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ON MULTIVARIATE LEFT ORTHOGONAL 
INVARIANT DISTRIBUTIONS 

TAKEAKI KARIYA, B.K. SINHA AND P K KRISHNAIAH 

I. Introduction 

In this note, we have considered generalizations of some of the results on spherical 

distributions to the case of left spherical matrix variate distributions. First, it is shown 

that the independence of n rows of an n xp left spherical random matrix implies multivariate 

normality. Secondly, most results in Eaton (1981) are extended to the matrix variate case. 

Several authors have investigated various properties of spherical (elliptical), isotropic 

or radial distributions. For some details of these investigations, the reader is referred to 

Schoenberg (1938), Kelker (1970), Chmielewski (1980), Eaton (1982) and Letac (1981). 
Applications of these results in studying the robustness of test procedures have been studied 

by Kariya and Eaton (1977), Jensen (1979), Chmielewski (1980) and others. However, 
not much work has been done on properties of left orthogonally invariant (left ~l(n) invariant) 

or left spherical distributions of n xp matrix variates. Based on Dempster (1969), Dawid 

(1977) investigated some basic properties of these distributions. Eaton (1983) Chapter 7, 

Eaton and Kariya (1981) and Kariya (1981) also treated these distributions. 

In this note, generalizations of some results on spherical distributions to the case of 

left orthogonally invariant distributions are attempted. In Section 2, it is shown that the 

independence of n rows of an n xp left orthogonally invariant random matrix implies multi-

variate normality. This provides an alternative or formal proof to the multivariate case. 

Section 3 treats some generalizations of Eaton's (1981) resu]ts. 

II. Condition for Normality 

Let X be an n xp random matrix whose distribution is denoted by ~i(X). We call X 

left orthogonally invariant if ~i(PX) = ~i(X) for all Pe ~(n), where ~(n) denotes the 

set of n x n orthogonal matrices. Let ~ =~(n,p) be the set of left orthogonally invariant 

distributions. Let the characteristic function of X be 

(2. 1) ip(A) =E[exp(itrX'A)] (A .'n xp) 

, x*]. If J~~i(X)e~, it is easy to see that c(A) = and let A'=[al' ' ' . , a~] and X'=[xl' ' ' ' 

c(A'A) for some real valued function c defined on ~~o(P) where ~~o(P) denotes the set of p xp 

= . . . =a~=0 in (2.1) shows that all nonnegative definite matrices. Further, setting a2 
margmal distributrons of xl' ' ' " x~ are identical with characteristic function c(a,at')(i,= l, 

, n). A main result in this section is stated as 
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Theorem 2.1. Let ~i(X)e~~(n,p) with n~~P and n~2. Then the independence of n rows 
of X implies that xl' ' ' " x~ are i.i.d. and ~~1(xl) =N(0,1), normal distribution with mean 

O and a covariance matrix l. 

Proof: The i,i,d. part is clear. To show the normality, first note that the independence 

of xf's implies 

c(A'A) =ill=1c(a,al') for all A : '1 xp (2.2) 

Here setting al=a2 and a3= ' ' ' =a*=0 yields 

c(2alal') = c2(alal')~0 for any al eRP (2.3) 
since c(O)=1. This implies c(aiai')~~O (i=1, . . . , n). Suppose for some dleRP, c(dldl') 

=0. Then from (2 ･) 

O = c(ndldl/n) = [c(a~Idl/n)]" 

= [c(ndldl'/n2)]" = [c(dldl'/n)]2 

implying c(dldl'In2) =0, since c is real. Repeating this procedure provides c(dldl'Ink) =0 

for any positive integer k. But, this contradicts the condition c(O) = I since c(aa') is the 

characteristic function of xl' This shows that 0<c(aa')~1 for any aeRP. 

Next define 

c(A'A) = - 2 Iog c(A'A). (2.4) 
Then c(A'A)~~O is continuous and (2.2) implies 

ep(~_* atai') = ~_* ep(aia!). (2.5) 

and c(O)=0. From (2.5), c(,naa')=mc(aa') for m~n and aeRP, which implies nc(aa')= 

~(m~aa') ='nc(m~aa'). On the other hand, nep(m~aa') =ep(maa') =mop(aa'). This together 

with continuity of ep as a function of aeRP implies c((xaa') =ac(aa') for all a~:O, which in 

turn together with (2.5) implies 

ep(aA'A) =ac(A'A) for all a~0. (2.6) 
Now we extend the domain ~~:o(P) of ep to the vector space of p xp symmetric matrices, say 

~l(p). Let 

y {S I S=Sl-S2 for some Sl' S2 in ~~o(P)} (2.7) 
Then it is easy to see y=~(p). Define a real valued function ep defined on ~j(p) by 

c (S) = a) (Sl) ~ c (S2) (2.8) 

when S=Sl~S2 with Sie~~o(P) (i= 1,2). To see this is well-defined, Iet S=S1~S2 = Vl~ V2 

with St~~~~o(P) and V,~~~o(P) (i=1,2). Then since Sl+ V2=S2+ V1' ep(Sl)+c(V2)=ep(S~ 

+ ~(VD, which shows that c(S1~S~ = c(Vl~ V2)' Further, c is a linear functional on the 
vector space ~Pl(p) such that (p =c on ~~:'o(P)' Therefore c(S) =tr~S for some unique sym-

metric matrix 2. For S=A'A, o~c(S)=c(S)=tr~:A'A=trAEA' where A is any nxp 
matrix. This implies 2 is nonnegative definite. Since c(aa') =a'Ea implies c(aa') =exp 
(- ~aXa) and since c(aa') is the characteristic function of xl' this completes the proof. 
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We first remark that in the above proo}, n is fixed. Secondly, it is noted that neither 

the existence of pdf nor P(X=0) =0 is assumed. Thirdly, the nonsingularity of 2 in The-

orem 2.1 does not necessarily follow. 

III. Some Generalizations of Results in Vector Case 

In this section, some results of Eaton (1981) are generalized to a matrix variate case. 

Let ~= {X:n xp I rank(X) =p} and let ~p(n,p) = {Pe~(n,p) I P(Xe~~) = 1} . Let U:n x 
p have a uniform distribution on Stiefel manifold ~~~ = {u:n xplu'u=1p} . Then it is well 

known that ~i(X)~~p(n,p) if and only if X=UV for some V~~~~+(P), where ~~+(P) 
denotes the set ofp xp positive definite matrices (e.g., Eaton (1979) Chapter 7). 

Now let X be an (n+m) xp random matrix such that ~j(X)e ~p(n+m,p) and let X(") 
be the upper n xp submatrix of X, where n and m are positive integers. Clearly ~j(X(*)) e ~p 

(n,p). We shall call ~P~X) the n-marginal of ~1(i') and denote the class of n-marginals of 

~p(n+m,p) by ~"+~(n,p)(c~p(n,p)). The following result is a generalization of 
Theorem I of Eaton (1981), and characterizes the elements of ~P"+~(n,p). 

Theorem 3.1. Let p be a probability measure on R"P. Then the following are equivalent: 

(a) p e ~p"+~(n, p) 

(b) p has a density with respect to Lebesgue measure on R"P, say f, given by F(x) = 

h(x'x), where 

J
 

h(t)= ~.(p)ip(r~Itr~1 1 n, mp) I r l-"G(dr) (3.1) 

G is a distribution function on ~~+(P) and 

c(t I n, m, p) = C(n, m, p) I Ip - t l(~-P-1)'21(t) (3.2) 

Here, I(t) = I if lp - t e ~:+(P) and I(t) =0 otherwise, and C(n, m,p) = c(n + m,p)/c(n, p), c(r,p) = 

IT~p'/2p(r/2) and p(r/2) = IrP(P~1)/4 ~i r(r -j+ 1/2). 

Proof Suppose p~~p"+~(n,p). Then there exists on (n+m) xp random matrix X such 

that :~~i(X)e~~(n+m,p) and ~~j(X(*))=p. Since X=UV and X(*)=U(~)V where U(*) is 
the upper n x p submatrix of U, and since U is uniform on ~(*+~, using a result of Khatri 

(1970), the density of U(*) rs c(u'u I n,m,p). To show that f is a density for p, Iet CCR"P be 

a Borel set and let G be the distribution function of V. Then 

p(C) = P(X(") e C) = P( U(") V e C) 

= r ..1.(ur)ip(u'u I n, m, p) du G (dr) J
 
y.(p)J R 

= r ~.1,(u)ip(r~1u'ur~1 1 n, m,p) I r l-"du G (dr). J
 
f'(p)J R 

J
 

- R"PI,(u)f(u)du. 

The converse is straightforward. 
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The next result is a generalization of Theorem 2 in Eaton (1981) and gives a condition 

for p e ~~P"+~(n, p) to be a normal mixture. 

Theorem 3.2. The following are equivalent. 

(a) p~ ~p"+~(n, p) for all m:~ l 

(b) p has a density for p given by 

1
 Sy.(p) exp ' -1 ( V2lr)~"P 1 ~ l-"'2H(d2) (3.3) f(u) ~tru u2 

where H is a distribution function on ~~+(P)' 

Proof. (b~(a) is obvious. To show (a)~>(b), suppose (a) holds. Then by Theorem 3.1, 

p has a density f(u) of the form 

J
 

F(u) = ep(r~1u'ur~1 1 n, m, p) I r I-"G*(dr) 
J7+( p) 

J~.(p)c(r~1u'ur~1/m I n, m, p)( Vm~)~"P I r l-"~~(dr) 

where ~~(dr) =G~(dr/ V~). Here it is easy to see that limip(r~1u'ur~1/m I n,m,p)( ~/~)-~P = 

( 1/~~;)-"P exp (-~tru'u2~1) where z =r2. Therefore, arguing exactly in the same way as 

in Eaton (1981) and changing r to 2 =r2 in the final step, the result follows. 

Finauy we generalize Theorem 3 of Eaton (1981). Let Z.'1 xp have a symmetric dis-

tribution such that P(Z=0) =0. We shall call a random matrix X:n xp an n-dimensional 

version of Z if for any aER", there exists c(a)~0 such that c(a)>0 for a~0 and ~1(a'X) = 

~~~c(a)Z). Let gl(n2p) denote the set of all p-dimensional distribution which admit n-

dimensional versions (n~:2). Clearly ~~"(1,p)c~j(n,p) for n~~2. 

Theorem 3.3. Suppose ~j(Z)e~j(n,p) and cov(Z) exists and it is positive definite. Then 

every n-dimensional version of Z is given by AXo' where A is an n x n nonsingular matrix 

and Xo is an n-dimensional version of Z such that for any P e ~P(n), PXo is also an n-dimen-

sional version of Z and ~j(a'PXo) = ~P(a'Xo) for all aeR". 

Proof. Let X.'n xp be an n-dimensional version of Z. Then, by definition, there exists 

c(a)~~O forae~R" suchthat ~j(a'X) = 2;1(c(a)Z). This implies ~l(a'Xb) = ~i(c(a)Zb) for any 

b ~ RP. Hence E(a'Xb)2 = (c(a))2b'Eb where 2 = cov(Z), and so c(a) = [b'E(X'aa'X)b/b'2b]~ 

for b~0. Since c(a) is independent of b, this implies 2~~E(X'aa'X)2-~=r(a)1. Therefore 
r(a) = trE(X'aa'X)Itr2 = a'!2a/tr~ where Q = EXX', and c(a) = T(a)~. Since c(a) > O for a ~ O, 

9e~~+(n). Let Xo =(trZ)~g2-~X. Then 

~sj(a'Xo) = ~P[((tr2)~Q~~a)'X] = ~[c((tr2)~9~~a)Z] = ~1(1 Ial I Z), 

which implies that Xo is an n-dimensional version of Z and ~j(a'PXo) = 2~(a'Xo) for any 

pe ~p(n). Set Ao =(tr2)~~S2~ to complete the proof. 

We remark that unlike in Theorem 3 of Eaton (1981), the left orthogonal invariance of 

Xo does not follow here. Therefore ~1(Z)e e7"(1, p) does not follow either unless p = l. 
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