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SUPPORT PRICES FOR OPTIMAL PROGRAMS OF CAPITAL
ACCUMULATION IN A GENERAL REDUCED
MODEL UNDER UNCERTAINTY

SHIN-IcHI TAKEKUMA

1.  Introduction

The purpose of this paper is to prove the existence of support prices for optimal pro-
grams of capital accumulation under uncertainty. The theorem established here is a gener-
alization of those of Radner (1973) and Zilcha (1976). Also it is a natural extension of
the deterministic case proved by McKenzie (1986).

In the economy considered in this paper, there is uncertainty in production technolo-
gies and utility functions. At each period in time, there is no uncertainty in production
technology and utility function. However future technologies and utilities are uncertain
at each period in time. Qur economic model is presented in a general reduced form so
that it includes many cases considered so far,

In proving the existence of support prices for optimal programs, there are two key
arguments. One is the induction argument of existence of prices, which has been developed
by McKenzie (1986) in deterministic cases and was first applied by Zilcha (1976) to uncertain
cases. The other one is the decomposition argument of finitely additive measures by Yo-
shida & Hewitt (1952), which is used to show that prices are integrable functions. The
argument was first used by Bewley (1972) in models of general equilibrium, and also applied
by Radner (1973) and Zilcha (1976) to models of economic growth under uncertainty. In
their model there is uncertainty in production technologies, and the uncertainty is stationary.
In Radner (1973), support prices for stationary optimal programs were considered. In
this paper we will consider a general non-stationary model with uncertainty in production
technology and utility, and will establish by those two arguments a general support price
theorem for optimal programs of capital accumulation under uncertainty.

II. Model

The model considered here is a generalized reduced model of capital accumulation
where future utilities and production technologies are uncertain. Let (2, &, P) be a pro-
bability space. Each element in 2 denotes one possible state (a set of environments in past,
present, and future). Family & is the set of all possible events and P denotes the proba-
bility distribution of states. Let T={0, 1, 2,...} be the space of time. The uncertainty
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about states is described by a filtration { ;| (€T}, i.e., F; is a family of subsets of 2 and
FC Fyy for each time tT. Family &, is interpreted as the informations about
states that become available until time ¢.

The production technology available at time 7>0 is described by a correspondence
Y., «=0Q—Y.(w)CR"xR®, where R* is an n-dimensional Euclidean space. The graph
of Y, defined by G(Y)={(x, », ) | (x, Y)EY:(w)} is assumed to be ZZ(R")x ' (R") x
F,-measurable, where <#(R™) is the family of all Borel subsets of R*. By set Y.(w) we
represent the possibility of transformation of capital stocks, i.e., (x,»)€Y.(») means that it
is possible to transform capital stock x at time #-1 into capital stock y at time ¢ under state w.

The satisfaction in the economy at time #>0 is described by a utility function, u,: G(Y)—
R, which is assumed to be a &Z(R") x & (R") x F-measurable function on G(Y:) to the
real line R. Value u,(x, y, ) is interpreted as the utility obtained at time ¢ if capital stocks
at time ¢-1 and ¢ are x and y respectively.

In order to describe a program of capital accumulation, we will use a stochastic process,
i.e., a function f: Tx 2—R™ such that f(¢, - ) is .#,-measurable for each t&€T. For any
stochastic process f: T'x 2— R™, we denote by f;: 2—R" a function defined by f.(«)=/(t, »).

Definition 2.1: If a function k:Tx 2—R" is called a program, it is a stochastic process
such that k.eL.(F:) for each tET, where L.(%.) denotes the set of all essentially
bounded & ;-measurable functions on £ to R*.

We should note that by this definition we restrict ourselves to essentially bounded pro-
grams.

Definition 2.2: A program k is said to be feasible if (ki-,(w), k:(w))E Y:(w) a.s. for each
t>0.

To evaluate feasible programs, we use the so-called overtaking criterion. For a fea-
sible program k, we denote by U, (k) the sum of expected utilities which will be obtained
until time ¢ in program k, i.e.,

14
U= 15 nlls(o), ko), WP
M 5=

Definition 2.3: A feasible program k is said to be optimal if there is no other feasible pro-
gram k' with ko=k’, such that

lim sup [U.(k")—Uk)]>0.

t— o0

III. Support Prices for Optimal Programs
First we assume the convexity of the model.

Assumption 1: For each t, ¥.(o) is convex and wu(x, y, v) is concave in (x, y) a.s.



1987] SUPPORT PRICES FOR OPTIMAL PROGRAMS OF CAPITAL ACCUMULATION 185

Moreover, we assume the monotonicity of utility functions with respect to initial capital
stock at each period in time.

Assumption 2: If (x, y)E Y:(w) and x< x’', then (X, y)E Y, () and u,(x, ¥, o) Su:(x', y, w).
By the next assumption we assume the boundedness of the model.

Assumption 3: For each ¢, there exists a number b such that if (x, Y)Y, (w), then ||y]| =
bl|x|] and u(x, y, w)=bf|x|[.

The set of all possible transformations of capital stocks between time s-I and time ¢
is defined by

2 ={(/, 8)E Lo F t-1) X Lo F )| (f(0), g(@))E Ye(w) a8} .
Also, for each ¢, we define
Zi=1{gl(f, g)€ 7. for some [} .

Remark 3.1: Assumption 3 implies that given f &L, ($:-,), there exists a number B
such that ||g||le=<B and fu.(f, g, « )dP<B for all (f, g)€ 2. Namely, if capital stock
at time #-/ is bounded, then capital stock and expected utility at time ¢ must be bounded.

Let k:Tx 02— R™ be an optimal program. In order to define a value function we
assume:

Assumption 4:  fug(ke—y, k¢, » )dP> —oo for each t>0.

Remark 3.2: Together with Assumption 3, the above assumption implies that in optimal
program k, fu.(k.—, k., » )dP is finite for each 1>0.
For each t =T, we define the normalized utility function v.: G(Y;)— R by
vt(x’ Y, w)=u4(x5 Y, w)—ul(kt—l(w): kt(“’)i (U) .

Moreover, for each t€T and fE€L.(.F:), by 22°(f) we denote the set of all feasible pro-
grams after time ¢ from capital stock f] i.e.,

2 (f)={h|h is a program such that #,=f and
(hs(w), hs1(w)) E Y4 (w) a.s. for each s=1t}.
Now, by virtue of Remark 3.2, we can define the so-called normalized value functions.
For each t=T and f € L..(_ %), define

Ve(f)=sup_ (liminf f{[ % vi(he_y, by, - )1dP} .
he (f) r>+oo s=t+1

Also, for each & T, we define a set by
D= {fEL(F)Vi(f)>—00} .

Remark 3.3: By Assumption 1, we can easily show that ¥, is concave and &7, is convex



186 HITOTSUBASHI JOURNAL OF ECONOMICS . [December

for each tT. Also, by Assumption 2, V. is an increasing function. Moreover, a map
defined by
(fs )€ Zt—Ju.(f, g + )APER

can be shown to be concave for each ¢>0.

Assumption 5: kySint =, and int 2N Z2,=¢ for each t>0, where .23 and . are
subsets of space L..(.%:) and symbol ‘int’ means the interior in the topology of the space.

We should notice that Assumptions 4 and 5 are made for a particular optimal program
k and they depend on the program.

Support prices for optimal programs lare also described by stochastic processes.
However we are interested in particular prices in the sense of the following definition.

Definition 3.4: 1If a function p: T'x 2—R™ is called a price system, it is a stochastic process
such that p,€L,( %) for each tT, where L,( %) denotes the set of all integrable & -
measurable functions on £ to R™.

The following is the main result of this paper.

Main Theorem: Let k be an optimal program satisfying Assumptions 4 and 5. Then,
under Assumptions 1, 2, and 3, there exists a price system p such that for each reT

D Vik)—SpkidP2V (f)—Sp.fdP for all fe =, and
2) Sueri(key kera, + YAP—SpikedP+ S posikes,dP
2 fues (f, g « )AP— S pifdP+pi1,8dP for all (f, 8)E Zi11,

where V; is the normalized value function for program k.

IV. Proof of the Main Theorem

To prove the Main Theorem, let ¥ be an optimal program and V. be the normalized
value function for program k.

For each t €T, let L.,* (%) denote the set of all continuous linear function on L.( %)
to R. For simplicity we use the following notations. For each tET, define

Vi(k)={r € Lo* (F )| Vi (ko) —me (k)2 Ve(f) — 7 (f) for all fE Lo (F )} -
Moreover, for each >0, define
dur(kizy, ke)={(7e, =7+ )€ Loa* (F 1) X Loo* (F ea) fther1 (Ko, Key, * AP —me(ke) + merr (Ketr)
Z furir(f, &+ )AP—m(f) +reiy(g) forall (f, )€ Zisy) .

Lemma 1: If z,€9V.(k:), then there exists m;1,E Loo*(F 1+, such that
1) (QT:, —ﬂ'z-}-]_)e 8u;(k;, kg+1) and
2) w1 €V (kery) -
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Proof: Define a number w,., by
4.1) wep=fuspi(ke, keyyy + YAP+ Vg (ks = ek =V (ke) —me (ko) .
Also, define two sets,

A={(W, §YERX Loo( F t4:D|W>Wes1— fthes1(f, & * YAP+ 7 (f)

for some f with (f, )€ 441} ,
and

B={(w, 8)ERX Loo( F t4:)|Vi11(g) 2 W} .

Clearly, point (Vi+;(kesy), ket,)EB, and (Ver1(kerr), ker)Ebd A, By Assumption 1,
these sets are convex. In addition, by Assumption 5, set B has non- empty interior.
Suppose ANB#¢. Then there exists (f, g)E %4, such that

Verr(8)>Wepy = fttesn (f & )dP+ﬂ'=(f) .
By (4.1) and the definition of value function ¥, we have
Vi) =z (N)>Vilk) —ze(ke)
which implies that z, & 3V, (k.), a contradition. Hence ANB=¢ .

By a separation theorem [Dunford & Schwartz (1964), Thm.V.2.8, p. 417, there ex-
ists a non-zero continuous linear function (¢, —myy), i.e., a number ¢ and a function
e41 € Loo* (F 141) sSuch that

cw—m(g) 2 ew’ —ner1(g) for all (w, g4 and (v, g')EB.
This implies that
4.2) clwery— fuess(f, 8« YAP+ ()] —me11(g)
2cVe(g)—mii(g)  forall (f, g)€ 244, and '€ Doy,

Suppose ¢=0. (4.2) implies that =,,,(g’—g)=0 for all (f, g)E 244, and g'E .y, .
By Assumption 5, x;,;=0, which is a contradition to (¢, my;)%0. Hence-we can assume
c=1. .

Put g'=k.,, in (4.2). Then, by (4.1), we have

Juria(ke, keyy, « )AP —me(ke) + meyq (Ketr)
2 fuen(f, 8 < JdP—m(f)+7ena(g)  forall (f, )€ Z4s,.

This implies 1). Moreover, put f=k:, and g=k.; in (4.2). Then, we have
Verr(ker) = mesr(ker ) 2 Vers (8) —7era(g)  forallg'e .y, .
This implies 2). - : ]
For time ¢ and function p,& L, (. $), a map defined by
JEL(F ) — fpefdPER
is an element of L.*( ;). Therefore function p,€L,(.%;) can be considered as an ele-
ment of Lo*(F)-
Lemma 2: If (ze, — mey )€ 0Ueyy (ke kerr) and 7oy, €3V e1q (kesy), then there exists poS L, (F)
such that
D) (pes —7es)E0eyy (ke, keyy) and
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2) p;e 0 V; (kg).
In addition, if (z;—;, —r)Eoue(ke—y, k), then
3) (we-1, —p)E Ut (Kiy, ko).

Proof: First we will show that there exists p,&L,(%) such that 1) and 2) hold. Since
2. EL*( ), by a theorem [Dunford & Schwartz (1964), Thm.IV.8.16, p. 296] there is
a bounded finitely additive vector-values measure v such that

ae(f)=Jfav for all f€L(F).
Since (e, —me+1)E dttesq (Kes kesa), 120 by Assumption 2. Therefore it follows that v=0.
Hence, measure » can be decomposed into two measures by a theorem [Yoshida & Hewitt
(1952), Thm.1.23, p. 52], that is
v=ve+vyp,

where y. is a non-negative countably additive measure on (2, %) which is absolutely con-
tinuous with respect to P and v, is a non-negative purely finitely additive measure on «,
Z3). Therefore, by the Radon-Nikodym theorem [Dunford & Schwarts (1964), Thm.
I11.10.7, p. 181] there is a unique p.€ L,(.F ) such that

ffdve=SpefdP  forall fELL(F7)

Moreover, by a theorem [Yoshida & Hewitt (1952), Thm.1.22, p. 52] there is a sequence
{Aa} 2., such that 4,C Aq4,; and vy(4,)=0 for all # and lim P(A4,)=1.

To prove 1), let (f, g)€ Z%4,. For each n, define f, by
~ flw) for wE A,
Ja(w)=

_ke(w)+b otherwise.

where b€ R* is taken so that (f», 2)€ Zs;. Then, since (ze, — 714)E dtter1(Kki, Kesy), We have
Sueyy (e, kevyy » )AP— S pokedP —fosa,kedvp+mers (Kevr)
2 fure1(fa, & * YAP— S fudP —fosa,fadvp+ 1e42(2)
for all n. Since b is small if (f, g) is close to (k:, k:+), we have in the limit
Sueyy (ke kegyy « YAP— S pokedP +mesy (kesr)
2 [y (f, 8 + )AP—=fpefdP+m:41(8) .

This proves 1).
Next we will show that 2) holds. In fact, since n¢y €aVery(kisr)

Verr (ko)) = mesy (ker ) ZVes1 () — 7041 (8) for all g€ Loo( F e41) -
Also, 1) implies that
Suery(ke, kyy, o+ YAP— S pekedP + meyy (Kita)
2 fuess(f, & + YAP—[pefdP+7e11(g) for all (f; )€ Zi41-
Hence, by the above two inequalities, we have
Sucy(key keyq,y * YAP+Viyy (ko)) — [ ok dP
2 [ty (f, & * YAP+ Vi (g)—IpfdP  forall (f, 8)€ Zis1.
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Thus, by definition of the value function V,, we can conclude that
V;(k:)—fp;k;sz V;(f)—_fpgfdP for alleLoo(%) .

That is, 2) holds.
Moreover, to prove 3), let (f, g)€ Z%:. For each n, define f, and g, by

" (f(w), g(w)) for wEA4a
(fale), g"(w))zt(f(wﬂb, kiw)) otherwise,

where bER" is taken so that (fn, g.)E 2/, for all n. Then, since (7;—y, —m)Edue(kiy, ki),
we have

Jue(key, key « YAP —ay (ki) + I pekdP+ [pja,kedyy
Z [u:(fa; gny * AP =71 (fa) + I P:8ndP + /4,80 v

for all n. Since b is small if (f, g) is close to (k.-,, k.), we have in the limit

Jur(keoy, ey « )AP—me—y (keey) + S pekodP
2fu(f, g *)AP—ney(f)+[p:gdP .
This proves 3). [ ]
Now we are ready to complete the proof of the Main Theorem. Since k,Eint &,
by Assumption 5, there exists 7,& Lo*(%# ) such that =,E8V,(k,). Therefore, by virtue
of Lemma 1, for each tET there exists 7,€ L..* (%) such that

mEVilk) and (7, —me1)E ety (ke, kivy)

Hence, when t=0, by Lemma 2 there exists p,€L,(F#,) such that p,€adV,(k,) and
(po, —m)Eouy(ky, ky). Therefore, when £=1, again by Lemma 2, there exists p,€L,(%7)
such that (p,, —p))€ou ke, k), pEaVi(ky) and (p,, —n)Eduys(k,, ko). Similarly, by
virtue of Lemma 2, for each & T there exists p,=L; (%) such that

pEdVitk) and (pe, —pir)) € oUesy ke, Kiry).
This implies the Main Theorem.
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