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ON MULTIVARIATE LEFT ORTHOGONAL
INVARIANT DISTRIBUTIONS

TAKEAKI KARrivA, B.K. SINHA AND P.K. KRISHNAIAH

I. Introduction

In this note, we have considered generalizations of some of the results on spherical
distributions to the case of left spherical matrix variate distributions. First, it is shown
that the independence of # rows of an n x p left spherical random matrix implies multivariate
normality. Secondly, most results in Eaton (1981) are extended to the matrix variate case.

Several authors have investigated various properties of spherical (elliptical), isotropic
or radial distributions. For some details of these investigations, the reader is referred to
Schoenberg (1938), Kelker (1970), Chmielewski (1980), Eaton (1982) and Letac (1981).
Applications of these results in studying the robustness of test procedures have been studied
by Kariya and Eaton (1977), Jensen (1979), Chmielewski (1980) and others. However,
not much work has been done on properties of left orthogonally invariant (left £%(r) invariant)
or left spherical distributions of #nx p matrix variates. Based on Dempster (1969), Dawid
(1977) investigated some basic properties of these distributions. Eaton (1983) Chapter 7,
Eaton and Kariya (1981) and Kariya (1981) also treated these distributions.

In this note, generalizations of some results on spherical distributions to the case of
left orthogonally invariant distributions are attempted. In Section 2, it is shown that the
independence of 7 rows of an n x p left orthogonally invariant random matrix implies multi-
variate normality. This provides an alternative or formal proof to the multivariate case.
Section 3 treats some generalizations of Eaton’s (1981) results.

II. Condition for Normality

Let X be an nxp random matrix whose distribution is denoted by ZAX). We call X
left orthogonally invariant if $APX)=.2AX) for all P& Z(n), where (n) denotes the
set of nxn orthogonal matrices. Let &7 =7(n,p) be the set of left orthogonally invariant
distributions. Let the characteristic function of X be

d(A)=E [exp(itrX'4)] (4:nxp) 2.1)
and let A'=[a,, . . ., @] and X' =[x1, . . . , xa]. If ZAX)EFitis easy to see that ¢(4)=
#(4’ A) for some real valued function ¢ defined on .$4(p) where S4(p) denotes the set of px p
nonnegative definite matrices. Further, setting a,= . . . =a,=0 in (2.1) shows that all
marginal distributions of x1, . . . , x, are identical with characteristic function ¢(aw.)(i=1,

., n). A main result in this section is stated as
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Theorem 2.1. Let SAX)E ZP(n,p) with n>p and n>2. Then the independence of n rows
of X implies that x;, . . ., x, are i..d. and _¢Z(x,) =N(0,%), normal distribution with mean
0 and a covariance matrix 2.

Proof: The i.id. part is clear. To show the normality, first note that the independence
of x,’s implies

$(A'A) =T g(asar’) for all A: nxp 2.2)
=1
Here setting ai=a, and as= . . . =a,=0 yields
¢(2a,a,") =9%(,0,") =0 for any a,ERP (2.3)

since ¢(0)=1. This implies ¢{a:a,")=0 (i=1, ..., n). Suppose for some d:R?, ¢(a,d")
=0. Then from (2.2)
0= ¢(nd_15_1/ n) =[g(@a,/m)]"
=[g(nda,' [m)]* =[g¢(a,a, )],
implying ¢(a.a,'[n*) =0, since ¢ is real. Repeating this procedure provides ¢(a.d,’'/n*) =0
for any positive integer k. But, this contradicts the condition ¢(0)=1 since ¢(aa’) is the
characteristic function of x,. This shows that 0<¢(aa")<1 for any a€ R?,
Next define
B(A'A)=—21og ¢(A’ A). 2.4

Then ¢(4’A)=0 is continuous and (2.2) implies
@( z at’) = 2 B(asar’). (2.5)

and @(0)=0. From (2.5), @(maa’)=m®(aa’) for m<n and a< R?, which implies n@(aa’) =
D (m=aa’y=mP(miaa’). On the other hand, n@(miaa’)=@(maa’)=m®P(aa’). This together
with continuity of @ as a function of a< R? implies @(aaa’) =a®(aa’) for all >0, which in
turn together with (2.5) implies

D(ad’A)=ag(A4’A4) for all a>0. (2.6)
Now we extend the domain $4(p) of @ to the vector space of p x p symmetric matrices, say

Ap). Let

= {5]|S=S:—239, for some S;, S, in .S%(p)} 2.7
Then it is easy to see % =54(p). Define a real valued function @ defined on &4(p) by
O(S)=0(S1)— D(Sy) (2.8)

when §=35:— S, with S;€.5(p) (i=1,2). To see this is well-defined, let S=8:—S,=V,—V,
with S,€.%(p) and Vi€ .5%(p) (i=1,2). Then since S;+ V,=S8,+ V3, B(S)+D(Vy) =D(Sy)
+ @(V,), which shows that @(S,—S,)=9@(V;—V,). Further, @ is a linear functional on the
vector space .S“(p) such that @ =@ on 54(p). Therefore @(S)=trXS for some unique sym-
metric matrix 2. For S=A4'4, 0<O(S)=¢(S)=trIA'A=trAdX¥A4’ where 4 is any nxp
matrix. This implies & is nonnegative definite. Since &(aa’)=a’'Sa implies ¢(aa’)=exp
(—3aZa) and since ¢(aa’) is the characteristic function of x;, this completes the proof.
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We first remark that in the above prooi', n is fixed. Secondly, it is noted that neither
the existence of pdf nor P(X=0)=0 is assumed. Thirdly, the nonsingularity of 3 in The-
orem 2.1 does not necessarily follow.

III. Some Generalizations of Results in Vector Case

In this section, some results of Eaton (1981) are generalized to a matrix variate case.
Let 2= {X:nxp|rank(X)=p} and let & (n,p)={PEFPmp)|P(Xs 2)=1}. LetU:mnx
p have a uniform distribution on Stiefel manifold %, = {u:nxplu'u=1I,}. Then it is well
known that AX)e&(n, p) if and only if X=UV for some Ve.54(p), where S%(p)
denotes the set of p x p positive definite matrices (e.g., Eaton (1979) Chapter 7).

Now let X be an (n+m)x p random matrix such that &A(X)€ & (n+m,p) and let X,
be the upper 1 x p submatrix of X, where # and m are positive integers. Clearly $AX,)E &
(n,p). We shall call ¢AX) the n-marginal of $#(X) and denote the class of n-marginals of
&(n+m,p) by &**"npC&(n,p)). The following result is a generalization of
Theorem 1 of Eaton (1981), and characterizes the elements of &°»*=(n,p).

Theorem 3.1. Let p be a probability measure on R*?. Then the following are equivalent:
(@ pe2™™n,p)
(b) p has a density with respect to Lebesgue measure on R"?, say f, given by F(x)=
h(x'x), where

W)=, 6 [ mp) | r [G(dr) G
G is a distribution function on .%4(p) and
@t | n, m, p)=C(n, m, p) | I,—1t ["~2~DI2I(z) (3.2

Here, I() =1if I,— t € $%(p) and I(¢t) =0 otherwise, and C(n,m, p) =c(n+m,p)/c(n,p), c(r,p) =
= #12p(r[2) and p(r/2) =a?@ O T T (r—j+1/2).
i=1

Proof. Suppose p€ &**™(n,p). Then there exists on (n+m)xp random matrix X such
that AX)E @ (n+m,p) and AXpy))=p. Since X =UV and X,y =U,,V where U, is
the upper nxp submatrix of U, and since U is uniform on Z4.n, using a result of Khatri
(1970), the density of Uy, is ¢(u'u|n,m,p). To show that f is a density for p, let CCR*? be
a Borel set and let G be the distribution function of V. Then

F(C)=P(X(ﬂ)eC)=P(U(n)VEC)
=jy+(p)§Ranc(ur)¢(u'u | n, m, p) du G (dr)
=Jy+(p)-“Rnplc(u)gb(r_lu’ur"1 | n, m, p) I r I—ndu G (dr)

- j el @,

The converse is straightforward.
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The next result is a generalization of Theorem 2 in Eaton (1981) and gives a condition
for p€ & ™+™(n, p) to be a normal mixture.
Theorem 3.2. The following are equivalent.

(a) pe@™™(n,p) forallm=1

(b) 4 has a density for g given by

f@={_  exp (——;—tru'uZ‘l)( VIR | 3 |-HRH(dS) (3.3)

where H is a distribution function on S4(p).

Proof. (b=>(a) is obvious. To show (a)=(b), suppose (a) holds. Then by Theorem 3.1,
¢ has a density f(u) of the form

Fu)= Iy+(P)¢(r‘1u'ur‘1 | n, m, p)| r| *Gn(dr)

_[%(p)sb(r'lu'u"l/m | n, m, p)(¥m)=?? | r |"*Gn(dr)

where Gn(dr)=Gn(dr/ vm). Here it is easy to see that img(r—tu'ur-t/m|nm,p)( ¥ m) "? =

( +/27)""? exp (—3tru’'uI ) where ¥ =r% Therefore, arguing exactly in the same way as
in Eaton (1981) and changing r to ¥ =r2 in the final step, the result follows.

Finally we generalize Theorem 3 of Eaton (1981). Let Z:1xp have a symmetric dis-
tribution such that P(Z=0)=0. We shall call a random matrix X:nxp an n-dimensional
version of Z if for any a=R®, there exists ¢(@)=0 such that ¢(a)>0 for a=0 and SAa’'X)=
Ac(a)Z). Let F(np) denote the set of all p-dimensional distribution which admit »-
dimensional versions (n=>2). Clearly &*(l,p)C & (n,p) for n=2.

Theorem 3.3. Suppose A(Z)e F(n,p) and cov(Z) exists and it is positive definite. Then
every n-dimensional version of Z is given by AX,, where 4 is an nxn nonsingular matrix
and X, is an n-dimensional version of Z such that for any P € £7(n), PX, is also an n-dimen-
sional version of Z and Aa’'PX,) = ¥ (a'X,) for all ac R™.

Proof. Let X:nxp be an n-dimensional version of Z. Then, by definition, there exists
¢(a)>0foras R* such that SAa’'X) = <A(c(a)Z). Thisimplies . (a’'Xb) = LA c(a)Zb) for any
beR?. Hence E(a'Xb)?=(c(a))*b'3b where X =cov(Z), and so c(a)=[b"E(X'aa’X)b/b'Zb]}
for b=0. Since c(a) is independent of b, this implies S 2E(X 'aa’X)2~t=r(a)]. Therefore
7(@) =trE(X'aa’X)[tr3 =a'Qaftr> where 2=EXX’, and c(a)=r(a)}. Since c(@)>0 for a0,
e (n). Let X,=(tr2)i2tX. Then

HAa'Xy) = L3P0 ta) X] = Lle((tr2)21a)Z] = A(1al| 2),

which implies that X, is an »-dimensional version of Z and .&Aa'PX,)=.%Aa’X,) for any

Pe O(n). Set Ay=(trX) 104 to complete the proof.
We remark that unlike in Theorem 3 of Eaton (1981), the left orthogonal invariance of

X, does not follow here. Therefore (Z)€ &7*(1, p) does not follow either unless p=1.
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