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FIRST, SECOND AND THIRD ORDER EFFICIENCIES 
OF THE ESTIMATORS FOR A COMMON MEAN 

By TAKEAKI KARIYA, BIMAL K. SlNHA* AND KASALA SUBRAMANYAM* 

Based on the concepts of first, second and third order efficiencies developed by Kariya, 

Krishnaiah and Rao (1981) and Kariya (1981), this paper attempts to order the estimators 

proposed in the problem of estimating the common mean of K univariate normal populations. 

Only the Graybill and Deal (1959) estimator is shown to be third order efficient. 

I . Introd uction 

Let (xt, st2) (i= l, . . . , K) be the K independent pairs of the sample mean and the un-

biased sample variance from K univariate normal populations N(p, ct2), where the sample 

size for the i-th pair (Xi, st2) is Nt. In this situation, the problem of estimating the common 

mean p of the K populations has been extensively treated in the literature ([2], [3], [6], [7], 

[10], [14], [15], [16], [17]), and many estimators have been proposed. However, no unified 

comparison among those estimators has been yet attempted. A main difficulty in the com-

parison is caused by the incompleteness of the model which renders us to have ancillary 

statistics xi -Xj (i~j). In order to make possible a comparison in such a model as above 

where it admits some ancillary statistics, Kariya. Krishnaiah and Rao (1981) and Kariya 

(1981) developed concepts of FOE (first order efficiency or often first order efficient), SOE 

(second order efficiency or often second order efficient) and higher order efficiencies for 

Fisher consistent estimators, where the MSE (mean squared error) criterion is adopted. 

These concepts are defined for each fixed sample size and different from those defined in 

such asymptotic manners as in Rao (1961, 1963), Ghosh and Subramanyam (1974), Ghosh, 

Sinha and Weiand (1980), Akahira and Takeuchi (1980), Pfanzagl (1980 etc. (see Kariya 

(1981) for some differences.) In this paper, applying these concepts to the problem of 

estimating the common mean p, several estimators proposed so far by various authors are 

ordered. 

' More specifically, in section 2, when K=2, we obtain necessary and sufficient conditions 

for a Fisher consistent estimator to be FOE, for an FOE estimator to be SOE, and for an 

SOE estimator to be TOE (third order efficient (or sometimes efficiency)). The concepts 

and implications of these efficiencies are reviewed in terms of the present problem. In 

section 111, these conditions are checked stepwise for the following estimators: 

(1) Graybill-Deal (1959) type estimator of the form 

* The authors were sponsored by the Air Force Office ofScientific Research, Air Force Systems Command, 
under Contract F49620-79-C-OI 61 . 
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(1.1) pl(cl'c2) =[~* ciXi/si2]/[2~]1 ci/si2], 

where ci's are constants. In particular, pl* =pl(Nl' N2) will be called Graybill-Deal esti-

mator. 

(2) Zacks (1966) estimator. 

(1.2) p2=j~G+fil(1-G) 
where x =(NIXl+N2X2)/(Nl+N2)' and G =1(a~1<s22/sl2<a), the indicator function of {a~l 

<s22/sl2<a} . This estimator is a preliminary test estimator, where the hypothesis is 

012 = a'22. 

(3) Gurland-Mehta (1969) estimator. 
(1.3) p3 =c3Xl +(1 -c3)X2 with c3 =(csl2+s22)/((c+a)sl2+s22). 

In Gurland and Mehta (1969), a=1 and c=0.4 are proposed through a numerical com-

parison. 

(4) Brown-Cohen (1974) type estimator. 
(1.4) p4(a,cl'c2,c3) =Xl+(X2-Xl) {avl/[clvl+c2v2+c3(X2-XD2]} , 

where vi =si2/Ni (i=1,2), a and c!s are constants. In Brown and Cohen (1974), p4(al'l, 

(N2- l)/(N2 +2), l/(N2+2)) for N2 small and p4(a2'1,1,0) for N2 Iarge are proposed, where 

al and a2 are certain constants. 

(5) Cohen-Sackrowitz (1974) estimator (NI =N2)' 

(1.5) p5 =[1 -c.G(sl2,s22)]X1+c.G(sl2,s22)x2, 

where c. =(N-4)/(N+2) for N=Nl=N2 even, c. =(N-3)2/(N+1)(N- l) for N odd, and 
G(sl2,s2g) is the unique unbiased estimator of (112/(al2+a22) based on (sl2, s22). 

(6) The likelihood equation estimator and its modified version. 

Here the modification is made for the degrees of freedom of sl2 and s22. The estimat-

ing equations of these estimators are given by cubic polynomials. 

In the literature, no attention has been paid to the MLE (maximum likelihood estimator) 

because of its intractability. Apart from the estimators in (6), common features of the 

estimators (1)-(5) are that they are all unbiased and that they are written in the following 

f orm 

(1.6) p=cX1+(1 -c)x2' 
It is noted that any estimator of this form is Fisher consistent (see section 11 for definition). 

In section 111, the Graybill-Deal estimator, a Brown-Cohen estimator and the modified 

likelihood equation estimator are shown to be SOE as well as FOE, but later only the Gray-

bill-Deal estimator is shown to be third order efficient (TOE). Consequently, from the 

viewpoint of a stepwise ordering based on FOE, SOE, and TOE, the Graybill-Deal estimator 

is preferred. 

We remark that the argument is applicable to the case of K populations (K~3) without 

any difficulty but with some complication. Secondly, it is also remarked that many authors 

, K), and considered the problem of comparing Var(p) with p in (1.6) and Var(Xi) (i= l, . . . 

have obtained necessary and sufficient conditions for which Var(p)~Var(Xi) for some i or 

all i with a particular form of c ([lO], [14]). Sinha (1979) and Sinha and Mouqadem (1981) 
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considered the admissibility problems of the Graybill-Deal type estimators and Some other 

estimators. 

II. Conditions for FOE, SOE and TOE 

In this section, following the framework of KKR (Kariya, Krishnaiah and Rao) (1981) 

and Kariya (1981), necessary and sufficient conditions for FOE. SOE and TOE as applicable 

to the present problem are derived and the concepts of the FOE, SOE and TOE in general 

are reviewed. Assume K=2and let 
(2.1) z~(zl' z2' z3' z4)' =(xl' x2' slz, s22)' 

which is a sufiicient statistic for 

(2.2) ~=(V1' Vz' ~3)'=(p, al2 c2z)'. 

Clearly the expected value of z is 

(2.3) C=C(V)~(e 6 e 6)'=(p p (112 (F22)'. 
l' 2' 3' 4 , , , Here an estimator h(z) of p is called Fisher consistent if it satisfies 

(2.4) h(6(~)) =~1=p for all ~-

Let C be the class of Fisher consistent estimators satisfying the following regularity condi-

tion : 

(a) a2hlaztazj(z) exists, continuous and of order O(1) when h depends on N1 and N2, and 

Nl~co, N2-00. 
An estimator h in C can be expanded as 

(2.5) h(z)=p+~lht(e)di+~~]~hijl(z+(1 -1)e)didj, 

where di =zt-et, ht =ah/azi, hij =a2hlaziazj, and O~1=1(z. C)~1. Hence, adopting the 
MSE criterion yields 

(2.6) E(h(z)-p)2 =x'Ax+R, where 
(2.7) xEx(C) =(hl(e), . . . , h4(6))', 

(2.8) A =(E(dtd,)) =diag {(T12/N1' (T22/N2' 2al4lnl' 2a24ln2} , ni=Nt-1, 

and R is the remainder term. Since z-e a.s, as Nl~oo and N2~'oo and since htj is con-

tinuous, R=0((N1+N2)-1) (see Remark 2.1 in [9]). The implication of the following defini-

tion is straightforward. 

Definition 2.1 (KKR (1981)). An estimator h in C is said to be FOE if for each (N1' N2)' 

it minimizes x'Ax in C. 

To minimize x'Ax in C, differentiate (2.4) with respect to ~j to have the side condition 

Bx = c, where 

(2 9) B (a6da~j)= O O I O and c= O 

Hence, directly minimizing x'Ax under Bx=c or applying Theorem 2.1 in KKR (1981) 
yields 

Tlleorem 2.1. An estimator h in C is FOE if and only if x=x., where 
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(2.lO) x. =A-lB'(BA IB') Ic Nlal2 N2cl2 2 ' O. O]' - - =[ 
Nl(122+N2al2 ' Nla22 + N2(rl 

The minimum value of x'Ax in C is Jl = c'(BA-1B')-lc =cl2a22/(Nla22+ N2612). 

Any estimator of the form (1.6) satisfies (2.4) whatever c =c(z) may be. 

Corollary 2.1 An estimator h of the form (1.6) satisfying (a) is FOE if and only if 

(2.11) c(6(V)) =Nla22/(Nl022+N2(F12). 

Proof Differentiating h(z) =c(z)zl+(1 -c(z))Z2 at z =e and equating x;(hl(6), . . . , h4(e))' 

with xo in (2.10) yields (2.1 1). 

Next, to define a concept of SOE, we assume for FOE estimators 

(b) hiJk(z)~:a3h/aztazjazk(z) exists, continuous, and of order O(1) as N1~00, N2-00 

and let 

Cl = {heC I h satisfies (b), x=x.} . 

Then for he C1' h can be written as 
1
 (2.12) h(z)=p+~]x,idi+~~]~/ hij(e)didj 

+ ; ~ ~ ~h'Jk(1z+ (1 - ),)6)didjdk 

where O~1~1, and x0=(xol' ' ' " xoD' is given by (2.10). Based on Kariya (1981), we 

consider the measure 

(2.13) ,,2=E[h(z)-p-~xotdi]2=~2+R2' 

where 

(2.14) ~.~ =*~~~~~hij(6)hhl(6)cijkl 

(2.15) cijl=t =E(didjdkd:) 

and R2 is the remainder term. It is noted that ciiii =E(di4) =0(Ni-2) and R2 =0((Nl+ 

N~-2). 

Definition 2.2 (Kariya (1981)). An estimator h in C1 is said to be SOE if for each (Nl' N~, 

it minimizes ~2 in Cl' 

An intuitive rationale for this definition follows from (2,12) and (2, 13) since :)2 measures 

the degree of concentration of h(z) toward p+~~x,tdi and since ~2 is the leading term of ~,2' 

It is noted that E(di) =E(zt-6i) =0, di-O a.s. when N1 and N2-00, and x,i's are common 

for all heC1' Another rationale for Definition 2.2 is given by 

(2.16) [E(h(z)-p)2]~~Jl~+:'a~, 

where Jl is the Ininimum value of x'Ax in Theorem 2.1 which is common for all heCl' 
Hence minimizing the leading term ~2 of order O((NI + N2)-2) in :'2' we can control the MSE 

up to order O((N1+N2)-2) via (2.16). To carry out the minimization, Iet 

. . . , , , . . . , h24(6), h33(6), h34 (6), h44(6))' (2.17) y=(hu(6), hl4(6) hz2(6) 
(2.18) a3= -NIN202 /(Nl(12 +N2al2)2 and (r NIN201 /(Nl022+N2erl2)2 
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Theorem 2.2 An estimator h in Cl is SOE if and only ify=yo' where 

(2.19) y0=(O. O, a3' a4' O, -a3' -a4' O, O, O)' 

The minimum value of ~2 is given by 

(2.20) J2 = 2 {a32crl6/N12+a32022614/NIN2 + cr42(Tl2a24/NIN2 + a42(r24/-N:22J . 

Proof Since heCl satisfies x=xo' differentiating x=xo With respect to ~j (j= l, 2, 3) yields 

(2.21) f hu+hl2=0, hl3=a3' hl4=a4' h21+h22=0, h23= -a3 
[
 
h24 = -cr4' h31+h32 =0, h33+h34 =0, h41+h42 =0, h43+h44 =0 

Substituting (2.21) into ~2' 

(2 22) 4~2 =~(hii)2E(dt4)+~i~~j hiihjjE(dt2)E(dj2)+2~) ~ (htj)2E(di2dj2), 

= ~ 2[~ E(dt4) + 6E(dl2d22)] + 4a32[E(dl2d32) + E(d22d32)] 

+ 4a42[E(dl2d42) + E(d22d42)], 

where ~ =hn = _hl2 =h22. This is clearly minimized if and only if ~ =0, which together with 

(2.21) gives (2,17). The minimum value of ~2 is obtained by inserting ~ =0 and the expected 

values E(di2dj2) into (2.22). This completes the proof. 

Corollary 2.2 An FOE estimator of the form (1.6) satisfying (b) is SOE if and only if c1(e) = 

c2(6) =0, c3(e) =a3 and c4(e) =a4' where ct(e) =aclazi(6). 

Proof Computing the derivatives of fi in (1.6) and equating them with y, in (2.19) yields 
the result. 

Finally, we consider a condition for TOE. Let C2 be the class of SOE estimators 
satisfying 

(c) hi'kt(z) =a4hlaz,azjazkazt(z) exists, continuous and of order O(1); as N1~00, N2-00, i,e. 

C2 = {heC1 f h satisfies (c), y=y.J . 

Then for heC2' h can be expanded as 

(2.23) h(z) =p+~~x,idi+~~~~]y,ijdidj+~~ ~ ~hijk(O)didjdk 

l
 + ~] ~ ~ ~ hiJkl(1z + ( I - 1)e)dtdjdhdl' 
24 i j k t 

where O~1~1, and y. =(y,n' ' ' " y.44) is given by (2.19). Similar to the case of the defini-

tion of SOE, we consider the measure 

l
 (2.24) v3 =E[h(z)-p-_T: x.idi - ~~~ ~y.ijdtdj]2 =~3+R3' 

where 

(2.25) ~3 = 1 221E22hi'khl~~e(i, j, k, l, m, n), 

36 
(2.26) e(i, j, k, l, m, n) =Erdtdjdkdtd~d*] 

and R Is the remalnder term It rs noted that e(1 l) O(N ) and R3 =0((Nl+N2)-3). 

Definition 2.3 An estimator h in C2 is said to be TOE if for each (N1'N2)' it minimizes ~3 

in C2' 

The rationale and implications of this definition are similar to those of Definition 2.2. 

Especially, Iike (2.16), we have 
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(2.27) [E(h(z)-;e)2]~~J1*+J2~ + .3~, 

where J2 is given by (2.20). Hence minimizing the leading term ~3 Of y3' we can control 

the MSE up to O((Nl+N2)-3) via (2.27). To minimize ~3' we first derive the side conditions 

implied by y =yo' where y and yo are given by (2.17) and (2,19) respectively. Differentiating 

hij=y.ij with respect to p, 612 and er22 gives the following set of conditions on hiJk 

(2.28) 

hnl + hn2 =0, 

hl21 + hl22 =0, 

hl31 + hl32 = O, 

hl41 + hl42 =0, 

ha21 + h22B =0, 

h231 + h232 = O, 

h241 + h242 =0, 

h331 + h332 = O, 

h341 + h342 = O, 

h441 + h442 = O, 

hn3 =0, 
ll 123 = O, 

hl33 = pl' 

lll43 = rl' 

h223 = O, 

h233 = - pl' 

h243 = - Tl' 

h333 = O, 

h343 = O, 

h443 = O, 

hn~ = O 

hlz4 = O 

hl34 = p2 

hl44 = rz 

h224 = O 

h234 = - p2 

h244 = - r2 

h334 = O 

h344 = O 

h444 = O 

where a3 and a4 are as in (2.18) and 
(2.29) pl =aa3laolz, p2 =aa3la(T22 =aa4la(T12 =rl' r2 =aa4la(r 2. 

Theorem 2.3 An estimator h in C2 is TOE if and only if hl33 =P1' lll34 =P2' hl44 =r2' 11233 = 

-r2' and all the other hijk's are zero. - pl' h234 = - P2' h244 = 

Proof Let hm =x. From (2.28), it is easily shown that hu2 = _x, hl22 =x, ha22 = _x, 
hl33 = Pl' hl34 = P2' hl44 =r2' h233= - P1' h234 = - p2' ha44 = _ r2 and all the other hijk's are zero. 

Substituting these values into ~3' using the independence of di's and minimizing ~3 with re-

spect to x yielxs x =0. Therefore the result follows. 

III. FOE. SOE and TOE of ~i 

In this section we check whether or not the estimators pi (i=1, . . . , 5) Iisted in (1,1)-

(1.5) and the likelihood equation estimator are FOE, SOE and TOE. Since all p( are of 
the form (1.6) and since any estimator of the form (1.6) is Fisher consistent in the sense of 

(2.5), by Corollary 2.1, pi(z) =ci(z)zl+(1 -ci(z))z2 is FOE if and only if ct(e) =Nl(r22/(N1cr22 

~tNl~2Laal::r ;; iannd(1 lc; i~sCcon(:;nucoluz:1/y(cl:w4 1+c:azd3;~earnednt:~bjte;s FFIOrsEt,iftha~dGo~yybllfll~DeaNl taynPde 

c2 =N2' Consequently the Graybill-Deal estimator pl* =pl(Nl'N2) is FOE. ISecondly, 

write the Zacks estimator p2 in (1.2) in the form of (1.6) with c =c2' where 

(3.1) c2(z) = [Nl/(NI + N2)]G2 + [Nlz4/(Nlz4 + N2z3)](1 - G2) 

where G2 is the indicator function of a~1<z4lz3<a. Here G2 is not differentiable. But G2 

can be approximated by a continuously twice differentiable function G2* such that G2* agrees 

with G2 except on the intervals [a~1_e, a~1+e] and [a-e, a+e], where e>0 is arbitrarily 

small. Then ip2* with G2* for G2 in (3,1) does not satisfy c2*(6) =r, and so the estimator 

p2 with ~2* is not FOE for any e >0. Hence, the Zacks estimator is not approximately 
FOE. thirdly, in the Gurland-Mehta estimator p3' ip3 in (1.3) satisfies ca(6) =r if and only 

if c=0 and a=N2/Nl' in which case p3 =pl*. Therefore, the Gurland-Mehta estimator 
with c>0 is not FOE. Fourthly, the Brown-Cohen type estimator p4 in (1.4) has 
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(3.2) ip4(z) = [(cl ~ a)Nl~lz3 + c2N2-1z4 + c3(zl ~ z2)2]/[clNl~lz3 + c2Nz~lz4 + c3(zl ~ z2)2 

This c4 satisfies c4(6) =r if and only if c =cl =c2~0. Hence the estimator p4*(b) =ip4*(z)zl 

+ (1 - ci(z))z2 with 

(3.3) c4*(z) = [Nlz~ + b(zl ~ z2)2]/[N2z3 + Nlz4 + b(zl ~ z2)2] 

is FOE, where b =c3/a:~0 is arbitrary. It is noted that p4*(e)+pl* and that the Brown-

Cohen estimator proposed for N2 small is not FOE. Fifthly, it is easy to see that the Cohen-

Sackrowitz estimator p5 in (1 .5) is not FOE. 

Finally we consider the likelihood equation estimator. As is easily shown, maximiz-
ing the log likelihood function with respect to at2 (i=1,2) yields the log likelihood function 

of p ; 

(3.4) l(p : z) = - (N1/2) Iog[(zl ~ p)2+nlN1~1z3] - (N2/2) Iog[(z2 - p)2+n2N2-lz4] 

and so the likelihood equation of p is given by the cubic polynomial 

(3.5) Nln2N2-lz~(zl ~ p) + N2nlN1~lz3(z2 - p) + Nl(zl ~ p)(z2 - p)2 + N2(z2 - p)(zl ~ fi)2 = O 

In addition to an analytical difficulty in handling this equation, the equation sometimes 

gives 3 real roots, say m, =m,(z) (i=1,2,3). Hence the MLE is defined as p6 satisfying 

(3.6) l(p8(z): z) =max {1(m.(z): z) I i=1,2,3} . 

However, this does not mean that one of the roots is the MLE. That is, depending on z, 

sometimes mi maximizes l(p;z) and sometimes m2 or m3 maximizes it. Moreover, setting 

z=6 in (3.5), one gets 

(3.7) (p -p)[Nln2N2-1cr22+N2nlNl~1(rl2+NI (p -p)2+N2 (p-p)2] =0. 

From this, it is observed that only one of the mt's is Fisher consistent (p(e) =p), and the 

other roots of (3.7) are complex. However, the authors have been unable to identify which 

root of (3.5) is Fisher consistent since analytical solutions of (3.5) are intractable. Without 

identifying it, we shall treat the Fisher consistent root of (3.5) and call it p6*. Regarding 

(3.5) as an implicit function F(z,p(z)) =0 and differentiating it with respect to zj's at z=e 

produces the gradient vector of p at z =e: 

(3.8) (pl(e), . . . , p4(e)) = (Nln2N2-1(122/D, N2nlN1~1(rl2/D, O. O), where 

D =Nln2N2-1a22+N2nlNl~1al2 and p' =aplazt. 
It is noted that this gradient is common for p =mt, the roots of (3.5). Therefore by 

Theorem 2.1, po* is not FOE. On the other hand, ifniNt-1's are replaced by I in (3.8), the 

gradient vector agrees with xo in Theorem 2.1. This suggests the following modification. 

Replace both n2N2-1 and nlN1~1 by I in the likelihood equation (3.5) and define p7 as the 

Fisher consistent root of the modified equation. We shall call this estimator the modified 

likelihood equation estimator. Then, in a similar manner, p7 is easily shown to be FOE. 

The estimator p7 is not yet identified, but since in Theorem 3.3, p7 is shown to be not 

TOE, this identification is really not necessary and a TOE estimator is preferred to p7. 

The above results are summerized as 

Tlleorem 3.1 Among the estimators p( (i=1, . . . , 7), the Graybill-Deal estimator pl* = 

pl(Nl'N~, the Brown-Cohen type estimator pj(b) with c4* in (3.3) and the modified likeli-

hood equation estimator p7 are FOE, and the others are not. 

To see whether these estimators are SOE, it is noted that pl*=p4*(C), and p4*(b) and 

p7 belong to the class Cl defined in section 2. Applying Corollary 2.2 and computing the 

partial derivatives of c4* at z =C verifies that for any b~:O, p4*(b) is SOE. Similarly, from 
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the equation (3.5) with both ,11Nl~1 and n2N2-1 replaced by 1, the vector of second partial 

derivatives of p7 rs computed and it is shown to be equal to yo in Theorem 2.2. Hence we 

obtain 

Theorem 3.2 The Graybill-Deal estimator pl*=p4*(O), the Brown-Cohen type estimator 

p4*(b) and the modified likelihood equation estimator p7 are all SOE. 

Consequently, based on the SOE, these estimators are not discriminated. However, 

the concept of TOE does discriminate them. 

Theorem 3.3 Among the three estimators pl*, p4* and p7, only the Graybill-Deal estimator 

pl* is TOE. 
Proof To show that pa* and p7 are not TOE, from Theorem 2.3, it suffices to show that 

a3p4*/azl3(e)~0 and a3p7/azl3(e)~0. For example, for p7, regarding (3.5) as F(z,p7(z)) =0, 

differentiating it three times with respect to zl and evaluating it at z =6 yields hm[Nla22+ 

N2al2] + (hl)3[6(Nl+N2)]+(hl)2[_6(2N2+N1)] +hl(6N2) =0, from which we obtain hm~0 

where h =~'7' Similarly a3p4*/azl3(6)~0 is easily shown. To show that pl* is TOE, we 
need to verify that all the third derivatives of pl* at z =0 are equal to the ones in Theorem 

2.3. This is directly checked. Therefore, the proof is completed. 

By this theorem, from the viewpoint of the present paper, the Graybill-Deal estimator 

pl Is most preferred. 
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