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A COMPARISON OF CONVERGENCE SPEED OF OLD 
AND NEW ITERATIVE PROCESSES FOR 

AN INPUT-OUTPUT SYSTEM 

By MASAAKI KUBONIWA 

I. In trod uction 

It has been pointed out in numerous articles [e.g., Montias (1959)] that the old, standard 

iterative process employing power series expansion for solving the standard linear input-

output system has the disadvantage of generally slow convergence speed. Recently, to 
speed up this process, a new iterative process using step-wise aggregation has been developed 

by Vakhutinsky et al. (1979), Manove and Weitzman (1978) and Kuboniwa (1982). While 
it was verified that numerical experiments guarantee the speedier convergence of this new 

process, the theoretical setting for the comparison of convergence speed was confined to the 

very special cases in these articles. 

This note makes a comparison of convergence speed of the two processes in a more 

general setting. Two sufficient conditions, using upper bounds of non-maximal eigenvalues 

of a stochastic matrix, will be presented to state that the new process might converge more 

speedily than the old, standard process. This note will suggest some implications of these 

conditions, which may appear to be somewhat paradoxical in that the new process may not 

be as effective in the adjustment of relative output ratios as in that of output scale. This 

note limits investigation to the step-wise aggregation process in the simplest case, and deals 

exclusively with the standard input-output model in value terms. 

II. The O!d and New Iterative Processes 

We begin by putting down the standard static input-output model that is assumed to be 

the economy-wide planning problem. Let there be n fully disaggregated commodities (i, j= 

n), and let x =[xi], y =[y,] and A =(aij) denote respectively, fully disaggregated output 1, . . ., 

11-column vector, final demand 17-column vector, and input-output n by n matrix appropriate 

to the given economy. For convenience we assume in the sequel that the nonnegative matrix 

A is productive and indecomposable, and that y is semi-positive. The model is written as 

and the unique positive solution to this equation is given by 

The old iterative method for finding a well-balanced output near x* js described as 

follows: at round t the target is specified to be 
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xt=Axt_1+y. (t=1, 2, . . .) (3) 
In view of the assumptions of the input-output matrix the process (3) should converge 

for any initial output vector xo with nonnegative elements. It can also be stated that its 

convergence speed is generally determined by the magnitude of the Frobenius eigenvalue 
I~ of the matrix A, and of the distance between xo and x* [see Manove and Weitzman (1978), 

and Montias (1959)1. . 

These statements may be clarified as follows. 

Define Et =xt -x*, and it follows from (1) and (3) that 

Since A is productive, we have At-~0 (t-,oo), and Et-'O (t-~oo) for any Eo; xt-~x* (t-oo) for 

any xo' Further, Iet P and A be the matrix of row eigenvectors of A and the diagonal matrix 

of the corresponding eigenvalues; Iet Pt and Pt denote the ith row of P and the ith column of 

P-1, and let It be the ith diagonal of A (11=1*). If an additional assumption is made that 

A is diagona]izable, we then have A =P-lAP. Hence we can rewrite (4) as 

Et = P-lAtPEO = ~) Iit(PiEo)Pi. (5) 
i=1 

Pl is strictly positive since A is indecomposable. Suppose that PIE0~0, and the absolute 

value ofthe first term of(5) is also strictly positive. Because the magnitude ofthe eigenvalues 

1's other than 1* is less than 1*, the geometrical decline factor of the slowest damping term 

is 1*. Accordingly, we can evaluate the rate of convergence of (3) by the unique, positive 

Frobenius eigenvalue of A, 1*. 

We next turn to the new iterative process for solving (1). The simplest version of this 

process can be written as 

xt = Aztxt_1 + y, 

_ _ pxt zt- p(xt_1-Axt_1) ~ pxt_1 (t=1, 2, . . .) 

where p denotes the n-row vector of aggregation weights. As (1) is defined in value terms, p 

may be specified as the n-row vector e whose elements are all unity. The advantage of (6) 

may lie in that the convergence will be speedier if we go beyond the old method correction 

by using the single parameter z: if z> I we are 'overcorrecting' ; if z< I we are 'undercorrect-

ing' ; if z = I the new process mirrors the old process (3). Hence, the new process may be 

more effective when the initial output xo is far from the solution x*; x0>>x* or x0<<x*. It 

should be noted that a similar idea is employed in the successive overrelaxation (SOR) method 

[see Berman (1979, ch. 7)]. 

We now proceed to the aspect of convergence speed of(6). Define 
wt = xtlex, , 

and 
M = A + (ey)~1y'(e - eA). 

Then the process (6) can be written in the form 

14't=Mvt't_1= . . . =Mtwo' (7) 
As A is nonnegative, e~eA. Considering the semipositiveness of y and eM=e, we find that 

M is a column stochastic matrix. As A is indecomposable, M is also indecomposable. 
Therefore 14't-w* (t-oo) for any positive wo, and xt-'x* for any positive xo' Since the 

Frobenius eigenvalue of M equals unity, we should evaluate the convergence speed of (6), 



1983] A COMPARISON or CONVERGENCE SPEED OF OLD AND NEW ITERATIVE PROCEssES 145 

or (7) by the second largest magnitude of eigenvalues of M [see Howard (1960, ch, l)]. It 

should be noted that we are assuming that the speed of convergence of wt in the new process 

is proportional to that of xt in the new process. This assumption seems to be plausible, for 

it is not easy to find examples where xt converges slowly and wt converges very fast in the. 

same process. For instance, if xt is a scalar, both xt and w, in the new process converge to 

x* and w*, respectively, on its first round. 

III. A Comparison of Convergence Speed of Two Processes 

For a nonnegative matrix A we have the inclusion [Nikaido (1968, Theorem 7.5)]: 

min ~ aij ~; 1* ~ max ~ aij (.j= 1, . . ., n). (8) 
j i*1 j i.1 

It should be noted that if we define the norm of A as ll~norm we have llAll =max ~ atj' On 

! i=1 
the other hand, we have at least two upper bounds for the magnitude of an eigenvalue p~ l 

of a column stochastic matrix M=(mtj) [see Seneta (1981, Theorem 2.lO)] and [Berman 
(1979. Theorem 5.lO)] : 

l
 lpl~ 2 max ~ Im,t m,jl, (9) 

i,j **1 

lpl < m]n {1 ~ mm (mtj), ~ max(mij) - l} . (lO) 
*=1 j i*1 j 

Letting the right sides of (9) and (lO) denote B1 and B2' we have lpl~~Bk(k = l, 2). 

Hence, considering (8), it is sufficient for the speedier convergence of the new process (6) 

to state that Bk<min ~aij for either k=1 or 2. If we employ (9) and (lO), in view of 

j i=1 
the definition of M, we will be able to show that sufficient conditions for the faster con-

vergence of (6) can be presented only by aiJ s, excluding yi's. The results are summarized in 

the following: 

Proposition 

T/1e '1ew process (6) converges more speedi!y tllan t/1e old process (3) tf one of tlle following 

conditions is fu!fil!ed: 

[a] max ~a.J<3 min ~a,i-max ~ la*i-a.Jl; 

j ,.1 , ,=1 i,, *=1 
[b] min {max ~aij- ~min aij, ~]~* max aij-min ~aij} <min ~aij. 

j i=1 j i*1 j i*1 i*1 j i=1 j 
Proof Noting that in view of the definition of M 

mij =aij + (Ek yk)~lyi'(1 - ~ aij), 

i.1 
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we then have : 

l " B = max ~) Im,i-ms/l l 2 ,,, ,*1 

l
 

= max ~ la*i - a,, + (l J'k)~1.y*(~:a,j 2:a,i)l 

2 t,j s=1 k 
1
 

" ~l _ max ~ Ia*, - a*jl + max(2a,j - 2a*t) 
2 ,,/ '=1 2 t,j ' * 

max ~) Ia,t - a*jl + (max la*j -min ~a,t) 
t,j '=1 

1 _max 2 a,j)+ ~ (max lasj~min la,t) (using [a]) < 2 (3 mm Za*, 

j * ~ j . t ' 
<min ~ a*t' 

, ,=1 

Hence, Ipl ~Bl<;,* (p~ 1) if the condition [a] holds. Let us next see the case of condltion 

[b]. As is easily verified, we can have 

~ 
l - ~], min(mi/) = I - 2 min {atj+ (Eyh)~1yi(1 - 2aij)} 

i*1 j t / h i = I - 2 min ai, - (1 yk)~1.~: yi'min(1 - 2atj) 

i j k i i 
=max ~] atj - ~ min aij, 

i=1 (=1 
and in an analogous manner 

~ max(mij) - I = ~] max aij - min IJ7: atj' 

t=1 t=1 j j t=1 
" 

This shows that B2 is equal to the lefthand side of condition [b]; B2<min ~] aij. Proposition 

j i.1 

follows. Q.E.D. 

We may give clear economic meanings to these conditions. Let us begin by condition 

[b]. Basically every row of an input-output matrix has at least one very small component 

so that min a,j is basically equal to zero, hence max ~ aij - ~) min aij =max ~ atj, and is 
j i=1 

" 
never smaller than min ~ aij. The cond]tlon therefore reduces to 

j i=1 

~ maxa*j <2 min ~ atj' 

,*1 j j i.l 
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This, seems a very strong condition. 

Similarly, condition [a] is stronger than max ~ a.!<3 min ~ a,i, which implies that the 

j '-1 t **1 
value of the inputs of the industry who uses the most inputs is smaller than three times the 

value of the inputs to that industry which uses the smallest amount. A very strong con-

dition indeed ! 

Speed of convergence of planning procedures consists of two factors: adjustment speed 

of output scale and that of relative output ratios. Concerning scale adjustment, the new 

process is very effective. This was already shown in my article [Kuboniwa (1982)]. Further, 

if we employ the von Neumann aggregation weights, the new process is effective in both the 

scale and relative ratios adjustment [Kuboniwa (1982), Manove and Weitzman (1978)]. 

However, as the above conditions suggest, in a general setting of theoretical frame work, the 

new process may not be as effective in the adjustment of relative output ratios as in that of 

output scale. 

IV. Collcludmg Remarks 

We obtained two sufficient conditions for the faster convergence of the new iterative 

process which we call the step-wise aggregation process. We clarified that these conditions 

are very strong from economic view points. This economic interpretation suggests that the 

new process may not be as efiicient in the adjustment of relative output ratios as in that of 

output scale. Let us conclude this note with the following additional remarks. First, un-

like the SOR method, we can assign clear economic meaning to the step-wise aggregation 

process presented here [see Kuboniwa (1982)]. Secondly, this note shows that, unlike mod-

ern textbooks on nonnegative matrices [see e.g., Seneta (1981, 2.2, 2.5 and 7.5)], an iterative 

method for the solution of a linear system is closely related to the 'probability algorithm' and 

the theory of eigenvalues of a stochastic matrix. 
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