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SUPPORT PRICES FOR OPTIMAL PROGRAMS OF CAPITAL 
ACCUMULATION IN A GENERAL REDUCED 
MODEL UNDER UNCERTAlNTY 

SHlN-ICHI TAKEKUMA 

I . Introduction 

The purpose of this paper is to proVe the existence of support prices for optimal pro-

grams of capital accumulation under uncertainty. The theorem established here is a gener-

alization of those of Radner (1973) and Zilcha (1976). Also it is a natural extension of 

the deterministic case proved by McKenzie (1986). 

In the economy considered in this paper, there is uncertainty in production technolo -

gies and utility functions. At each period in time, there is no uncertainty in production 

technology and utility function. However future technologies and utilities are uncertain 

at each period in time. Our economic model is presented in a general reduced form so 
that it includes many cases considered so far. 

In proving the existence of support prices for optimal programs, there are two key 

arguments. One is the induction argument of existence of prices, which has been developed 

by McKenzie (1986) in deterministic cases and was first applied by Zilcha (1976) to uncertain 

cases. The other one is the decomposition argument of finitely additive measures by Yo-

shida & Hewitt (1952), which is used to show that prices are integrable functions. The 

argument was frst used by Bewley (1972) in models of general equilibrium, and also applied 

by Radner (1973) and Zilcha (1976) to models of economic growth under uncertainty. In 
their model there is uncertainty in production technologies, and the uncertainty is stationary. 

In Radner (1973), support prices for stationary optimal programs were considered. In 

this paper we will consider a general non-stationary model with uncertainty in production 

technology and utility, and will establish by those two arguments a general support price 

theorem for optimal programs of capital accumulation under uncertainty. 

II. Model 

The model considered here is a generalized reduced model of capital accumulation 
where future utilities and production technologies are uncertain. Let (O, ~~, p) be a pro-

bability space. Each element in O denotes one possible state (a set of environments in past, 

present, and future). Family ~ is the set of all possible events and P denotes the proba-

bility distribution of states. Let T= {O, l, 2, , . . } be the space of time. The uncertainty 
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about states rs descnbed by a filtration {~~ I teT} , i.e., ~~ is a family ofsubsets of g2 and 

~ltC~7+1 for each time teT. Family ~~ is interpreted as the informations about 
states that become available until time t. 

The production technology available at time t>0 is described by a correspondence 

Yt, a,e9-Yt((L')cR~xR", where R" is an n-dimensional Euclidean space. The graph 
of Yt defined by G(Yt)= {(x, y, a,) I (x, y)eYt((c')} is assumed to be ~(R") x ~f(R") x 

~~-measurable, where ~(R~) is the family of all Borcl subsets of R*. By set Yt(a,) we 
represent the possibility of transformation of capital stocks, i.e., (x,y)e Yt((~') means that it 

is possible to transform capital stock x at time t-1 into capital stock y at time t under state a' . 

The satisfaction in the economy at time t>0 is described by a utility function, ut : G(Yt)-

R, which is assumed to be a ~~~~(R") x ~(R") x ~~-measurable function on G(Yt) to the 
real line R. Value ut (x, y, a,) is interpreted as the utility obtained at time t if capital stocks 

at time t-1 and t are x and y respectively. 

In order to describe a program of capital accumulation, we will use a stochastic process, 

i.e., a function f: Tx S2-R" such that f(t, ･ ) is ~~-measurable for each t e T. For any 
stochastic process f: Tx Q-R", we denote by ft : S2-R" a function defined by ft(a')-~f(t, co). 

Definition 2.1: If a function k: TxQ-~R~ is called a program, it is a stochastic process 

such that k eEL*(~;) for each t e T where L*(~~t) denotes the set of all essentially 

bounded ~lc~measurable functions on S2 to R*. 

We should note that by this definition we restrict ourselves to essentially bounded pro-

grams. 

Definition 2.2: A program k is said to be feasible if (kt_1(co), kt(a,))eYe(a,) a.s. for each 

t > O. 

To evaluate feasible programs, we use the so-called overtaking criterion. For a fea-

sible program k, we denote by Ut (k) the sum of expected utilities which will be obtained 

until time t in program k, i.e., 

U'(k)=J [ ~ u,(k'_1(Q')' k'(a')' (2')]dP((~') 

o '=1 

Definition 2.3: A feasible program k is said to be optimal if there is no other feasible pro-

gram k' with k0=k'o such that 

lim sup [U,(k') - U,(k)] > O . 

t-+* 

III. Support Prices for Optimal Programs 

First we assume the convexity of the model. 

Assumption I : For each t, Yt(a') is convex and u,(x, y, a') is concave in (x, y) a.s. 
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Moreover, we assume the monotonicity of utility functions with respect to initial capital 

stock at each period in time. 

Assumption 2: If(x, y)eYt(co) and x~x', then (x', y)eYt(a') and ut(x, y, a');~u (x y (o) 

By the next assumption we assume the boundedness of the model. 

Assumption 3: For each t, there exists a number b such that if (x, y)eYt(a'), then I Iyll~ 

bllxll and u(x, y, a');~bl lxl I -

The set of all possible transformations of capital stocks between time t-1 and time t 

is defined by 

~~Jt = {(f, g)eL~(f;t_1) x L*(~;t)1 (f(a'), g((~'))e Y, ((~') a,s.} 

Also, for each t, we define 

~~= {gl(f, g)e ~/j~ for some f } 

Remark 3.1: Assumption 3 implies that given feL*(~;t_1)' there exists a number B 
such that llgll=;~B and fut(f, g, ' )dP~B for all (f, g)e ~11 . t ' Namely, if capital stock 

at time t-1 is bounded, then capital stock and expected utility at time t must be bounded. 

Let k:Txl2-,R" be an optimal program. In order to define a value function we 

assume : 

Assumptron 4 fut(k, l, kt, ' )dP> -oo for each t>0 . 

Remark 3.2: Together with Assumption 3, the above assumption implies that in optimal 
program k, fut(kt_1' kt, ' )dP is finite for each t>0 . 

For each te T, we define the normalized utility function vt : G(Yt)-~R by 

vt(x, y, co)=ut(x, y, a')-ut(kt_1(co), kt(co), (") . 

Moreover, for each t e T and .feL=(~~), by ~~:1(f) we denote the set of all feasible pro-

grams after time t from capital stockf i.e., 

~~;t(f)= {hl h is a program such that /7t ~f and 

(h*(co), h*+1((~')) e Y*+1(a') a.s, for each s;~ t} . 

Now, by virtue of Remark 3.2, we can define the so-called normalized value functions. 

For each t e T and feL_(f;t), define 

Vt(f)=sup {Iiminff[ ~ v,(h h ･ )]dP} . 
'-1' s' 

he~,(f) r~+* s=t+1 
Also, for each t e T, we define a set by 

~t = {feL=(f;)1 V (f) > 0<)} 

Remark 3.3.･ By Assumption l, we can easily show that Vt is concave and ~rt is convex 
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for each t e T. Also, by Assumption 2, Vt is an increasing function. Moreover a map 

defined by 

(f, g)e ~/It-fut(f, g, ' )dPeR 

can be shown to be concave for each t > O. 

Assumption 5: koeint~o and int ~4:tn~t~c for each t>0, where ~~ and ~rt are 
subsets of space L*(~lt) and symbol 'int' means the interior in the topology of the space. 

We should notice that Assumptions 4 and 5 are made for a particular optimal program 

k and they depend on the program. 

Support prices for optimal programs [are also described by stochastic processes. 
However we are interested in particular prices in the sense of the following definition. 

Definition 3.4: If a function p: Tx S2-R" is called a price system, it is a stochastic process 

such that pt eLl(~;) for each t e T, where Ll(~lt) denotes the set of all integrable ~~-

measurable functions on S2 to R". 

The following is the main result of this paper. 

Main Theorem: Let k be an optimal program satisfying Assumptions 4 and 5. Then, 
under Assumptions 1, 2, and 3, there exists a price system p such that for each t ~; T 

l) Vt(kt)-fptktdP;~ Vt(f)-fptfdP for all fe:~t, and 

2) fu (k k ･ )dP-fptktdP+fpt+1kt+1dP t+1 t, t+1' 
~ fut+1(f, g, ' )dP- fptfdP+ fps+1gdP for all (f g) e ~/It+1 ' 

where Vt is the normalized value function for program k . 

IV. Proof of the Main Theorem 

To prove the Main Theorem, Iet k be an optimal program and Vt be the normalized 

value function for program k. 
For each te T, Iet L**(~;t) denote the set of all continuous linear function on L=(~;t) 

to R. For simplicity we use the following notations. For each teT, define 

a Vt (kt) = {1:teL** ( ~;t) I Vt (kt) - Irt (kt) ~ V, (f ) - 7rt (f ) for all f e L*( ~;t)} 

Moreover, for each t> O, define 

aut(kt_1' kt)= {(1Tt , -1Tt+1)eEL**(~;) x L**(~;+1)Ifut+1(k k ' )dP Irt(kt)+1Tt+1(kt+1) 
t' t+1' 

~~fut+1(f, g, ' )dP-Ift(f)+1rt+1(g) for all (f, g)e ~lt+11 

Lemma I If lrteaVt(kt) then there exrsts sl:t+1eL=*(g~+1) such that 

l) (,,-t, -1Te+Deaut(kt' kt+1) and 

2) Irt+1eaVt+1(kt+1) ' 
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Proof: Define a number wt+1 by 

(4.1) wt+1=fut+1(kt , kt+1" )dP+ Vt+1(kt+D-7rt(kt)= Vt(kt)-~t(kt) ' 

Also, define two sets, 

A {(w g)eR x L*(~:t+DI w>wt+1~ fut+1(f, g, ' )dP+1rt(f) 

for somefwith (f g)e ~'It+1} ' 

and 
B= {(w, g)e R x L*(~~+1) I Vt+1(g) ;~ w} . 

Clearly, point (Vt+1(kt+~, kt+1)eB, and (Vt+1(kt+1)' kt+1)ebd A. By Assumption 1, 

these sets are convex. In addition, by Assumption 5, set B has non-empty interior. 

Suppose A nB~c. Then there exists C/;, g)e ~lt+1 such that 

Vt+1(g)>wt+1~fut+1(f, g, ' )dP+1rc(f) . 

By (4.1) and the definition of value function V, , we have 

Vt ( f ) - Irt (f ). > Vt (kt) - Irt(kt) , 

which implies that lrt ~ aV,(k,), a contradition. Hence A n B=c . 

By a separation theorem [Dunford & Schwartz (1964), Thm.V.2.8, p. 417], there ex-
ists a non-zero continuous linear function (c, -7rt+1)' i.e., a number c and a function 

ITt+1eL**(~~+D such that 

cw-1Tt+1(g) ;~ cw' - Ir,+1(g') for all (w, g)eA and (w', g')eB. 

This implies that 

(4.2) c[wt+1~fu$+1(f, g, ' )dP+1lt(f)] Irt+1(g) 

~ cVt+1(g') -1Tt+1(g') for all (f, g)e ~(t+1 and g'e ~t+1' 

Suppose c=0. (4.2) implies that lrt+1(g'-g);~0 for all (f, g)e ~lt+1 and g'e~t+1 ' 

By Assumption 5, Irt+1=0, which is a contradition to (c, ~t+1)~0. Hence 'we can assume 

c=1. 
Put g'=kt+1 in (4.2). Then, by (4.1j, we have 

fu,+1(k,, kc+1" )dP-1rt(kt)+1rt+1(kt+1) 

~fut+1(f, g, ' )dP-1rt(f)+1Tt+1(g) for all (f g)e ~':t+1 

Thrs unplies l) Moreover putf:=kt, and g=kt+1 in (4.2). Then, we have 

V,+1(kt+1) ~ Irt+1(kt+D ~ Vt+1(g') - Irt+1(g') for all g e ~rt+1 

For time t ~nd function pteLl(~~), a map defined by 

feL~(~~) H, fptfdPeR 
rs an element of L* (~~). Therefore function pteLl(~lc) can be considered as an ele-
ment of L**(~~).-

Lemma 2: If (art, -1rt+Deaut+1(kt, kt+1) and lrc+1eaVt+1(kt+1)' then there existspteLl(~~) 

such that 

1) (Pt, -1lt+Deaut+1(kt, kt+1) and 
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2) pteaVt(kt)' 

In addition, if (1re-1' ~ Irt)eaut(kt_1' ks), then 

3) (1rt-1' ~pt)eaut(kt_1' kt)' 

Proof: First we will show that there exists pteLl(~;t) such that l) and 2) hold. Since 

lrteL=*(~~), by a theorem [Dunford & Schwartz (1964), Thm.IV.8.16, p. 296] there is 

a bounded finitely additive vector-values measure v such that 

lrt(f) ffdo for all feL=(~;t) ' 

Since (~t, -7rt+Deaut+1(kt, kt+1)' Irt;~0 by Assumption 2. Therefore it follows that :;~O. 

Hence, measure v can be decomposed into two measures by a theorem [Yoshida & Hewitt 

(1952). Thm.1.23, p. 52], that is 

~=,,.+:'p , 

where :'. is a non-negative countably additive measure on (9, ~lt) which is absolutely con-

tinuous with respect to P and ,,p is a non-negative purely finitely additive measure on (Q, 

J~;t)' Therefore, by the Radon-Nikodym theorem [Dunford & Schwarts (1964), Thm. 

III.l0.7, p. 181] there is a unique pteL1(~~t) such that 

ffd,,.=fptfdP for all feL_(~;t) 

Moreover, by a theorem [Yoshida & Hewitt (1952), Thm.1.22, p. 52] there is a sequence 

{A*} n"=1 such that A*CA*+1 and ,;p(A*)=0 for all n and lim P(A~)=1 . 

"~* 
To prove l), Iet (f, g)e ~/It+1 ' For each n, definef~ by 

for a'eA* ~ f ((o) 
=
t
 

f. (a') 
_ kt(a') + b otherwise . 

where beR" is taken so that (f*,g)e ~'It+1' Then, since (Itt' -1rt+Deaut+1(kt, kt+D, we have 

fut+1(kt , kt+1" ) dP- fptktdP- fo/A~ktd,;p+ Irt+1(kt+D 

~ fut+1(f* , g, ' )dP- fpl f*dP - fo/A~f*dop+ Irt+1(g) 

for all n. Since b is small if (f, g) is close to (kt, kt+D, we have in the limit 

fut+1(kt , kt+1" )dP- fptktdP+ ITt+1(kt+1) 

~ fut+1(f, g, ' )dP- fptfdP+ 1:t+1(g) . 

This proves l). 
Next we will show that 2) holds. In fact, since lrt+1eaVt+1(kt+1) ' 

Vt+1(kc+D - Irt+1(kt+1)~~Vt+1(g) - ITt+1(g) for all g eL=(~;t+1) ' 

Also, 1) implies that 

fut+1(kt , kt+1" )dP- !ptk,dP+ ITt+1(kt+D 

;~!uc+1(f, g, ' )dP- fptfdP+~t+1(g) for all Cf;, g) e ~~t+1 ' 

Hence, by the above two inequalities, we have 

fut+1(kt, kt+1" )dP+ Vt+1(kt+1)~ fPtk,dP 

~ fut+1(f, g, ' )dP+ Vt+1(g)- fptfdP for all (f, g),e ~/jt+1' 
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Thus, by definition of the value function Vt, we can conclude that 

Vt(kt) - fptktdP ;~ Vt(f)- JptfdP for all feL*(~;t) ' 

That is, 2) holds. 

Moreover, to prove 3), Iet (f g)e ~lt ' For each n, define f* and g* by 
-
[
 

_ (f(a'), g((~')) for (,,eA~ 
(f.((~'), g*(a')) 

(f(,a') + b, kt((o)) otherwise, 

where beR" is taken so that (f*, g*)e ~:t for all n. Then, since (1rt-1' ~1Tt)eaut(kt 1, kt), 

we have 

fut(kt_1 ' kt , ' )dP- Itt_1(kt_D + fpt kt dP + Jt2/A~ktdop 

:~fu (f g ' )dP Irt 1(f)+fptg*dP+fsl/A g do - t *, *, 
for all n. Since b is small if Cf;, g) is close to (kt_1' kt), we hav~ in the limit 

fu (k k . )dP-1rt-1(kt_1)+fptktdP t t-1' t, 
;~ fut(f g, ' )dP-1Tt-1(f) + fptgdP . 

Now we are ready to complete the proof of the Main Theorem. Since koeint ~o 
by Assumption 5, there exists lroeL**(~lt) such that lroeaVo(ko)' Therefore, by virtue 

of Lemma I for each te T there exists ItteEL**(~~) such that 

lrteVt(kt) and (1Tt, -Itt+1)eaut+1(kt, kt+1)' 

Hence, when t=0, by Lemma 2 there exists poeLl(~lo) such that poeaVo(ko) and 
(po' ~1TDeaul(ko' kD. Therefore, when t=1, again by Lemma 2, there exists pleLl(~lD 

such that (po' ~P1)eaul(ko' kD, pleaV1(kl) and (pl' ~1r~eau2(kl' k2)' Similarly, by 
virtue of Lemma 2, for each t e T there exists pt e Ll (~~) such that 

p eaVt(kt) and (p -pt+1)eaut+1(kt,kt+1)' 

This implies the Main Theorem. 

HITOTSUBASHI UNIVERSITY 

REFERENCES 

Bewley, T.F. (1972), "Existence of Equilibria in Economies with Infinitely Many Com-
modities," Journal ofEconomic Theory 4, pp. 514~50. 

Dunford, N. & J.T. Schwarz (1964), Linear Operators, Part I, Interscience, New York. 

McKenzie, L.W. (1986), "Optimal Economic Growth, Turnpike Theorems and Comparative 
Dynamics," in: Handbooks in Economics, 111, ed. by K.J. Arrow & M.D. Intriligator, 

North Holland, pp. 1281-1355. 

Radner, R. (1973) "Optimal Stationary Consumptron wrth Stochastic Production and 
Resources," Journal ofEconomic Theory 6, pp. 68-90. 

Yoshida K and E Hewitt (1952) "Fmrtely Additrve Measures," Transactions American 
Mathematical Society 72, pp. 46L66. 

Zilcha, I. (1976), "Characterization by Prices of Optimal Programs under Uncertainty," 

Journal ofMathematical Economics 3, pp. 173-183. 




