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I . Introd uction 

Economic theories have been largely built on the basis of rational behaviors by rational 

economic agents. In the consumption sector of an economy one thus analyzes behaviors of 

satisfaction maximizing consumers whose preference patterns exhibit a consistency in the 

sense that preference relations are transitive or acyclic. A conspicuous deviation from this 

approach to economic theory has appeared in the past decade in the works of Sonnenschein 
[12], Mas-Colell [6], Gale-Mas-Colell [3], Shafer [10], and Shafer-Sonnenschein [1 1] in general 

equilibrium analysis of market economies. In all of these works the assumptions of transi-

tivity and acyclicity of preference relations were dropped. And it was shown that the non-

emptiness of demand sets of individuals and the existence of a competitive equilibrium of an 

economy can be proven as long as the convexity assumptions on continuous preference re-

lations and on consumption sets are retained. (Shafer-Sonnenschein [1l] does not require 

preference relations to be convex.) 

In view of the results obtained in a continuum of agents' models that not only the as-

sumption of convexity of preference relations (Aumann [1]) but also that of consumption 

sets (Mas-Colell [7], and Yamazaki [13, 14]) is not required in establishing existence of a 

competitive equilibrium if the transitivity or the acyclicity of preference relations is assumed, 

a natural question suggests itself: Can we altogether relax the convexity requirements and the 

consistency of preference relations ? 

Whereas it is interesting to find meaningful sufficient conditions which guarantee the 

nonemptiness of individual demand sets (for positive market prices) without requiring con-

vexity, transitivity, or acyclicity, we note the fact that a characterization of continuous pre-

ference relations which give rise to nonempty demand sets for any positive price vector is 

"almost trivially" available (see Mukherji [8] and our Lenuna I below). On the other hand, 

as noted in [13], so long as demand sets of individual consumers are nonempty on compact 
budget sets, the consistency requirement for preference relations is not essential in the exist-

ence problem of large economies. Thus the largest class of continuous preference relations 

of any interest to us consists of those which give rise to nonempty demand sets on compact 

budget sets. In fact, from a Samuelsonian point of view, unless preferences are "visible" 

or "observable" in markets through the individual demands that they generate, they lie 

beyond the scope of analysis of market economies. 
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The above considerations lead us to the investigation of mathematical properties pos-

sessed by the clas~ ~of all continuous preference relations which are observable in markets. 

In order to show that it is not entirely pointless to study about ~;, we shall present in the 

Appendix an example of a continuous preference relation which is observable in markets but 

which does not satisfy any of the known sufficient conditions for existence of maximal ele-

ments in budget sets with respect to the preference relation. The present paper contains 

two remarks on the mathematical properties of ~. 

A topology on ~will be introduced in the manner of Hildenbrand [51 and Grodal [4]. 

Let ~ denote the set of all closed subsets of Rl x Rl. To induce a topology on the set of all 

continuous preference relations which are irreflexive and transitive, Grodal [4] used an in-

jection from the set into J~~. In the present paper I use an injection from ~into ~ x J~~ 

where ~~ is the set of all consumption sets. If one restricts ~ to the set of irreflexive pre-

ference relations, then the topology introduced here coincides with the one in [4] and [5]. 

In this topology ~ becomes a compact metrizable space (the frst remark). The second 
remark is concerned with the density of continuous preference relations which induce locally 

upper hemicontinuous demand correspondences. When consumption sets are not neces-
sarily convex, one cannot expect to have upper hemicontinuous individual demand corre-

spondences in general. The best one can hope for is that a preference relation induces a 

locally upper hemicontinuous demand correspondence. We shall show that, by restrcicting 

the set ~ somewhat, the set of preference relations giving rise to locally upper hemicon-

tinuous demand correspondences is dense at any given price vector p and any wealth level w. 

II. Notation. Definitions and the Statement of Results 

Rl denotes the /-dimensional Euclidean space. If x belongs to Rl, then x=(xl, . . . , xl). 

Rl represents the commodity space and an element x of Rl a commodity bundle. For any x 
and y in Rt we take x>y to mean xj >y/ for all j, and x~:y to mean xj~:yj for allj. If Q is 

a subset of Rt and x is an element of Rl, x~Q means x~y for every y in Q. The iuner prod-

+xtyl of two members x, y of Rt is denoted x･y. The symbol ¥ will be used for uct xlyl+ . . . 

set-theoretic subtraction. 

A consumption set X is a nonempty subset of the commodity space which is closed and 

bounded from below. Given a vector b in Rt and a compact set K of Rl, we denote by ~~ 

the set of all consumption sets X which have the properties: b~X and Xn K~c. b and K 

are fixed once for all in this paper. A commodity need not be infinitely dlvisible ; however, 

this does not mean that the commodity space should be further restricted. In fact the di-

visibility and/or indivisibility of commodities will be expressed through the shapes of con-

sumption sets. 

We define a preference re!ation as a pair (X, >) where X is a consumption set in ~ 

and > is a subset of XxX. Instead of (x, y)e> we shall use the notation x>y. Thus 
x>hy means (x, y)~>. A preference relation (X, >) is said to be continuous if > is open 

relative to X x X. The set of all continuous preference relations are denoted by ~'. 

Rl++ denotes the set of all vectors p with pj >0 for all j. Given (p, w)eRt+~ X R, we 

define the budget set for X 

B(p, w; X)= {xeX I p'x~w}, 
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and the demand set for (X, >) 

D(p, w; X, >)= {xeB(p, w; X) I z>hx for every z in B(p, w; X)}. 

We denote by ~~ the set of all continuous preference relations which are observable in 
markets, i.e. 

~~ {(X, >)e~' I for any (p, w) in Rt~~ XR, D(p, w; X, >)~c 

whenever B(p, w; X)~ c} . 

Given a vector p of R~++ and a nonempty finite subset Q of Rt define 

a(p, Q)=max {p.x I xeQ}. 
We shall introduce a property of preference relations which we shall refer to as the property 

(FD) : 

(FD) Giveh a nonempty finite subset Q of X and a vectorp in Rt++' there exists 

an x*eB(p, a(p, Q); X) such that z>hx* for every z in Q. 

Lat 
giFD = {(X, )>)e~' I (X, >) satisfies (FD)} . 

One can get a characterization of the set ~ very easily (cf. Mukherji [8]). We shall state 

this as a lemma. 

LEMMA I : J~~ = ~;FD. 

REMARK : Let ~t be the set of all continuous, irreflexive and transitive preference re-

lations. It is well known that ~tC~. (See Schmeidler [9, Lemma 2].) A preference 
relation (X, >) is said to be acyclic if, for any finite subset {xl , xk} of X, [xl>x2, . 

,... .., 
and xk_1>xh] implies xh~xl' Let ~** denote the set of all continuous and acyclic pre-

ference relations. Then, ~:*,c~. (See Bergstrom [2]; note also that the proof given in 

[9, Lemma 2] for a continuous, irreflexive and transitive relation can be applied to the case 

of a continuous and acyclic preference relation without any modifications.) Let ~:., denote 

the set of au continuous and convex preference relations. It is also known that ~:.,c~;. 

(See Sonnenschein [12], Mas-Colell [6], and Shafer tlO].) In general all of these inclusion 

relations are strict. In fact we shall exhibit in the Appendix an example of a continuous 

preference relation which is not acyclic, nor transitive, nor convex, but which is observable 

in markets. 

Given a preference relation (X, >) define 

F~= {(x, y)eXx X [ x>hy}. 
If (X, >) is a member of ~~', F:~ is a closed subset of Rl x Rl. Let ~ denote the space of 

all closed subsets of Rt x Rt endowed with the topology of closed convergence. In this 

topology a sequence (F*) in J~~ converges to F, denoted Lim F~ = F, if and only if Lim Sup 

F~=F=Lim Inf F*, where Lim Sup F~= {xeRt I for any neighborhood U of x and for any 
n, there exists m~~n such that U n F~~c} , and Lim Inf F~ = {xeRl I for any neighborhood 

U of x, there exists n such that for all m~n one has UnF~~c} . In this topology J~~ be-

comes a compact metrizable space (see Hildenbrand [5, Theorem 2, p. 19]). The set ~p is 

also endowed with the topology of closed convergence. Again it is a compact metrizable 

space (Hildenbrand [5, p. 86 and p. 97]). Let us define a natural map .' of~ into ~~x ~, 

where the latter is endowed with the product topology, by (X, >)I-(X, F>)･ Then, it is 
immediate that the map .' : ~-~Px ~r is an injection. We thus endow the set ~ 
with the topology induced by the injection .'. If a preference relation (X, >) is irreflexive, 

i.e., x>~x for every x in X, the set {xeRll (x, x)eF~} determines the consumption set X. 
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Hence, the topology used by Hildenbrand [5] and Grodal [4] coincides with ours on the set 

of all continuous and irreflexive preference relations. 

Our first remark is the following : 

PROPOSITION I : ~ is a compact, metrizable space. 

We now turn to the problem of denseness of continuous preference relations whic~ induce 

locally upper hemicontinuous demand correspondences : More precisely, given (p, w) e Re+~ X 

R, define 

~~~(p,'w)= {(X, >)e~ I B(p, w; X)~ip}, 
~~:*hi(P, w)= {(~:, >)e~(p, w) I D(p, w; X, >) is upper hemicontinuous 

at (p, w)} ; 

then the problem is whether ~*,~.(p, w) is dense in ~(p, w). Unfortunately there is one 

catch in this problem which is related to the question of extendability of a preference relation 

(X, >) in .~ to (X', >') in ~~for any given X'e~pwith XcX'. Whereas it is an interest-

ing question to be asked, it is beyond the scope of our presen~ note. Thus we restrict the 

~;*= {(X, ~)e~;1 there exists a preference relation (X*, >*) in ~ such that 

(X, >) is a restriction of (X*, >*) to X, where X* = {xeRt I b~x}} 

The sets ~* (p, w) and ~*h.*(P, w) are defined to be restrictions of ~;(p, w) and ~~h. 

(p, w) to ~ *. Then, our second remark is given by the following: 

PROPosmoN 2: ~*~h.(P, w) is dense in ~*(p, w). 

III. ProofS 

Proof of Lemma I : 

To show ~~c~FD. Let (X, ~)e~. Let Q be a nonempty finite subset of X. B(p. 
a(p, Q); X)~c' implies that there exists an x* in B(p, a(p, Q); X) such that z>~x* for every 

z in B(p, a(p. Q); X). But by the definition of a(p. Q). Q is contained in B(p, a(p, Q); 

X). Thus (X, >)e~FD. 
To show ~FDc~. Let (X, >)e~FD. Let (p, w)eRt++xR be such that B(p, w; 

X)~c. Suppose D(p, w; X, >)=c. Then, if we define R(x)={zEB(p, w; X) I x>z}, 
R(x) are open relative to B(p, w ; X) by continuity of ~ and {R(x)} .=B(p. ";x) forms an 

open cover of B(p, w; X). The compactness of B(p, w; X) implies existence ofanonempty 

finite subset Q of B(p, w; X) such that {R(x)}.~Q rs a subcover. By (FD), there exists an 

x* in B(p, a(p, Q); X)CB(p, w; X) such that x>~x* for every x in Q. It follows that x*~E 

R(x) for x in Q. This is contrary to the fact that {R(x)}.=Q rs zi subcover. This proves 

Proof of proposition I : 

Since ~~x:~~ is compact, it is enough to show that .'(~) is a closed set. Let (X~. 

>~)~=12 be a sequence in ~, ..((X., ~.))=(X~, F~), and Lim (X*, F~)=(X. F). Define 
>= {(~, y)eXxX I (x, y)~EF}. We must show that (X, ,~)e~ and .'((X. >))=(X, F). 

This latt~r is t_rue because F~ =F by definition of >. (X, F) belongs to ~ x ~ as it is 

compact To show that (X >) belongs to ~ it is enough to prove, by Lemma I , that 
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(X, ~) satisfies (FD). Let Q={zl' ' ' ' zh} be a nonempty finite subset of X. We must 

'
 

show that, given a vector p in Rt++' there exists an x* jn B(p, a(p, Q); X) such that z>hx* for 

every z in Q. Since QcX= Lim X~, there exist sequences (zi~)~=1,2,..., i= l, . . . , k, such that 

zin-zi and zi*eX* for every i and for n large enough. Set Q~ = {zl*' ' ' " zh*} and w* = 

a(p, Q~). (;t'~, >*)e~implies that there exists an x^ in B(p, w~ ; X*) such that zt*>h~ x~ 

for every i and for n large enough. Fix e >0 arbitrarily, and set w=a(p, Q). As zi~-z, 

for every i, there exists a positive integer N such that n;ZN implies zi*eB(p, w+e)= 

{xeRl I p'x~w+e} for every i and n. Thus for n~~N, x* belongs to B(p, w+e). By 
compactness of the set B(p, w + e), there is a convergent subsequence of the sequence 

(x*). Without loss of generality one can assume that the sequence (x*) itself converges to 

an x* in B(p, w+e). Since x*eX* residually, x*eX. The fact that zi~~'z, for every i 

implies that w*-w. Thus, from p'x*~w* and x~-x* it follows that p'x*~w. Hence, 

We now show that zi>hx* for every zi in Q. If not, for some i zt>x* ; by continuity of 

>, we would have zt*>x~ for n sufficiently large, a contradiction. Therefore, (X, >) satis-

fies the property (FD). 

Q.E.D. 

Proof of Proposition 2 : 

Given a price vector p ~ O in Rt, denote the hyperplane to which p is normal by H(p, w), 

weR, i.e., 

H(p, w)= {xeRl I p'x=w}. 
The open sphere and the open half sphere centered at x with radius a, denoted S(x, a) and 

HSp(x, 6) respectively, are defined by 

S(x, 6)= {zeRt I Il x-z ll<6} 

HSp(x, 6)= {zeS(x, ~) I p'z<p'x}, 

where ll･ll denotes the Euclidean norm in Rt. Let X be in ~:. A consumption vector x in 
X is said to have local cheaper points in X if for every 6'>0 HSp(x, 6)nX~c. Let Cp(X) be 

the set of all consumption vectors in X that do not have local cheaper points in X, i.e., 

Cp(X)= {xeX I HSp(x, 6)n X=c for some 6 >0} . 

Also, define 

Cp,,"(X) = Cp(X) n H(p, w). 

Given a' hyperplane H(p, w), hyperplanes H(p, w+ allp lD and H(p, w-ellplD, denoted 

for short H(p, wd: e llp lD, are exactly e away from H(p, w), i.e., 

inf {ll x-y 11 1 xeH(p, w) and yeH(p, w:!:e ll p lD} =e. 

So, Iet us denote w:!:e 11 p ll by w(:!:e) for a given e>0. We shall need the following result: 

LEMMA 2･ If C (X)=c, then Cp,"(X,)=c where X,= {zeRl I 11 z-x ll<-e for some . p,~(*,) 
x in X}. 

Proof: Assume Cp,"(~,) (X)=c and xeH(p, w)nX,. We want to show that for 
any,6>0 we have HSp(x, 6) n X. ~ip. Since xeX., there exists an x*e:X such that l[ x-x* Il 

~e.' We consider three cases 

Case I. There exists an x*eX such that ll x-x* Il<e. 

Put a*=e-ll x-x* I]>0. Then, we have S(x, 6*)cX. because ifzeS(x, 6*) then 

ll x-z ll <6* and hence 
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ll z-x* Il~ll z-x ll+11 x-x* Il<6 *+ Il x-x* Il=e; 

thus zeX,. But S(x, 6*)CX, implies that HSp(x, 6)nX,~c for any 6>0. 

Case II. . For every x'eX, Il x-x' 11~:e but there exists an x*eX such that 11 x-x* Il = e 

and inf {ll x$-z ll I zeH(p, w)} <e. 

In this case there exists a z in H(p, w) such that ll x* -z ll <e. Set z(t) = tz+ (1 - t)x; 

then z(t)eX. for 0<t<1. Indeed, 
ll x*-z(t) Il =11 (1 -t) (x*-x)+t(x*-z) Il~(1 -t) Il x*-x ll +t ll x*-z ll <e. 

Note also that z(t)eH(p, w) as x, zeH(p, w). Since every z(t), for 0<t<1, is an 
interior point of X,, there is a 1(t) for every t such that O <1(t)< I and rz(t)eX, for every 

r such that 1(t)~r~1. put 6(n)=max {1(1ln), 1-1/n} and y(n)=z(1/n), i.e., y(n)= 
(1/n)z+(1 - l/n)x, for each n= l, 2, . . . . Then define a sequence (y*) by y*=6(n)y(n). 

We then have y~-x, y~eX, and p'y*<w; this last inequality is true because y(n)e 

H(p, w) implies that p'y*=6(n) (p'y(n))<w. Thus for any given 6>0 we have y*e 
HSp(x, 6) for n large enough and hence HSp(x, 6) n X, ~ c. 

Case 111. This case covers the remaining possibility: For every x' in X llx-x' ll~e 

and inf {llx'-zll lzeH(p, w)} :~e, but there exists an x*eX such that llx-x*ll=e and 

inf {llx*-zll lzeH(p, w)} =s. 

In this case x* Iies on the hyperplane H(p, w(5)) or H(p, w(-e)). Thus, by the 

hypothesis, there exists a sequence (x**) such that x*~eX and p'x** <p'x* for each 

n, and x**-x*. Let pr: Rl_,H(p, w) be the perpendicular projection of Rt onto H(p, 

w), and put pr(x**)=x* so that Ilx**-x*ll=inf {llx*~-zll lzeH(p, w)}. Apply the 

arguments in Case 11 to x* to obtain y~eX, such that p'y* <w and llx*-y*ll<1/n 
for each n. Since the projection pr is continuous, the facts that x**-,x* andpr(x*)=x 

imply that x~-x. Thus, for any given 6 >0, y*eHSp(x, ~) for sufficiently large n. I 

We now proceed to prove Proposition 2. Let (X, >) be in ~*(p, w)¥~**h.(P, w), and 
(e*) a sequence of positive numbers such that e*-O as n~' co . For each n define X*= 

{xeRll llx-yll<-a* for some y in X}. Since (X, >) is in ~~~*(p, w), there is (X*, ~*) in 

~'such that X*={xeRtl b~x}, and > is the restriction of >* to X, i,e., F>=F~'n 
XxX. So define for each n 

F* =F:~' n X* x X*, 

>~={(x y)eX xX I (x y)~F } 
Then, (X~, >*)e~*. Smce X ~) . . :)X~:)X~+1:) . . . ::) X, the fact that (X, >)e 
~'*(p, w) implies that (X~,~*)e~*(p, w) for every n. It can also be verified that Lim 

X*=Xand Lim F* =F>･ We thus obtained a sequence (X~, >~) in ~*(p, w) converging 
to (X, ~). It remains to show that (X*, >*) can be chosen to be in ~ *~h,(P, w). 

Define 

Jp(X)= {w'eR I H(p, w') n Cp(X)~c}. 
Then by Lemma in [13], Jp(X) is a countable set. So enumerate the elements of Jp(X) as 

2, ' ' ' . . . . We can choose the above e~ so that w(d:e*)~wk for every k and n. wl' w , wk, 
It then follows from Lemma 2 that weEJp(X~) for every n. Thus, by the standard arguments 

one can show that D(p, w; X*, >*) is upper hemicontinuous at (p, w), that is, (X*, >*)e 

~**h,(P w) for each n 

Q.E.D. 
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IV. A Final Remark 

In view of the proof of Proposition 2 what is essentially true is that at any given pair 

(p, w) of a price vector pe:Rl++ and a wealth level weR, the set of consumption sets X such 

that w rs not in the "critical set of X," i,e. wel~Jp(X), is dense. It indicates a possibility of 
,
 

considering a "dispersed consumption sets distribution" in overcoming the nonconvexity of 

consumption sets in the equilibrium existence problem as oposed to considering the dis-

persion of endowments or wealth (cf. Yamazaki [13, 14D･ This final remark may also be of 
some interpst to the "smoothing by aggregation" problem literature where the dispersion 

of preference relations is a basic'force responsible for the "smoothing" effects 

AppENDIX 

In this appendix we describe an example announced in Section 2. Let X=R+. We 
shall define a continuous relation > on X by way of a continuous function v: R~ X R+~R. 

Define v(x, y)=(y- l) (x- 1) (x-5) for each (x, y) in R+ x R+. Define >* on R~ by 

~.= {(x, y)eR~ X R+ I v(x, y)>0}. 
By continuity ,of the function v, >* is open in R+ x R+. We shall show frst that the pre-

ference relation (R+' ~*) is observable in markets, i.e., the demand sets' on nonempty com-

pact budget sets are nonempty. Given (p, w)eR++ x R+' we shall show that D(p, w; R~' >*) 

is nonempty. Defin~ g(y)=max {v(x, y)1 xeB(p, w;R+)} . ' Note that if yeB(p, w; R+) 

and g(y)~O, then~yeD(p, w; R+' >.). 
If O~w/p<1, then g(y)=v(w/p, y) for any y satisfying O~y~w/p. Thus, we have 

gO,)<0 and hence yeD(p, w; R+' >.). If 1~w/p<3, then we have g(y)=v(O, y) for y~zl 
and gCV)=v(w/p, y) for y<1. In particular, g(1)=v(O, 1)=0 so that p'l~w implies that 

leD(p, w; .R+' >.). .If 3~w/p<6, then we have g(y)=v(O, y) for y~~l and g(y)=v(3, y) 

for y<1. Again leD(p, w; R+' >.). If w/p~6, then we have gO;)=v(w/p, y) for y>_1 
and g(y)=v(3, y) for y<1. But g(1)=v(w/p, 1)=p and p'l<w imply that leD(p, w; R+' 
>*). Thus we have shown that for any (p, w)eR++ x R~' D(p, w; R+' >.)~c. 

We now show that (i) (R+' >.) is not convex, (ii) (R+' >.) is not transitive, and (iii) 

(R+' >~) is not acyclic: 
(i) (R+, >~.) is not convex. 

{xeR+ I x>. 2} =[O, 1)U(5, co), 

which is not a convex set. 

(ii) (R+' ~.) is not transitive. 

Let x=3, y=1/2 and z=2; then v(x, y)=v(3, 1/2)=2>0, vG,, z)=v(1/2, 2)=9/4 

>0, and v(x, z)=v(3, 2)= -4<0. Thus, x>.y ahd y~.z and x>h.z. 

(iii) (R+' ~*) is not acyclic. . _ 
Let x=6, y~8 and z=7; then, v(x, y)=v(6, 8)=35>0, v(y, z)=v(8, 7)=126>0, 

and, v(z, x)=v(7, 6)=60>0. Thus x>.y, y~,z, and z>.x. 
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