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Abstract

The instability of volatility parameters in GARCH models is an important issue for analyzing
financial time series. In this paper, we investigate the asymptotic theory for change-point estimators
in semiparametric GARCH models. When the parameters of GARCH models have changed within
an observed realization, two types of estimators, maximum likelihood estimator (MLE) and Bayesian
estimator (BE), are proposed. Then, we derive the asymptotic distributions of these estimators. MLE
and BE have different limit laws, and the BE is asymptotically efficient. Monte Carlo studies are
conducted on the finite sample behaviors. Further, applications to the Nikkei 225 index are discussed.
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1 Introduction

Explicit models of heteroskedasticity have received considerable attention in statistics and econometrics

literatures during the last two decades. Several models have been proposed to analyze special features of

financial data such as log returns of exchange rates and stock prices. The GARCH model, a generaliza-

tion of the ARCH model introduced by Bolleslev (1986), along with some of its derivative models such

as GARCH-M, EGARCH, and GJR are undoubtedly the most successful models used for this analysis.

Engle (1995), Gouriéroux (1997), and Campbell, Lo, and MacKinlay (1997) can be referred to for a

general overview of the definitions and properties with regard to the ARCH and GARCH models.

Parameter instability in GARCH models may be due to various factors such as policy changes and

shocks occurring in the domestic or foreign financial markets. Hence, we need to consider whether the

parameters of an observed financial time series are unstable over a period of time. It is well known

that the failure to take into account parameter changes that already exsit may lead to incorrect policy

implications and predictions. Therefore, it is important to estimate unknown change points in GARCH

∗This research is partially supported by the Ministry of Education, Science, Sports and Culture, Grant in Aid for Young
Scientist (B), 16730111.
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models in order to avoid spurious inferences. As noted in Diebold (1986) and later shown in Lamourex

and Lastrapes (1990), a high degree of persistence in GARCH models (IGARCH) can be attributed to

a misspecification of the volatility equation. The importance and necessity of testing the stability of

volatility parameters are presented in Pagan and Schwert (1990), Bollerslev, Chow, and Kroner (1991),

and Lamoureux and Lastrapes (1990).

There is a small but growing interest in testing for and estimating changes in the parameters of ARCH

and GARCH models. Chu (1995) and Lundbergh and Teräsvirta (2002) considered Lagrange multiplier

tests to detect a parameter shift in GARCH models. Mikosch and Stărică (2002) proposed periodogram-

type statistics for testing the goodness-of-fit. Berkes, Horváth, and Kokoszka (2004) studied a test based

on approximated likelihood scores to study the parameter constancy in GARCH(p, q) models. Cai (1994)

and Hamiltion and Susmel (1994) applied the regime-switching parameters in an ARCH specification in

order to account for the possible presence of structural breaks. The application to foreign exchange rates

using regime-shift GARCH models can be found in Nakatsuma (2000).

There is little literature available on optimal estimation of change points. For independent and iden-

tically distributed observations, Ritov (1990) developed an asymptotically efficient estimation method by

using nonparametric setups. For diffusion processes, Kutoyants (1994, 2004) showed that BE is asymp-

totically optimal. For dependent observations, Shiohama, Taniguchi, and Puri (2003) and Shiohama

(2003) studied asymptotically efficient estimations for time series regression models.

In this paper, we consider semiparametric GARCH models with a structural break point. The idea

of using semiparametric density in ARCH models was studied by Drost and Klassen (1997). One of the

advantages of using this model is that we can treat classical GARCH models as well as GARCH-M models

of Engle, Lilien, and Robins (1987) by appropriately choosing the parameters. GARCH-M models have

been widely used to analyze the relationship between market returns and their volatilities. To include the

risk premium term in the mean equation in GARCH models, we need to investigate the risk managements

and option pricing, for example, see Duan (1995) and Heston and Nandi (2000).

This paper is organized as follows. Section 2 defines the semiparametric GARCH models with a struc-

tural break point. Further, an asymptotic representation for the log-likelihood ratio between contiguous

hypothesis is derived. Section 3 describes the asymptotic estimation theory of change-point estimators.

Section 4 explains the cases with regard to a local change, where a problem regard to the shrinking

magnitude of a shift is considered. Monte Carlo simulations showing the performances of our theoreti-

cal results are given in Section 5. The applications of these theoretical results to the financial markets
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are presented in Section 6. Finally, Section 7 includes the proofs of the theorems and lemmas given in

Sections 2, 3, and 4.

2 Asymptotics of the Likelihood Ratio Process

In this section, we introduce the semiparametric GARCH models with a structural break. Further, the

asymptotic representation for the likelihood ratio process are studied. Throughout this paper, we denote

the suffix i = 1, 2. Let µi ∈ R, σi > 0, αi > 0, ωi > 0, and βi > 0 be the parameters and let {εt : t ∈ Z}
denote an i.i.d. sequence of innovation errors with location zero, scale one, and density g. We substitute

ξit with µi + σiεt; it should be noted that ξit is a random variable with location µi, scale σi, and density

σ−1
i g({· − µi}/σi). Further, we introduce the following convention: random variables such as ε and ξi

denote a typical element in the corresponding sequences {εt : t ∈ Z} and {ξit : t ∈ Z}.
The observations {yt, 1, . . . , n} follow a GARCH(1,1) process with an unknown change point if

yt =

{
h

1/2
1t ξ1t = µ1h

1/2
1t + σ1h

1/2
1t εt, t = 1, . . . , [τn]

h
1/2
2t ξ2t = µ2h

1/2
2t + σ2h

1/2
2t εt, t = [τn] + 1, . . . , n,

(2.1)

where the unobservable heteroskedasticity factors h1t and h2t depend on the past values as follows:

h1t = ω1 + β1h1,t−1 + α1y
2
t−1, t = 1, . . . , [τn], (2.2)

h2t = ω2 + β2h2,t−1 + α2y
2
t−1, t = [τn] + 1, . . . , n. (2.3)

It should be noted that the Euclidean parameters θi = (ωi, αi, βi, µi, σi)′ and τ are identifiable. In this

paper, we assume that equations (2.2) and (2.3) admit a stationary solution {ht : t ∈ Z}. A necessary

and sufficient condition is given by Theorem 2 of Nelson (1990); it is expressed as follows:

Assumption 1 E ln{βi + αiξ
2
i } < 0 for i = 1, 2.

Observe that the model with the autoregression parameters ωi, αi, and βi corresponds to the location-

scale model for i.i.d. random variables since the information provided by the observations h01, y1, . . . , yn

is equal to that of the random variables ξ1, . . . , ξn. Consequently, the location-scale model is a parametric

submodel of our time-series model, and this submodel can be assumed to be regular, for example, see

Hájek and Šidák (1967).

Assumption 2 The distribution of ε possesses an absolutely continuous Lebesgue density g with deriva-
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tive g′ and finite Fisher information for the location expressed as

Il(g) =
∫
{g′/g}2g(ε)dε (2.4)

and that for scale expressed as

Is(g) =
∫
{1 + εg′/g(ε)}2dε. (2.5)

Moreover, the random variable ε has location zero and scale one.

We select the following local parameterizatin:

θ
(n)
1 = θ1 +

λ1√
n
, θ

(n)
2 = θ2 +

λ2√
n
, and τ (n) = τ +

ρ

n
, (2.6)

where λ1 ∈ R
5, λ2 ∈ R

5 and ρ ∈ R are constants. Hereafter, we assume that ρ > 0 without loss

of a generality. An analogous discussion for ρ < 0 can be derived in a similar mannar. To obtain

the asymptotics of our estimators (MLE and BE), we consider the log-likelihood ratio Λn(λ1, λ2, ρ) of

h01, y1, . . . , yn for θ(n) = (θ(n)′

1 , θ
(n)′

2 , τ (n)) with respect to θ = (θ′1, θ′2, τ) for a fixed g. Note that the

residuals and conditional variances up to time t can be calculated recursively from (θ1, θ2) and the

observations h10, y1, . . . , yn, where h10(θ1) = h10 and h2,[τn](θ2) = h2,[τn] for t = 1, 2, . . . , are as follows:

ξt(θ) =

{
yt/h

1/2
1t (θ1), t = 1, . . . , [τn],

yt/h
1/2
2t (θ2), t = [τn] + 1, . . . , n,

(2.7)

εt(θ) =

{
{ξt(θ1) − µ1}/σ1, t = 1, . . . , [τn],
{ξt(θ2) − µ2}/σ2, t = [τn] + 1, . . . , n,

(2.8)

{
h1t+1(θ1) = ω1 + β1h1t(θ1) + α1y

2
t

h2t+1(θ2) = ω2 + β2h2t(θ2) + α2y
2
t .

(2.9)

Conditionary on h10 and h2,[τn], the density of yn = (y1, . . . , yn)′ under θ is given by

Ln(θ1, θ2, τ)

=
[τn]∏
t=1

σ−1
1 h

−1/2
1t g(σ−1

1 {h−1/2
1t yt − µ1})

n∏
t=[τn]+1

σ−1
2 h

−1/2
2t g(σ−1

2 {h−1/2
2t yt − µ2})

=
[τn]∏
t=1

σ−1
1 h

−1/2
1t g({ξ1t − µ1}/σ1)

n∏
t=[τn]+1

σ−1
2 h

−1/2
2t g({ξ2t − µ2}/σ2)

=
[τn]∏
t=1

σ−1
1 h

−1/2
1t g(εnt)

n∏
t=[τn]+1

σ−1
2 h

−1/2
2t g(εnt),
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where hit = hit(θi), ξit = ξit(θi), and εnt = εt(θ).

We introduce the following notation with h(n)
it = hit(θ

(n)
i ):

l{µi, σi}(x) = log g({x− µi}/σi) − log σi (2.10)(
M

(n)
it

S
(n)
it

)
= n1/2σ−1

i h
−1/2
it

(
µ

(n)
i h

(n)1/2

it − µih
1/2
it

σ
(n)
i h

(n)1/2

it − σih
1/2
it

)
(2.11)

and ε(n)
t = εt(θ(n)). Here, log Λs

n denotes the log-likelihood ratio for h10; further, the log-likelihood ratio

log Λ(λ1, λ2, τ) may be written as

log Λ(λ1, λ2, τ) = log

⎧⎨
⎩

[τn]∑
t=1

A1t +
n∑

t=[τn]+1

A2t +
[τn+ρ]∑

t=[τn]+1

(A3t −A4t)

⎫⎬
⎭+ Λs

n, (2.12)

where

A1t = {l{(µ1, σ1) + σ1n
−1/2(M (n)

1t , S
(n)
1t )}(ξ1t) − l{(µ1, σ1)}(ξ1t)}

= {l{(0, 1) + n−1/2(M (n)
1t , S

(n)
1t )}(εnt) − l{(0, 1)}(εnt)} (2.13)

A2t = {l{(µ2, σ2) + σ2n
−1/2(M (n)

2t , S
(n)
2t )}(ξ2t) − l{(µ2, σ2)}(ξ2t)},

= {l{(0, 1) + n−1/2(M (n)
2t , S

(n)
2t )}(εt) − l{(0, 1)}(εnt)}, (2.14)

A3t = log
[
σ

(n)−1

1 h
(n)−1/2

1t g(ε(n)
nt )

]
, and A4t = log

[
σ

(n)−1

2 h
(n)−1/2

2t g(ε(n)
nt )

]
. (2.15)

To eliminate the initial condition in the log-likelihood ratio statistic, we will use the following regularity

condition:

Assumption 3 The density ḡθ of the initial value h10 under θ satisfies

Λs
n = log{ḡθ(n)/ḡθ(h01)}−→

p
0 as n→ ∞.

To develop an appropriate expansion Λn, it will be convenient to introduce l̇int for the five-dimensional

conditional score at time t. More precisely, the three-dimensional vector derivative of the conditional

variance is given by

Hit(θi) =
∂

∂(ωi, αi, βi)
hit(θi) = βHi,t−1(θi) +

⎛
⎝ 1

y2
t−1

hit−1(θi)

⎞
⎠ , (2.16)

where H10(θ1) = H2[τn](θ2) = (0, 0, 0)′. The (5 × 2)-derivative matrix Wit(θi) is defined as

Wit(θi) = σ−1
i

(
1
2h

−1
it (θi)Hit(θi)(µi, σi)

I2

)
. (2.17)
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The location-scale score is denoted as (l′ = g′/g)

ψt(θi) = −
(

l′(εt(θi))
1 + εt(θi)l′(εt(θi))

)
, (2.18)

and l̇it(θi) = Wit(θi)ψt(θi). Then, the conditional score at time t may be denoted by l̇int = l̇t(θi). It

should be noted that l̇ is just a heuristic score. We also observe that

[τn+ρ]∑
t=[τn]+1

A3t −A4t

=
[τn+ρ]∑

t=[τn]+1

[
log
[
σ

(n)−1

1 h
(n)−1/2

1t g(ε(n)
nt )

]
− log

[
σ

(n)−1

2 h
(n)−1/2

2t g(ε(n)
nt )

]]

=
[τn+ρ]∑

t=[τn]+1

[
log
[
σ

(n)−1

1 h
(n)−1/2

1t g(ε(n)
nt )

/
σ−1

1 h
−1/2
1t g(εnt)

]

+ log
[
σ−1

1 h
−1/2
1t g(εnt)

/
σ−1

2 h
−1/2
2t g(εnt)

]
− log

[
σ

(n)−1

1 h
(n)−1/2

1t g(ε(n)
nt )

/
σ−1

2 h
−1/2
2t g(εnt)

]

=
[τn+ρ]∑

t=[τn]+1

{
n−1/2λ′1 l̇1nt − n−1/2λ′2 l̇2nt + (θ2 − θ1)′ l̇1nt

}

=
[τn+ρ]∑

t=[τn]+1

(θ2 − θ1)′ l̇1nt +Op(n−1/2). (2.19)

An expansion of (2.12) shows that the log-likelihood ratio Λn can be alternatively written as

log Λn(λ1, λ2, ρ)

= λ′1n
−1/2

[τn]∑
t=1

l̇1nt + λ′2n
−1/2

n∑
t=[τn]+1

l̇2nt +
[τn+ρ]∑

t=[τn]+1

(θ2 − θ1)′ l̇1nt

− 1
2n

⎡
⎣[τn]∑

t=1

{λ′1 l̇1nt}2 +
n∑

t=[τn]+1

{λ′2 l̇2nt}2 +
[τn+ρ]∑

t=[τn]+1

{(θ2 − θ1)′ l̇1nt}2

⎤
⎦+Rn.

The asymptotic representation of this likelihood ratio is stated in the following theorem. The proof of

this theorem is presented in Section 7.

Theorem 2.1 Suppose that Assumptions (A.1)-(A.3) are satisfied. Then, the log-likelihood ratio

log Λn(λ1, λ2, ρ), as defined by (2.12) and (2.20), has an asymptotic representation

log Λ(λ1, λ2, ρ)

=
√
τλ′1∆1n +

√
1 − τλ′2∆2n + (θ2 − θ1)′∆3n

−1
2

[τλ′1I(θ1)λ1 + (1 − τ)λ′2I(θ2)λ2 + (θ2 − θ1)′V (θ2 − θ1)] + op(1), (2.20)
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where

∆1n =
1√
τn

[τn]∑
t=1

l̇1nt and ∆2n =
1√

(1 − τ)n

n∑
t=[τn]

l̇2nt

are Gaussian random variables with mean 0 and variance I(θ1) and I(θ2), respectively. Here, I(θi) is

the probability limit of the averaged score products l̇it l̇′it. ∆3n =
∑[τn+ρ]

t=[τn]+1 l̇1nt is a random variable with

mean 0 and variance V ≡ E(∆3n∆′
3n).

The properties of the likelihood ratio can be obtained by the following lemma:

Lemma 2.1 Suppose that Assumptions (A.1)-(A.3) hold. Then, for any compact set C ∈ Θ to be an

open subset of R
5 × R

5 × [0, 1], the function Λn(λ1, λ2, ρ) possesses the following properties:

sup
θ
EΛ1/2

n (λ1, λ2, ρ) ≤ exp{−g(λ1, λ2, ρ)}, (2.21)

where

g(λ1, λ2, ρ) = λ′1K1λ1 + λ′2K2λ2 + ρ2C

with some positive definite matrix Ki and C > 0. Further, there exists a number m > 0 such that

sup
(θ1,θ2,τ)∈C,λ1,λ2<H,ρ<H

⎡
⎣ 2∑

j=1

∥∥∥λ(2)
j − λ

(1)
j

∥∥∥2m

+
∥∥∥ρ(2) − ρ(1)

∥∥∥2m

⎤
⎦
−1

× E
[
Λ1/m

n (λ(2)
1 , λ

(2)
2 , ρ(2)) − Λ1/m

n (λ(1)
1 , λ

(1)
2 , ρ(1))

]m
≤ B(1 +H)m.

3 Properties of Estimators

We are interested in the behavior of the maximum likelihood estimator (MLE) and the Bayesian estimator

(BE) for the parameters of semiparametric GARCH models in the presence of a structural break point.

MLE θ̂
(ML)
n = (θ̂(ML)′

1n , θ̂
(ML)′
2n , τ̂

(ML)
n ) is considered as the solution of the following equation:

(θ̂(ML)′
1n , θ

(ML)′
2n , τ̂ (ML)

n ) = arg sup
(θ1,θ2,τ)∈Θ

Ln(θ1, θ2, τ). (3.1)

To introduce a Bayesian estimator, we need a function w(y), y ∈ R
d that is

1. nonnegative, continuous at point 0, and w(0) = 0; however, it is not identically zero;

2. symmetric: w(y) = w(−y);

3. the set {y : w(y) < c} is convex for all c > 0.
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The BE (for a quadratic loss function) θ̃(B)
n = (θ̃(B)′

1n , θ̃
(B)′
2n , τ̃

(B)
n ) is defined as

(θ̃(B)′
1n , θ̃

(B)′
2n , τ̃ (B)

n ) =
∫

Θ

(θ′1, θ
′
2, τ)

q(θ1, θ2, τ)Ln(θ1, θ2, τ)∫
Θ q(θ1, θ2τ)Ln(θ1, θ2, τ)d(θ1, θ2, τ)

d(θ1, θ2, τ). (3.2)

Let us introduce random fields

Λ(1)(λ1) = exp
{√

τλ′1∆1n − 1
2
τλ′1I(θ1)λ1

}
,

Λ(2)(λ2) = exp
{√

1 − τλ′2∆2n − 1
2
(1 − τ)λ′2I(θ2)λ2

}
,

and

Λ(3)(ρ) = exp
{

(θ2 − θ1)′∆3n(ρ) − 1
2
(θ2 − θ1)′V (ρ)(θ2 − θ1)

}
,

where ∆in, i = 1, 2, 3 and V are defined previously in Theorem 2.1. Then, the asymptotic representation

of the log-likelihood ratio process is expressed as

Λ(λ1, λ2, ρ) = Λ(1)(λ1) + Λ(2)(λ2) + Λ(3)(ρ).

Let ξi ∈ R
5, i = 1, 2, be a Gaussian random vector

L{ξi} = N(0, I(θi)−1)

and ζ ∈ R be

ζ = arg sup
ρ∈R

exp{Λ(3)(ρ)}.

Therefore, the random vector (ξ1, ξ2, ζ) is defined as

(ξ1, ξ2, ζ) = arg sup
λ1,λ2,ρ∈R11

exp{Λ(λ1, λ2, ρ)}. (3.3)

On recalling Theorem 2.1 and Lemma 2.1, it is observed that Theorems 1.10.1 and 1.10.2 of Ibragimov

and Has’minskii (1981) can be applied; therefore proof is omitted. The MLE has the following properties:

Theorem 3.1 Let the parameter set Θ be an open subset of R
5×R

5× [0, 1]. Then, the MLE is uniformly

consistent with θ = (θ1, θ2, τ) ∈ Θ such that

P − lim
n→∞ θ̂

(ML)

n = θ

and converges in distribution

Lθ(An(θ̂
(ML)

n − θ))−→
d

L(ξ1, ξ2, û),
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where An = diag(
√
τn, . . . ,

√
τn,

√
(1 − τ)n, . . . ,

√
(1 − τ)n, n). For any continuous loss function w ∈

Wp, we have

lim
n→∞Eθw(An(θ̂

(ML)

n − θ)) = Ew(ξ1, ξ2, û).

Next, we state the asymptotic properties of the BE (θ̃(B)
1n , θ̃

(B)
2n , τ̃

(B)
n ).

Theorem 3.2 Let the parameter set Θ be an open subset of R
5 ×R

5 × [0, 1]. Then, the BE is uniformly

consistent with θ = (θ1, θ2, τ) ∈ Θ such that

P − lim
n→∞ θ̂

(B)
= θ

and converges in distribution

Lθ(An(θ̂
(B)

n − θ))−→
d

L(ξ1, ξ2, ũ),

where An = diag(
√
τn, . . . ,

√
τn,

√
(1 − τ)n, . . . ,

√
(1 − τ)n, n). For any continuous loss function w ∈

Wp, we have

lim
n→∞Eθw(An(θ̃

(B)

n − θ)) = Ew(ξ1, ξ2, ũ).

According to Theorem 1.9.1 of Ibragimov and Has’minskii (1981), for any estimator (θ1n, θ2n, τn), the

inequality

lim
n→∞ sup

θ1,θ2,τ∈Θ
Eθ[w{An(θ1n, θ2n, τn)}] ≥ E[w{(ξ1, ξ2, ζ̃)}]

holds. Hence, the BE is asymptotically efficient with respect to the quadratic loss function: however, the

MLE is not as asymptotically efficient.

The theorems obtained in this section can be easily extended to semiparametric GARCH(p, q) models

and to the problem of multiple structural breaks. Moreover, these results can be extended to the case of

ARMA-GARCH models by applying the results of the local asymptotic quadratic (LAQ) form of Ling

and McAleer (2003).

4 Local Change Problem

In this section, we consider the asymptotic distributions of the change-point estimators based on a shrink-

ing magnitude of the shift. Since, the limiting distribution of the semiparametric GARCH parameters

are identical to those obtained in previous chapters, we will investigate the asymptotic properties for

change-point estimators. Hence, we consider the following local parameterization:

τ (n) = τ + ρ ‖δn‖−2
, (4.1)
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where δ′n = n1/2(θ2−θ1)′, (θ2−θ1)′ = O(n−α) with 0 < α < 1/2 and ‖δn‖ → ∞ as n→ ∞. The notation

‖x‖ denotes the Euclidean norm, that is, ‖x‖ = (
∑p

j=1 x
2
j )

1/2 for x ∈ R
p.

Let

ψ(r, θi) =
1√
n

[nr]∑
t=1

l̇int;

then based on the general properties of a score function, we have for c′ ∈ R
5,

√
nc′ψ(1, θi)−→

d
N(0, c′I(θi)c).

To extract the asymptotics, we use the fact that the following functional central limit theorem holds:

c′
1√
n

[nr]∑
t=1

ψ(r, θi) = V
1/2
L W (r), (4.2)

where W (·) represents a Wiener process or standard Brownian motion and VL is the long-run variance

of c′ψ(1, θi)c, that is, VL ≡ R(0) + 2
∑∞

j=1 R(j). Here, R(j) is the lag j autocovariance function of

c′ψ(1, θi)c. The proof is obtained by directly applying Donsker’s theorem (see Billingsley (1999) and

Phillips and Durlauf (1986)).

Theorem 4.1 Under the same assumptions of Theorem 2.1 with the condition (4.1), the log-likelihood

ratio process log ΛL
n(ρ) has the following asymptotic representation:

log ΛL
n(ρ) = V

1/2
L W (ρ) − 1

2
|ρ|VL + op(1), (4.3)

where W (ρ); s ∈ R is a two-sided standard Wiener process, i.e.,

W (ρ) =
{
W1(−ρ) ρ < 0
W2(ρ) ρ ≥ 0.

Here, {W1(s); s ∈ [0,∞)}and {W2(s); s ∈ [0,∞)} are independent standard Wiener processes.

Further, we observe the following lemmas:

Lemma 4.1 Under the same assumptions of Theorem 2.1 with the condition (4.1), we have

sup
τ∈T

EΛL
n(ρ) ≤ exp{−g(ρ)}, (4.4)

where g(ρ) = ρC with some constant C > 0. Further, we have

sup
|u|+|v|<R

|u− v|−1E|ΛL
n(u) − ΛL

n(v)|2 ≤ C(1 +R2). (4.5)

10



The limit process for the likelihood ratio ΛL
n(ρ) is characterized by the process Z(ρ) = exp{W (ρ)− 1

2 |ρ|}.
The corresponding random variables û and ũ are defined by the equations

û = arg sup
u∈R

Z(u) and ũ =
∫
uZ(u)du∫
Z(u)du

. (4.6)

Using the arguments from the previous sections, Theorem 4.1 together with Lemma 4.1 indicate a con-

vergence in the distribution of the MLE and BE. The limiting distribution of the MLE and BE for the

change point is given by

V
−1/2
L ‖δn‖2 (τ (ML)

n − τ)−→
d

L(û) and V
−1/2
L ‖δn‖2 (τ (B)

n − τ)−→
d

L(ũ). (4.7)

The asymptotic efficiency of the BE can be obtained in a similar manner.

Using the limiting distributions obtained above, we can easily construct confidence intervals for the

unknown change point τ , while it is difficult to obtain these from Theorems 3.1 and 3.2. By (4.7), we

obtain the 100(1 − α)-percent asymptotic confidence interval for the MLE and BE as(
τ̂ (ML)
n − c(ML)(α/2)V̂ 1/2

L

∥∥∥δ̂n∥∥∥−2

, τ̂ (ML)
n + c(ML)(1 − α/2)V̂ 1/2

L

∥∥∥δ̂n∥∥∥−2
)

(4.8)

and (
τ̂ (B)
n − c(B)(α/2)V̂ 1/2

L

∥∥∥δ̂n∥∥∥−2

, τ̂ (B)
n + c(B)(1 − α/2)V̂ 1/2

L

∥∥∥δ̂n∥∥∥−2
)
, (4.9)

respectively, where V̂L and δ̂n are the consistent estimators of VL and δn and c(ML)(α) and c(B)(α) are the

100α percent quantiles of the random variables û and ũ, respectively. The distribution of û is well known;

refer to Csörgő and Horváth (1997) and Stryhn (1996) for a detailed description. The distribution of ũ

is investigated by the Monte Carlo simulations. Table 1 provides the asymptotic quantile for ũ together

with ûMC and û, where ûMC denotes the results from the simulations. By comparing the critical values

of û and ûMC given in Table 1, we can confirm that the Monte Carlo simulation gives a fairly good

approximation of the distribution of ûMC and ũ. When we construct a 95% confidence interval of τ , the

length of the confidence interval using τ̂ (ML)
n is observed to be approximately 28% greater than that of

using τ̃ (B)
n .

5 Simulation

In this section, we investigate the finite sample performances of two change-point estimators. The

GARCH(1,1) model with an unknown change point is given by

yt =

{
h

1/2
1t εt, t = 1, . . . , [τn],
h

1/2
2t εt, t = [τn] + 1, . . . , n,

11



where {
h1t = ω1 + β1h1,t−1 + α1y

2
t−1,

h2t = ω2 + β2h2,t−1 + α2y
2
t−1.

We select the parameters (ω1, α1, β1) = (0.1, 0.1, 0.8) and β2 = (0.4, 0.6); the parameters ω2 and α2 do not

change. Further, we select the sample size as n = (500, 1000) and change point as τ = (0.25, 0.5, 0.75).

The innovation density is performed with N(0, 1) distributions. The prior distribution of the BE is

selected as a uniform distribution. Table 2 shows the simulation results with 1,000 replications. We

computed the means, standard deviations (S.D.) and the root mean square errors (RMSE) for τ̂ (ML)
n and

τ̃
(B)
n . From this table, we observe the following. The RMSE and S.D. of the BE have a better performance

than those of the MLE in all the experiments. This is an agreement with the theoretical results given in

Section 3. When the sample size n increases, RMSE and S.D. decreases. This verifies the consistency of

both the estimators. For a smaller value of |β1 − β2|, the values of RMSE and S.D. increase. When the

change point is located in the quarter and third quarter of the observations, the bias of the BE and MLE

increase.

6 Empirical Results

In this section, we illustrate an application of our theoretical results using the Nikkei 225 index returns.

The entire sample consists of the Nikkei 225 returns from January 5, 1997, to March 31, 2005, for a

total of 2027 observations. We present the empirical estimates for the GARCH(1,1) model with a normal

distribution in the presence of multiple structural breaks1. The primary purpose of this section is to

investigate the effects of the use of an asymptotically efficient estimator, the BE. To see this, we estimate

unknown break points by the MLE, and compare the confidnece intervals of them by using the MLE and

BE.

In order to find out the number of break points, we compare the Akaike’s information criterion

(AIC) and the Schwarz’s information criterion (SIC). Such information criterion are often used for model

selection: in this case, this refers to the selection of the number of break points. As mentioned in Bai

and Perron (2003), the AIC usually overestimates the number of breaks, whereas the SIC sometimes

underestimates them. Table 3 shows that the SIC does not selects any structural break point, but the

AIC selects a model with three break points; hence we use the AIC selection. The maximum likelihood

estimates of the unknown change points with GARCH parameters as well as the case with no structural

1We have investigated GARCH-M models with multiple structural breaks, however the satisfactory results on the risk
premium term can not obtained.
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break point are shown in Table 4. The estimated change points are March 4, 1999, April 14, 2000, and

December 17, 2003.

Figure 1 shows the volatility forecasts with unconditional variance. The maximum likelihood break

point estimates with 95% confidence intervals based on (4.8) and (4.9) are also given. We made the

followings observations. First, it is clear that the unconditional variance is unstable over the given

periods. As indicated in Hamiltion and Susmel (1994), a shock on a particular day would produce non-

negligible effects on the variance within a few days than that on a year later. This would be the main

reason why the GARCH volatility forecasts are sometimes too small and too high across the periods.

However, these features can be modified by considering the multiple break point model. Second, both

the estimated GARCH models with and without break points exhibit high volatility persistence, which

is denoted as αi + βi. This persistence is not attributed to the possible presence of structural breaks

in the volatility parameters. We cannot confirm the findings mentioned in Lamoureux and Lastraoes

(1990). The change in variance is primarily due to a shift in the parameter ωi. Third, the length of the

confidence interval is affected by the variance of the score functions, while the magnitude of the shift does

not affect its length because the nature of GARCH parameters, the magnitude of shift cannot be greater

than 1. The estimation of the parameters in the second regime is not statistically significant at the 10%

level except for β; widens the confidence interval for the change-point estimates. Fourth, as Tsay (2001)

showed, the parameter αi plays an important role that it determins the kurtosis of the series. Hence, the

change in parameter α causes the change in the kurtosis of the given regime. From Table 1, α2 is close

to zero which indicate that the kurtosis is close to the normal destribution, while on the other regimes,

αi for i = 1, 3, 4 takes the values beween (0.05,0.10), which indicate the heavy tail phenomima. Finally,

the estimated break points –March 4, 1999, April 14, 2000, and December 17, 2003– can be interpreted

as an upward trend shift in the level of the Nikkei 225 index, a crash in the New York Dow Jones index,

and the turning points that led to the stable level period, respectively. Hence the estimated structural

break points relate to the trend shift in the level of market prices.

7 Proofs

Proof of Theorem 2.1 From Theorem 2.1 of Drost and Klaassen (1997) , it can be shown that as

n→ ∞, Rn → 0,

λ′1n
−1/2

[τn]∑
t=1

l̇1nt − 1
2n

τn∑
t=1

{λ′1 l̇1nt}2 −→
d
N(−1

2
τλ′1I(θ1)λ1, τλ

′
1I(θ1)λ1)
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and

λ′2n
−1/2

n∑
t=[τn]+1

l̇2nt − 1
2n

n∑
t=[τn]+1

{λ′2 l̇2nt}2 −→
d
N(−1

2
(1 − τ)λ′2I(θ2)λ2, (1 − τ)λ′2I(θ2)λ2)

as n→ ∞. We can easily observe that the random variable ∆3n has a mean 0 and variance V . �

The following lemma is used to obtain Lemma 2.1. The proof can be obtained from the classical Kol-

mogorov exponential inequality (see, for example, Stout (1974), p. 263); hence, we omit the proof.

Lemma 7.1 Let X1, . . . , Xn be a sequence of random variables with mean 0 and finite variance. Lets2n =

(
∑n

k=1 EXk)2 and assume that |Xk| ≤ Cs2n, almost surely for each 1 ≤ k ≤ n and n ≥ 1. Then, for each

a > 0 and n ≥ 1, the assumptions εC ≤ a and 0 < α ≤ a3/(ea − 1 − a− a2/2) imply that

E exp(Sn/s
2
n) ≤ exp(−c1),

where c1 = exp{−(ε/2)(1 + εC/α)} and Sn =
∑n

k=1Xk as usual.

Proof of Lemma 2.1 First, we prove (2.24). From Theorem 2.1, Lemma 7.1 with 2c1 − 1 > 0, and

the equality E exp ζp = exp(p2σ2/2), which is valid for a Gaussian random variable ζ with parameters

(0, σ2), it follows that for p > 1

EΛn(u)1/2 = E

[
exp

{
1
2
(λ′1A1 + λ′2A2 +A3(ρ)) − 1

4
(λ′1B1λ1 + λ′2B2λ2 +B3(ρ))

}]

≤ exp[−1
4
(λ′1B1λ1 + λ′2B2λ2 +B3(ρ))]

[
E exp (λ′1A1 + λ′2A2)

p/2
]1/p [

E exp(A3(ρ))p/2
]1/p

≤ exp[−1
4
(λ′1B1λ1 + λ′2B2λ2 +B3(ρ))]

[
exp

(p
4

)
(λ′1B1λ1 + λ′2B2λ2) +

c1
2
B3(ρ)

]
= exp

{(
p− 1

4

)
(λ′1B1λ1 + λ′2B2λ2) +

2c1 − 1
4

B3(ρ)
}

where

A1 =
√
τ∆1n, A2 =

√
1 − τ∆2n, A3(ρ) = (θ2 − θ1)′∆3n,

B1 = τI(θ1), B2 = (1 − τ)I(θ2) and B3(ρ) = (θ2 − θ1)′V (θ2 − θ1).

These expressions along with B3 = O(ρ2) implies (2.24). As for (2.25), we observe that

Eθ

∣∣∣Λn(λ(1)
1 , λ

(1)
2 , ρ(1))1/2m − Λn(λ(2)

1 , λ
(2)
2 , ρ(2))1/2m

∣∣∣2m

= Eθ1

∣∣∣Y 1/2m
n − 1

∣∣∣2m

, (7.1)
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where Yn = (Λn(u(2))/Λn(u(1)))1/m, and u(i) = (λ(i)
1 , λ

(i)
2 , ρ(i)) for i = 1, 2. The exponent index in Yn

could be

lnYn = (λ(1)
1 − λ

(2)
2 )′A1 + (λ(1)

2 − λ
(2)
2 )′A2 +A3(ρ(1)) −A3(ρ(2))

−1
2

[
λ

(1)′
1 B1λ

(1)
1 + λ

(1)′
2 B2λ

(1)
2 +B3(ρ(1)) − λ

(2)′
1 B1λ

(2)
1 − λ

(2)′
2 B2λ

(2)
2 −B3(ρ(2))

]
= (λ(1)

1 − λ
(2)
2 )′A1 + (λ(1)

2 − λ
(2)
2 )′A2 +A3(ρ(1)) −A3(ρ(2))

−1
2

[
(λ(1)

1 − λ
(2)
1 )

∂D1(λ
(∗)
1 )

∂λ
(2)
1

+ (λ(1)
2 − λ

(2)
2 )

∂D2(λ
(∗)
2 )

∂λ
(2)
2

+ CA3(ρ
(1) − ρ(2))2)

]

= F1 + F2 + F3 − 1
2
[G1 +G2 +G3] (say)

≡ Ψ(u(1), u(2)),

where Di(x) = x′I(θi)x for i = 1, 2 and CA3 =. It can be seen that

EΨ(u(1), u(2))2 = G2
1 +G2

2 +G2
3 + 2(G1G2 +G1G3 +G2G3)

+E

[
F 2

1 + F 2
2 + F 2

3 + 2(F1F2 + F1F3 + F2F3) +
3∑

i=1

Fi(G1 +G2 +G3)

]
.

We have for i = 1, 2 EF 2
i = G2

i = O

(∥∥∥λ(1)
i − λ

(2)
i

∥∥∥2
)

and EF 2
3 = G2

3 = O
(
(ρ(1) − ρ(2))2

)
. Hence from

the independence of Fi and Fj for i 
= j, we obtain

EΨ(u(1), u(2))2 = O

(∥∥∥λ(1)
1 − λ

(2)
1

∥∥∥2

+
∥∥∥λ(1)

2 − λ
(2)
2

∥∥∥2

+ |ρ(1) − ρ(2)|2
)
. (7.2)

Furthremore, we observe that from (2.24) that for λ(i)
j , ρ(i) < H with i, j = i, 2

E
(
exp

{
Ψ(u(1), u(2))

})
≤ H (7.3)

Hence, by using the Schwarz inequality,

Eθ1

∣∣∣Y 1/2m
n − 1

∣∣∣2m

≤ Eθ1

∣∣∣exp{Ψ(u(1), u(2))} − 1
∣∣∣2m

≤ E
∣∣∣Ψ(u(1), u(2))

{
exp

{
Ψ(u(1), u(2))

}
+ 1

}∣∣∣2m

≤
[
EΦ(u(1), u(2))2

]m [
2(E exp

{
Ψ(u(1), u(2))

}
+ 1)

]m
≤ B(1 +H)m

{∥∥∥λ(2)
1 − λ

(1)
1

∥∥∥2m

+
∥∥∥λ(2)

2 − λ
(1)
2

∥∥∥2m

+ (ρ(2) − ρ(1))2m

}
,

where we use the facts (7.2) and (7.3). Hence, the lemma is proved . �
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Proof of Theorem 4.1 From (2.20) and the functional limit theorem (4.2), we can see

(θ2 − θ1)′
nτ+ρn2α∑
t=τn+1

ψ(r, θ1) = n−α

ρn2α∑
t=1

ψ(r, θ1)−→
d
V

1/2
L W2(ρ),

and the variance of W2(ρ) is expressed as

(θ2 − θ1)′

⎛
⎝τn+ρn2α∑

t=τn+1

ψ(r, θ1)ψ(r, θ1)′

⎞
⎠ (θ2 − θ1)′ −→

p
ρVL;

which concludes the proof. �

Proof of Lemma 4.1 This proof similarly follows from Theorem 1.4 of Kutoyants (1994).
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Table 1. Critical values of û and ũ.

Quantile

0.01 0.025 0.05 0.10

û -15.87 -11.03 -7.69 -4.70

û(MC) -15.70 -10.93 -7.66 -4.65

ũ -11.63 -8.59 -6.29 -4.19

Table 2. Simulation results with N(0, 1) distribution.

MLE BE

n β2 Mean S.D. RMSE Mean S.D. RMSE

τ = 0.25
500 0.4 0.2794 0.1235 0.1269 0.2949 0.0985 0.1082

0.6 0.3363 0.2219 0.2380 0.3457 0.1650 0.1901

1000 0.4 0.2536 0.0385 0.0387 0.2612 0.0357 0.0374

0.6 0.2690 0.1120 0.1135 0.2830 0.0802 0.0867

τ = 0.5
500 0.4 0.4963 0.1139 0.1139 0.4991 0.0864 0.0864

0.6 0.5075 0.1949 0.1949 0.5079 0.1426 0.1426

1000 0.4 0.4965 0.0667 0.0667 0.5009 0.0411 0.0411

0.6 0.5044 0.0890 0.0890 0.5056 0.0629 0.0631

τ = 0.75
500 0.4 0.7098 0.1550 0.1600 0.7012 0.1261 0.1351

0.6 0.6689 0.2226 0.2368 0.6555 0.1719 0.1961

1000 0.4 0.7438 0.0618 0.0620 0.7421 0.0492 0.0498

0.6 0.7367 0.1049 0.1057 0.7268 0.0854 0.0884
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Table 3. Results of the AIC and SIC.

AIC SIC
m = 0 7288 7310
m = 1 7274 7336
m = 2 7272 7373
m = 3 7270 7410
m = 4 7272 7454

Notes: (1) m refers to the number of the break points.

(2) AIC is calculated as −2log likelihood + 2(3m+ p(m+ 1), where p denotes the number of parameters

in each regime.

(3) SIC is calculated as −2log likelihood + lnn(3m+ p(m+ 1)), where n denotes the sample size.

Table 4. Maximum likelihood estimates of GARCH(1,1) models with and without structural breaks.

Nikkei 225 Index
97/1/7- 99/3/5- 　 00/4/17- 03/12/18- 97/1/7
99/3/4 00/4/14 03/12/17 05/3/31 05/3/31

τ 0.2698 0.3981 0.8451 -
ω 0.1083∗∗ 0.2488 0.1246∗∗ 0.0101 0.0557∗∗∗

(0.0465) (0.4265) (0.0492) (0.0132) (0.0176)
α 0.0956∗∗∗ 0.0173 0.0527∗∗∗ 0.0622∗∗ 0.0804∗∗∗

(0.0241) (0.0452) (0.0157) (0.0252) (0.0118)
β 0.8687∗∗∗ 0.8000∗∗ 0.8991∗∗∗ 0.9285∗∗∗ 0.8971∗∗∗

(0.0297) (0.3500) (0.0257) (0.0288) (0.0144)
α+ β 0.9641 0.8171 0.9517 0.9904 0.9772

ω
1−(α+β) 3.0165 1.3604 2.5785 1.0552 2.4479

Standard errors are presented in parentheses. The asterisks indicate significance at 10%(∗), 5%(∗∗) and

1%(∗∗∗) levels.
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Figure 1. Estimated break points with 95% confidence intervals. The narrow confidence interval

corresponds to Bayesian estimators with (a) volatility forecasts, (b) daily log returns of the Nikkei 225

index, and (c) the Nikkei 225 index.
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