {Rem 2} =0(n~1) as n-= 
[cf. Jaeckel (1972), Reeds '(1976)], we obtain 

l
 ( 8 ) EF{O*} =6+ 2n EF{h2(Xl' Xl' F)} +0(n ) 

as n-*. This suggests us to use 

( 9 ) = ~ h2(Xi. Xi, F) n ' BIASASYM(e~) 
2n i=1 

as an estimator for BIAS(e~). 

The drawback of the above method is that we have to know the explicit form of ip(1) 

and ip(2]. But outside the text book situations, however, it is sometimes quite difficult to 

specify T and it is almost impossible to obtain its higher order derivatives in a closed form 

[see for example Switzer (1972)]. The jackknife (and the infinitesimal jackknife) and the 

bootstrap are alternative method for evaluating VAR(e*) and BIAS(e~). Although the 
validity and the accuracy of these methods depend on the underlying distribution function 

F as well as the statistical functional T, they do not require the explicit knowledge of T it-

self. (Practically e* need not be expressed by the statistical functional for the jackknife 

and the bootstrap.) The jackknife estimate of VAR(e*) and BIAS(e.) are defined by 

- n-1 " (1 O) VARJAcK(e*) n ,~1 (e^ti) ~ e(J))2 
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'~ (1 l) BIASJACK(e^) =(n - l)(e(J) - e~) , 
l
 

where e(J) T ,~1 e[i), e(i)=T(p(i)) and F(t) is the empirical distribution function ofXl' ' ' ' 

v ,X., i=2. . . . , n- 1, Ftl) and p(*) are the empirical distribution functions of Xi_1'At+1' ' ' ' 

X2 ' ' ' ' . X~ and Xl' ' ' " X*_1 respectively. Roughly speaking thejackknife method consists 

of estimating ip(1'(x,p) and ip(2)(x,y,p) from the data. Indeed if T is twice compact differ-

entiable in some neighborhood of F, then 

(12) 1 1 2h2(Xi, Xt, p)+ Rem 2 e(i)=e~~ nl I ip(1)(Xt, F)+T( n-1 ) 

for sufficiently large n [Takahashi (1985b)]. It follows that 

-1 (13) C(') e*= n-1 c(1)(Xi, ?)+0(n~1) (n-oo) 

~ (e(i)_e~) I ( 1 2~ (14) ~ h2(Xi, Xt, p)+0(n~2) (n-oo) T~ n-l 

The approximation is exact in (13) and (14) if T is linear and quadratic respectively. From 

(lO), (1 1), (13) and (14), it follows that 

--¥ I n (15) :: ~ [c(1](Xi, F)]2 n ' VARJAcK(e*) 
n-1 i=1 

(16) n ' BIASJAcK(e*) :: ~ h (X X F) 2 i' s, 2(n-1) i=1 

Under some regularity conditions, the following results are well known [Efron (1982), 

Jaeckel (1972)]. 

(17) n ' vAARIAcK(e*) l> EF {c(1)(Xl' F)} 2 

(18) n ' BIASJAcK(e~) '-' TEF {h2(Xl' Xl' F)} n-oo 

The above results explain partially the reason why the jackknife estimate of variance 

fails when e* is the sample median. The jackknife requires the smoothness of T. On 
the other hand the bootstrap [Efron (1982)] works quite a large family of estimators. The 

price is the large amount of the numerical calculations. The comprehensive treatment of 

the bootstrap is found in [Efron (1982)]. (AlsO see Section 3.) . 
- In this paper we shall propose a method which lies somewhere between the jackknife 
and the bootstrap. It works under much weaker conditions than that of the jackknife, while 

it requires less numerical calculations than the bootstrap. Our method is based on the poly-

nomial approximation to the estimator T(Ftti)) at t= ~ where f:t(i)=(1-t)p[i)+taxi' We 

shall assume the continuity of T at F and utilize the polynomial approximation to the 

bounded continuous function by Bernstein. In Section 2 we shall state Bernstein's theorem 
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and its modification. Our estimator is introduced in Section 3. Some simulation results 

are presented in Section 4. The basic idea of this paper is found in Takahashi (1985a) which 

treats the finite sample space. 

II. Bernstein ~ Polynomial 

In this section we shall present Bernstein's polynomial approxinatiom theorem and 

its modification. The content of this section is not new and may be skipped except the 

statement of Lemma 1-(ii). 

Lemma 1. Suppose (H~,t(z), m= o . . . } is a sequence of distribution functions with l,., 

mean t and variance a~2(t)~'O as m-ee. 

(i) Iff(z) is a bounded and continuous function, then 

(19) Iim J.f(z)dH~,t(z)=f(t) 
~+ " 

uniformly in the closed interval where (T~2(t) converges uniformly to O. 

(ii) If f(z) is twice differentiable with bounded second order derivative If"(z) I ~Mf for 

all z, then 

ll , -f(z)dH~ t(z) f(t)]1 -< 2 
T (r~ (t)M 

for all t. 

Proof The proof of the first part is a simple application of Chebyshev's inequality and 

is found elsewhere, see for example Feller (1971) pp. 219-220. To prove the second half, 

we expandf(z) into Taylor series about z=t, 

f(z) =f(t) + (z - t)f '(t) + ~ (z - t)zf "(t.) , 

where t, is the intermediate point. It follows that 

1
 

J [ f(z) - fCt)]dH~,,(z) = T J (z - t)if "(t.)dH~,t(z) 

~ 1 6~2(t)Mf 
2
 

Note that iffis linear, then the approximation is exact. 

In the rest of this paper we shall use Lemma I with H~,t(z) a binomial distribution 

(m~ attaching the probability ~k)tk(1 - t)~-h to the points k/m, k=0,1, m whose mean and 
...' , 

variance are t and t(1-t)/m respectively. If f(z) is a bounded continuous function on 
[O, I], then 

( ~ )(~) " (21) tk(1-t)~-k+0(1), m-oo f(t)= ~ f 
k=0 
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where o(1) is of the order O(,n~1) iff(z) is twice differentiable with bounded second order 

derivative for all te[0,1]. The meaning of the approximation (21) is found in the follow-

ing lemma. 

Lemma 2. [Feller (1971), p. 222] Let A be a difference operator defined by 

Ah f(t) =L f(t + h) - f (t)]/h 

Ahf(t)=[Ahh-If(t+h)-Ahk-if(t)]/h k~~2. 

Then 

~ tk k ~ (mt)k " (22) ~ Akf(O)=e~~t ~ f ll=m~l k=0 k! m ) k! h k=0 
By the Poisson approximation to the binomial distribution, if we set m-oo with mt 

being fixed, the summation on the right hand side of (21) coverages to the right hand side of 

(22). On the other hand, iff(z) is k times differentiable at z=0, then Ahf(O)-(dk/dzk)f(z)1.-o 

as h-O. Hence the left hand side of (22) is an approximation to the infinite degree Taylor 

series expansion off(z) at O. The advantage of the approximation (19) is that it holds 

under much weaker conditions. 

III. Polynomra/ Approxanatron 

We shall keep the notation of Section I and write pt(()=(1-t)F(i)+t~Xi for te[0,1], 

1
 i(T) n. Weshall also write Ai(t)=T(Ft(i')' Notethat A =e* for each i=1, . . . i=1, . . . , ,n 

If T is bounded continuous functional in some neighborhood of F, then Ai(t) is a bounded 

continuous function of t in some closed interval containing O and 1/n for sufficiently large 

n, [O,A], ~ <A<1, say. For te[O,A] we shall approximate At(t) by the Bernstein's poly-

nomial of degree m; 

(23) ^ ~ k m tk(1 - t)~-k k=0 ( m ) (k) 
Bs(~)(t)= ~ Ai 

l
 ( ) Our polynomial approximation to e* with respect to Xi is defined by ~i(~) -
n
 

=^ ) (
 
)
 

(24) e~ =A + o( I ) Bt(~) m-oo 
Here o(1) is of the order O(m~1) as m-eQ if T is twice compact differentiable in the neigh-

borhood of F, Now to estimate VAR(e~) and BIAS(e*), Efron's bootstrap takes the sample 
of size N (say) from F to calculate a bootstrap estimate e*=eN* of C, and then repeat this 

process B (say) times to obtain e*(1) . . . , e*(B). Its sampling scheme is virtually the in-

dependent repetition of multinomial distribution choosing N values out of n categories 
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with equal probabilities. The bootstrap estimate of VAR(e.) and BIAS(e.) are defined 

by 

l B V~~RBooTS(e ) (25) ~ ~ B-1 ~ (et(b]-e*( ))z 
b=1 

*~ (26) BIASBooTs(e~) = e* (. ) - e* , 
B 

where e*(') b~]_1 e*(b)/B [Efron (1982)]. The comparison of Bi(~](t) and e*(')is interesting. 

It can be seen from the definition that Bi(^)(t) is the mean of bootstrap estimators whose 

resampling scheme is based on the binomial distribution choosing F(t) and 6xi with prob-

ability (1 - t) and t respectively. In view of the bootstrap, we may define the polynomial 

estimate of VAR(e*) in two step~. Let us define 

l
 (

 
k
 ^ )] ( - "^ 2 '~ (27) VARpOLY ~ {A ~~k l 1 i } (~)( ~ )k( - ) , Bt(~) a

 n m 
f~' r / I ~l VARpOLY ~i(~] estimates the variation of e~ with respect to Xt i=1, . . . 

shall sum up all the variations to define our estimator of VAR(e^), 

^ t )] vAAR{~~Y(6 ) ~ VA/¥jRpOLY B (~) 

In the same way we sh~ll define the estimator of BIAS(6*) by, 

[ ( ^i - J ) '* BI~~ASp(omL)Y(e.)=~ B(~) 

t=1 n 
The estimators V~~~(pmo~Y(e.) and ~i~(pmoLY(e~) are called the polynomial estimate of 

va_~raiance and bias of a^ respectively. They are by definition approximations for 

.~¥ VARBooTs(e.) and BIASBOoTs(e.). It follows that (28) and (29) have the same limiting 

properties as that of the bootstrap estimators if T is continuous in some neighbothood of 

F. The relation to the jackknife (infiniesimal jackknife) is given in the next theorem. 

Theorem 1. (i) If T is linear, then 

(30) ~~~~~LY(e.) n - I n = ~ (e(i)-e*)2 
n i=1 

(ii) If T is quadratic, then 

BIAAS(pn~LY(e^)= ~ (e(i)-e.) 

n i=1 
The proof of the theorem is given in the appendix. 

Remark. From (10)-(16), it follows that VA'~R(pndLY(e~) is equal to '~ VARJAcK(e*) with 
etJ' replaced by e., and BI/¥AS(pndLY(6 ) BI'AASJACK(e ) under the appropnate condrtrons 

on T and F. 
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IV. Numerical ResultS 

In this section we shall compare the numerical results of our estimator with the others. 

In addition to (28) and (29) we shall also consid~r the following modifications of these, which 

may improve the numerical accuracy and stability. 

"~ (32) V'~~AR{~LtY)(6.)= ~ VARpoLY[~,(~)(t)] 
i=1 

(33) BIAAS~6LtY)(e.)= ~ [Bt(~)(t)-e.] . 
i=1 

To discuss the numerical accuracy we shall set e~ being the sample correlation corfiicient, p^. 

We shall consider the estimate of the standard deviation of e~, VVAR(e.). J(28) and 

V(32) mean the square root of (28) and (32) respectively. Tables I and 2 summarize the 

performance of several estimators applied to the law school data given in Efron (1982), 

p. 10. 

The values of Bootstrap, Jackknife and Normal theory are taken from [Efron (1982)]. 

The assumption that e~ is expressed by the statistical functional is crucial to calculate (28), 

k
 (m) (29), (32) and (33). For example At may be calculated from the data Xl' ' ' " Xl' 

~(~-k)~ 
X2' ' ' ' . Xt, . . . . Xt, . . . , X* i=1, . . . , n; ((m-k) of X/'j~i and (n-1)xk ofXt)' 

~(n-1) * k-
Now in Tables I and 2, 1/(28) and (29) outperform V(32) and (33) in the sense that 

the formers are more close to the Bootstrap estimates. The situation is reversed in Table 

3 which gives a comparative Monte Carlo study of V(28), 1/(32), the bootstrap, the jack-

knife, the infinitesimal jackknife and the normal theory estimate of VAR(e~). 

It is interesting to see that 1/(28) agrees with the infinitesimal jackknife quite well in both 

cases. On a whole, 1/(32) seems to give us a better estimate than V(28). In addition to 

these, V(32) and (33) show the more numerical stability with respect to m (see Table 4) 

TABLE 1 

'~^ VAR (e~) 

V (28) 1/ (32) Bootstrap 
m=n=15 m=n=15 B=1,000 

t=1/(n+n2) 

O. 123 O. 143 O. 127 

Jackknife 

O. 142 

Normal Theory 

O. 117 

TABLE 2 

'A^ BIAS (C.) 

(29) (33) Bootstrap 
m=n=15 m=n=15 B=1,000 

t=1/(n+n2) 

-o. 005 -o. 007 o. 003 

Jackknife 

-o. 007 

Normal Theory 

-O. O1 1 
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TABLE 3 

A comparison of 7 methods of estimating standard deviation of p and c=tan~1p. 

The Monte Carlo experiments consisted of 400 repetitions of X1' ' ' " 14 X -bivariate 
normal with true p=0.5. The true standard deviations are Sd(~)=0.218, Sd(c)= 

0.299. A11 the components except V(28) and V(32) are taken from Efron (1982.) 

1/(28) m=n=14 
1/(32) m=n=15 

t = I (/n + n:) 

Bootstrap B=512 
Jackkn ife 

Infinitesimal Jackknife 

Normal Theory 
True 

AVE 
O. 174 

O. 219 

O. 206 

O. 223 

O. 175 

O. 217 

O. 218 

SD 
O. 060 

o. 084 

o. 062 

o. 085 

o. 058 

o. 056 

AVE 
O. 248 

O, 313 

O. 301 

O, 314 

O. 244 

O. 302 

O. 299 

SD 
O. 062 

o. 093 

O. 062 

O. 090 

o. 052 

o
 

TABLE 4 

Average values of (30), (32), (31) and (33) of VAR(p). The Monte Carlo study 

is conducted as in Table 3. 

m 

2
 

4
 

10 

14 

v (30) 

O. 570 

O. 350 

O. 300 

O. 277 

O. 201 

O. 174 

1/ (32) 

t=1/(n+n*) 

O. 272 

O. 234 

O. 231 

O. 229 

O. 221 

O･ 219 

(31) 

-O. 517 
l O. 066 

-O. 030 

-O. 025 

-O. 013 

-O. OIO 

(33) 

t=1/(n+n') 

-O. 050 

-O. 018 

-O. 017 

-O. 017 

-O. 016 

-O. 016 

V. Concludmg Remarks 

We propose the polynomial approximation mainly to justify bootstrap. Of course, 

as a byproduct, we have another way of performing resampling to obtain the variance 
as well as bias of the estimators under consideration. However, if we judge the method 

by the amount of calculation needed to get the estimators, the result of previous section 

shows that the performance of the new method is not particularly good in i.i.d. case. But 

the method may be useful for proving certain asymptotic results in the regression problem, 

for the polynomial approximation gives us a natural way to approximate influence function 

in this case. 

It is said that regression methods may be useful when we have a missing observation, 

We estimate the missing values using other variables. This is very common especially when 

we are studying various kind of government statistics. Here the analysis is more compli-

cated compared with the many familiar text book situations, so that jackknife method would 

be useful to obtain many statistical properties of the predicted values. And the polynomial 
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approximation would certainly give us the better result for this case and we shall study this 

problem using the real data~in the next project. 
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A ppENDI X 

We shall sketch the proof of Theorem 1. We shall suppose that T(6xi) is always de-

fined (this is not the case for en=p). If not, some obvious modification should be made 

for each concrete case. ' 
Proofof (30). By the linearity of T, it follows that 

k
 , I (~)( ; )h(1 ; )" h (A 1) ~ [A ) -( - "~ 2 O

 n ko 
(6') 6n)2+L(e(t) 6 )(T(~xt) C('))+ 2 1 (T(6Xi)-e(t))2 -^ ( - ) 

It is easily seen that 

(A-2) e(t) - T(~Xi)=n(e(i) - e~) . 

(30) follows from (A-1)and (A-2). 

Proof of (3]). Since T is twice compact differentiable at F(i) it follows that 

At(t) = T(F(i) + tJ9'! (1)(x, fr(i)d(6xi ~ F(i))(x) 

J
J
 

+ 2 t2 c(2)(x, y, F(i))d(6Xi-f(i))(x)d(~xe F('])(y) 

^ ( for each i=1, . . ~ I p+ ~1 8xt and Tsatisfies the assump =- ) . , n. Slnce F(t) l
 n-1 n-1 

tion of Lemma A-1 below, we may expand c(j)(', p(i)) at f(j=1,2). It follows that (A-3) 

becomes 

(
 

e(i)+t n-1 (n-1) ~ ~ ( n I h2(Xi,Xi) 
)
 
2
)
 

n_ ^ ~'/ (1'(Xi, F) -~t a 

where k2(x, y)=h2(x y F) 

Hence, 
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加（÷）キ（卯・1一）・”圭1ψ川（…戸）一2”（÷1）・1・（川

It　fo”ows　from（14）that

差［加（÷）一氏1一差（1ω一み）一2”（”』、）。差1・（川一（1一÷）差（・ω一1・・

It　re工nains　to　state　and　prove．

工舳伽α∠一1．S叩pose　r　is　three　times　compact　d冊erentiable　at　F　with　the　keme1func－

tionsψω（プニ1，2，3）such　that

卿一・（・）・・／ψω（岬（・一・）（・）

　　　　・÷巾・〕（舳・）∂（・一・）（・）炸・）（γ）

　　　　・÷1・∬ψ㈹（仙榊・一・）（・）（・一・）（γ）（・一・）（・）

　　　　　　　　　　　　　　十〇（〆）　as　　lτ1一→O

unifomly　in　O　in　every　compact　neighborhood　of　F，whereハ＝（1＿’）F＋畑．Suppose
furtherψω（・，F）（ゴ＝1，2）is　a（3一ブ）times　compact　d岨erentiable　functional　at　Ffor　all　x，

γfor　which

ψα〕（州一ψω（払・）・1／φ㈹（〃）∂（・イ）（γ）

　　　　　　　・÷巾㈹（舳州・一・舳（・一・）（・）

斗O（12）

ψ②（舳ハ）一ψω（〃）・1／φ㈹（舳岬（・イ）（・）・・（1）

as1→0uniformly　in　O　in　every　compact　neighborhood　of　F Then，

∬ψ㈹（舳・）仕・W（・一・）（γ）一∬ψ121（〃）∂（・一・W（・一・）（γ）

for　every　G　in　every　compact　neighborhood　of　F．

1，roφ．　Let1ア，＝（1一∫）F＋3（≡and

　　　　　　　　　　　　1；’！二（1一‘）F、十κ＝（1一（3＋’一3’））F＋（α十’一“）0．

We　shal1irst　expmd　r（〃）at　F、，thenexpandτ（夙）andψω（・，凡）aげ．Comparethe正e－
su1ting　form1ユ1a　with　the　direct　expansion　ofτ（ハ＊）at　F，we　h割ve　the　desired　result。
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