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Abstract

We propose a Bayesian procedure to estimate possibly heteroscedas-
tic variances of the regression error term, without assuming any struc-
ture on them. What we propose in this paper, may be construed as a
Conditional Bayesian procedure that is conditioned upon the HCCM
obtained from the OLS estimation of the original regression model.
After we obtain the Eicker–White HCCM, we set up a Bayesian model
and use an MCMC to simulate posterior pdf’s of heteroscedastic vari-
ances whose structures are unknown. In addition to the numerical
examples, we present an empirical investigation on the stock prices of
Japanese pharmaceutical and biomedical companies.
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1 Introduction

We propose a Bayesian procedure to estimate possibly heteroscedastic vari-
ances of the regression error term, without assuming any structure on them.
Our focus is on the direct estimation of the diagonal elements of regres-
sion error term variance-covariance matrix, ω vector.1 In a sampling theory
asymptotics framework, Eicker (1963) and White (1980) developed a well-
known consistent variance-covariance matrix estimator for the OLS regres-
sion coefficient estimator (“HCCM” for short hereafter). What we propose
in this paper, may be construed as a Conditional Bayesian procedure that
is conditioned upon the HCCM obtained from the OLS estimation of the
original regression model. We note that our focus in this paper is not in
statistical inferences of the regression coefficient vector, however, our results
may be used to obtain a regression coefficient estimator that is relatively
more efficient,2 and to construct better performing tests of restrictions on
the regression coefficient vector.

Our strategy to estimate the ω vector is in two stages. In the first stage,
we obtain the HCCM from the estimation results of the original regression
model using the OLS. Since we do not assume any a priori structure on ω,
the resultant method is nonparametric in its nature up to this point. In
the second stage, viewing the HCCM as a regression model, and assuming
appropriate informative prior pdf’s, we simulate ω as a set of posterior
random variables in a Bayesian model using an MCMC (Markov Chain
Monte Carlo) method. In this sense, our entire method may be termed
Conditional Bayesian3.

The current trend in the HCCM literature seems to focus on improving
the finite sample performance of tests on the linear restriction(s) on the
coefficient vector, e.g., Long and Ervin(2000) and Godfrey (2006), among
others.

The import of direct estimation of the ω vector needs few discussions.
For instance, ω in stock return in finance, is nothing but the volatility.4 In
order to access an option pricing, what we need to do first is to come up
with a reasonable estimate of volatility. Our estimation of ω needs no para-
metric model for the volatility process such as the GARCH model. Since
our method depends on the OLS estimation of a regression model in the first
stage to obtain an HCCM, and the fact that the HCCM estimator is non-
parametric in its nature, our method is nonparametric as well. If we wish to
estimate a volatility process in time series data without assuming any struc-
ture on it, what we usually do is to calculate a historical volatility series.

1! vector is the diagonal elements of the regression error term variance-covariance
matrix. It is formally defined just below equation (4).

2For instance, Robinson (1987) assuming error term scedastic function to be a function
of regressors, thus the scedastic function is an unknown form, derived a GLS estimator
that is more efficient than the existing ones.

3We are not aware of any paper that uses the term “Conditional Bayesian,” in the way
we use it in this paper.

4Actually, in finance “standard deviation” instead of “variance”, is equivalent to the
term “volatility”. Hence, to be precise, we should say that “elementwise square root of !
is volatility.”
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But this is just a descriptive statistic without any theoretical background.
Moreover, when it comes to cross section data, historical volatility calcula-
tion breaks down for obvious reasons. Our conditional Bayesian method, on
the other hand, should provide a good deal of theoretical support for cross
sectional data.

The rest of this paper is organized as follows. In section 2, we set our
regression model, and use the Eicker–White result to formulate the HCCM
regression model of the second stage conditional Bayesian inference. We
make several remarks for this model in the section; all proofs are relegated to
the appendix. Section 3 starts out with our Bayesian setup, that is followed
by some numerical and empirical results. Our empirical investigation is
on the stock prices of Japanese pharmaceutical and biomedical companies.
Section 4 concludes.

2 The Model

For a heteroscedastic regression model,

y = Xβ + ε, (1)

where X ∼ n × K is a purely exogenous variable matrix, ε ∼ (0, σ2Ω),
Ω = diag(ω) = diag(ω1, . . . , ωn), tr(Ω) = n, σ2 is a scalar and n is a sample
size, a well-known consistent variance estimator of the β vector, when it is
estimated by the OLS, is available.5 Let the OLSE (OLS estimator) of β be
b. Using b we obtain the OLS estimated residual vector, e = (e1, . . . , en)′

as e = y −Xb. Eicker and White’s result may be used to form a sandwitch
variance-covariance matrix estimator of b that is consistent:(

1
n

X ′X
)−1

Ĥ

(
1
n

X ′X
)−1

,

where Ĥ =
1
n

n∑
t=1

xtx
′
te

2
t and X ′ = (x1, . . . , xn) ∼ K × n. Under the usual

assumptions such as a full rank matrix lim
1
n

X ′X ≡ Q < ∞, it is well
known that

Ĥ
p−→ H = lim

σ2

n
X ′ΩX = lim

σ2

n

n∑
t=1

xtx
′
tωt (2)

holds. We may, hence, postulate a multivariate regression model of the
following:

Ĥ = H + V , (3)

where V ∼ K ×K is an error term matrix that is constrained to make both
H and Ĥ > 0. 6 After some manipulations (see the appendix to this
paper), the above becomes

ĥ = Xnσ2ω + v (4)
5For our present purely exogenous nonstochastic X, Eicker’s (1963) result suffices.

White (1980) extends the result to include stochastic regressors as well.
6We use the notation “A > 0” to denote that the matrix A is positive definite.
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where ĥ = vech(Ĥ) ∼ K ′ × 1,

Xn = [vech(x1x
′
1) . . .vech(xnx′

n)] ∼ K ′ × n,

ω = (ω1 . . .ωn)′ ∼ n × 1, and ω ⊂ �n
+

v = vech(V ) ∼ K ′ × 1

and K ′ ≡ 1
2
K(K + 1).

Some remarks to clarify the nature of the scedastic function regression
model, as given in equation (4), are in order. Our first remark is on the
error term, v, and on the parameter vector ω. Distributional assumptions
on v are hard to come by, however. The only requirement on the nature of
v is as follows.

Remark 1. Elements of v should make Ĥ > 0 through ĥ with the fact
that ω ⊂ �n

+.

We next turn our attention to the identifiability condition for the parame-
ters in equation (4). It should be noted that the ω parameters in equation
(4) are identifiable only when the β vector in the original equation, i.e.,
equation (1), is identifiable. Hence, the following should hold.

Remark 2. The ω vector in equation (4) is identifiable if the inequalities
K ′ > n and n > K simultaneously hold, where the regressor matrix in the
equation, Xn, has its dimension K ′ × n and K ′ = K(K + 1)/2 as defined
just after equation (4).

The above states that in a typical case like n = 50 and K = 3, ω is unidenti-
fiable since K ′ = 6. The chances are very slim for ω to become identifiable,
however. Take n = 20 and K = 10 then K ′ = 55 which makes ω to be
identifiable. We do admit that the conditions in the above remark, are not
easily met in practice.

Remark 2 has clarified that ω may become identifiable if the column
dimension of X increases. Then the “sample size” in equation (4), i.e., K ′,
should also increase. We need to be careful employing this approach, how-
ever. What we need to do is to increase K ′ without altering e, estimated
regression residual vector from equation (1), that constitutes a part of de-
pendent variable in equation (4). We may even call the situation “the curse
of degrees of freedom.”

An approach that Amemiya (1983) proposes in a different context, may
be adopted to free us from “the curse of degrees of freedom.” Amemiya pro-
posed what he calls “partially generalized least squares” estimation method
to improve upon efficiency over OLSE. He used a set of regressors that are
orthogonal to the original regressors. For our model, the regressor matrix
in the original regression equation now becomes

Z = (X W ) ∼ n × (K + KW ), (5)

where we require that W is orthogonal to all the variables in the original
regression, i.e., W ′(y X) = 0 ∼ KW × (K + 1) 7. It is easy to show that

7It is well known that the OLSE of ˛ for the transformed regression, Z′y = Z′X˛ +
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b and e from equation (1) remain the same even after we regress y on Z

instead of X alone8. We are now ready to present our final remark of this
section.

Remark 3. Use Z defined in equation (5) in place of X in equation (1).
Then the identifiability condition of Remark 2, becomes

K ′′ > n and n > K,

where K ′′ ≡ (K + KW )(K + KW + 1)/2.

We may increase KW to the extent that K ′′ satisfies the above two
conditions simultaneously. For instance, take the previous numerical case of
n = 50 and K = 3. If we set 7 < KW < 47 then the conditions in the above
remark are satisfied. In summary, we now have the control over the number
of additional orthogonal variables, KW , so that the above two conditions
are met, while the e vector is unchanged.

We have now shown that using Z instead of X as the regressor matrix in
equation (1), the ω vector in equation (4) is always identified and estimable
by the OLS provided that the parameters in the original regression equation,
(1), are identified. The remaining question is whether the OLSE of ω in (4) is
efficient? Since the OLSE of ω in equation (4) does not utilize any a priori
condition on the parameter vector, e.g., that ωi > 0 for i = 1, . . . , n, we
doubt whether the nonparametric estimation method, i.e., OLS of equation
(4), is efficient? This motivates us to use a Bayesian procedure, which we
describe in the next section.

3 Conditional Bayesian Inference

3.1 Bayesian setup

Notice that our whole argument is based upon the Eicker–White HCCM,
equation (2). Hence, prior to proceeding to a Bayesian approach, we need
to estimate equation (1) to obtain the regression residual vector e. Note
also that the scaling scalar parameter of the variance matrix Var(ε) = σ2Ω,
i.e., σ2, can be accurately estimated under the normalization assumption,
tr(Ω) =

∑
i ωi = n.9 Therefore, we condition our Bayesian setup for the ĥ

model, on estimated σ2 and e in the first stage. Hereafter, σ2 is replaced by

the estimate of it, σ̂2∗ =
1
n

e′e, from the first stage regression of y on Z.

Our Bayesian approach to estimate ω, thus, starts out by specifying the
likelihood and prior pdf’s (probability density functions) for equation (4),
not (1). We shall call this approach “a conditional Bayesian” framework.
In this approach the Bayesian setup is conditioned on the OLSE of β and

Z′›, is identical to the OLSE for the original equation. Incidentally, Amemiya (1983)
showed that the GLS estimator for the transformed model is more efficient than the
OLSE.

8In our GAUSS programming, we used the “NULL(·)” command to obtain W ∼
n × KW that is orthogonal to X. NULL command uses the QR decomposition to obtain
the orthogonal complement of X.

9See, for instance, Greene (2003, p.218) on this issue.
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thereby e in (1). Note that we need not begin with distributional speci-
fication of equation (1), since we assume a general set of conditions that
guarantee a consistency for the HCCM.

We suppose a standard set of distributional assumptions for (4). First
on v:

v ∼ N (0, σ2
vIK′′), (6)

where σ2
v is a scalar variance and IK′′ denotes a K ′′ dimensional identity

matrix. In Remark 1, we pointed out that there is no easily obtainable
distributional assumption available to us, to form a likelihood function in
the regression equation (4). Hence, the above normality assumption may
seem at odds with Remark 1 at first sight. To elicit a suitable distributional
assumption for v, we have carried out some intensive experiments. As a
result, we found that the above normality assumption on v satisfies the
requirement given in Remark 1.

Combining the normal based likelihood function of (6) with a joint in-
formative prior pdf for σv and for the elements of ω,

P (σ̂2∗ω, σ2
v) ∝ σ−1

v for any element of ω ∈ [ω, ω ], (7)

we obtain the posterior pdf10,

P (σ̂2∗ω, σ2
v|ĥ, Xn) = P (σ̂2∗ω|σ2

v, ĥ, Xn) × P (σ2
v |ĥ, Xn). (8)

This shows that the joint posterior pdf is a product of the two conditional
posterior distributions:

σ̂2∗ω| σ2
v , ĥ, Xn ∼ N (σ̂2∗ω̂, σ2

v(X ′
nXn)−1)1ω∈[ω, ω ] (9)

and
σ2

v | ĥ, Xn ∼ IG[ĥ
′
MXn

ĥ, K ′′ − n], (10)

where 1ω∈[ω, ω ] in (9) is an indicator function such that it takes on the value
one if ω ∈ [ω, ω ], i.e., the n elements of ω all fall in the range [ω, ω ] and
zero otherwise, and the lower and upper limits, ω and ω, are to be specified
later. Notice that the entire right hand side of (9) is an n dimensional
truncated multivariate normal distribution. This motivates us to use an
MCMC method to simulate the posterior ω and σ2

v . ω̂ in equation (9) is the
OLSE of equation (4), where Z is used instead of X and 1

ne′e is inserted to
σ̂2∗. IG[·] denotes an inverted gamma distribution.

Given equation (9) and (10), what we need to do is to simulate σ̂2∗ω and

σ2
v . If we divide σ̂2∗ω by σ̂2∗ =

1
n

e′e, then we obtain sets of (ω′ σ2
v)′ ⊂ �n+1

+ .

For each of (n + 1) elements, we may depict a posterior pdf, posterior mean
and variance or standard deviation.

10See, e.g., Koop (2003, section 4.3) for a discussion of inequality constraints in a
regression framework.
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3.2 Bayesian experiments and MCMC procedure

In this subsection, we shall generate a data set to make sure that our
Bayesian procedure works. In doing so, we may illustrate the details of
our MCMC (Markov Chain Monte Carlo) procedure. Using a prespecified
set of parameter values on β, σ2 and ω, we generate a data set on y and X .
This is used to generate a W matrix to form Z = (X W ). By regressing y
on Z , we obatin one set of e ∼ n × 1, and hence a ĥ ∼ K ′′ × 1 vector. Our
Bayesian inference starts out from here.

We set our sample size to be n = 50. It now seems reasonable to set
the bounds for the prior of ω, i.e., [ω, ω ], to be [0.025, 12.5], and we shall
explain the reasons for this in below. First, in view of our scaling assumption,∑

i ωi = n = 50 which gives an average of
∑

i ωi/n = 0.5, the set of bounds
ω = 0.025 and ω = 12.5 covers a large enough interval. Next, consider
an example of the first four observations taking up the bulk of the entire

volatility. That is
4∑

i=1

ωi = 46 while
50∑
i=5

ωi = 4. It can be seen that

4
46

= 0.087 > 0.025 = ω and
46
4

= 11.5 < 12.5 = ω.

The above implies that even in this extreme case, our lower bound, ω, is
smaller than the average of the latter forty six ωi’s, while our upper bound,
ω, exceeds the average of the first four ωi’s. In addition, we emphasize
that this data dependent prior on the bounds of ωi for i = 1, . . . , n are
relatively easy to set, since the only information needed to form it is n. In
this paragraph, we gave a rule of thumb for setting the bounds for ωi’s. Our
experiments confirm that draws are relatively insensitive to the bounds.

We used β = (1, 3,−2)′ values for β. The X matrix is specified to
be X = (ιn , x2, x3) ∼ n × 3, where ιn is an n × 1 vector of all one’s,
x2 ∼ N (3, In), and x3 ∼ N (6, 22In). There are 50 elements in ω and thus
we do not care to present each one of them here. Instead, these values will be
given in a chart that compares them to the Bayesian posterior mean values,
later.

Given the OLS estimated regression residuals, e and the Xn matrix that
uses Z , we are now ready to estimate regression (4). Equation (4) could
be estimated by the OLS, again as in the first stage. We speculate that
the Bayesian posterior analysis should do better than the OLS since the
former combines a priori assumption on ω, whereas the latter does not, i.e.,
a nonparametric estimation method.

Let us now turn to discuss our MCMC procedure. σ2
v can be easily

simulated from the Inverted Gamma density, IG[ĥ
′
MXn

ĥ, K ′′ − n]. For
the 50 values of ω, we used a MH (Metropolis–Hastings) method, random
walk chain11,

ω(s) ∼ N (ω(s−1), diag (ω̂ 
 ω̂))1ω∈[0.025,12.5], (11)

11It would seem more natural to use a normal based proposal density that uses a sample-
based variance matrix: (X ′

nXn)−1. This avenue of approach does not work well here.

7



where ω(s) is the s th simulated value of ω, ω̂ denotes an OLS estimated vec-
tor value, and “
” denotes an elementwise Hadamard product. After some
experiments, using such diagnostics devices as Geweke’s (1992), we decided
to throw away the first 10,000 simulated values as burn-in’s, and took every
fifth drawn values after that to lessen the possible serial correlation inherent
in the Markov Chain procedure. After the burn-in’s, we simulated 20,000,
which makes the total number of simulated set is 30,000.

We now have a set of 20, 000/5 = 4, 000 simulated values for each of
σ2

v and ωi’s (i = 1, . . . , 50) available. Since giving 51 posterior pdf’s would
not contribute to the understanding of our procedure, we decided to present
posterior means of the fifty σ̂2∗ωi’s, and this is given in Figure 1. In the same
chart, fifty assumed values are given using a solid line. We see that there
are some discrepancies between the true (or given) value and the posterior
mean value, however, mostly they are close. For instance, the second one,
σ2ω2 has both the given value and the posterior mean close to 2.5. We have
selected this sample, i.e., σ2ω2, to depict the posterior density, and this is
given in Figure 2. It seems to be a typical density for a variance that is
unimodal in a positive region.

In our experiment, we now confirmed that the posterior mean values
are fairly close to the true values. The next thing that we should examine
is the posterior standard deviations. The 50 posterior standard deviations
are given in Figure 3. They do fluctuate a lot. For instance, at i = 2, as
indicated in the previous paragraph, posterior mean is about 2.5, and from
this chart, i.e., Figure 3, standard deviation, 1.6, which is not small at all.
But if we compare Figure 3 to the previous Figure 1, we notice a tendency
that posterior means and standard errors, move in the same direction12. We
next compared the posterior mean values to the OLS estimated values, ω̂.
We do not present this result here, since these two are very close. This is
comforting to know since this is another evidence that our Bayesian method
is more efficient, because of the appropriate prior information has been used.

3.3 One-factor model of Japanese pharmaceutical stocks

In this section, we use a panel data set to show that our procedure works
well in practice. Panel data sets should be most suitable vehicle with which
to experiment our procedure. We used data on the daily stock prices of fifty
Japanese pharmaceutical/ biomedical venture capital companies. The data
period is from May 6 2005 to May 1 2006. The sample size is 285.

Let us begin presenting our model with a multifactor multivariate return
generating equation:

R = (ιT F )

(
α

B

)
+ ε, (12)

where R = (R1 · · ·RN ) ∼ T × N is a T period excess return for N firms,
α = (α1, . . . , αN) ∼ 1 × N vector of constants,
B = (β1 · · ·βN ) ∼ F × N is a matrix of beta’s,
F = (f1 · · ·fF ) ∼ T × F is a matrix of F factors,
ε = (ε1 · · ·εN ) ∼ T × N matrix of error terms,

12We should compute a sample correlation between these two series.
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Figure 1: posterior means of the 50 ωi’s

Figure 2: posterior density of σ2ω2
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Figure 3: posterior standard deviations of the 50 ωi’s

N is the number of stocks, and T is the time series sample size. When F = 1
the above reduces to a single factor return generating equation:

R = (ιT f)

(
α
β

)
+ ε, (13)

where F = f is a T × 1 vector of one factor,
B = β is a 1 × N vector of beta’s.

Equation (13) is just a set of N time series regressions. We obtain an OLSE
of β′ , β̂

′ ∼ N × 1 from equation (13). Define sample mean of R to be an
N dimensional vector R̄, then we obtain

R̄ = β̂
′
λ + u, (14)

where R̄ = 1
T R′ιT = (R̄1 · · · R̄N)′ ∼ N × 1 vector of average excess returns,

λ ∼ scalar is a risk premium associated with one factor f ,

u ∼ N × 1 is a vector of pricing errors.
This, i.e., equation (14), is the one factor type CAPM model given in
Cochrane (2001, p.235), among others. Since we used a set of notations
that are common in empirical finance, we thought we need to clarify the no-
tational correspondences between this and previous subsections. They are
given in below.
R̄ ∼ N × 1 (corresponds to y in (1),
β̂
′ ∼ N × 1 (corresponds to X in (1)),

u ∼ N × 1 (corresponds to ε in (1)),
λ ∼ scalar (corresponds to β in (1)),
F = 1 is the number of factors (corresponds to K in (1)),
N the number of stocks (corresponds to n in (1)).

10



Our purpose in this subsection, is to investigate whether Var(ui) = σ2ωi

for i = 1, . . . , n can be successfully estimated using our Bayesian method?
To this effect, we have simulated posterior densities following the method-
ology outlined in the previous subsection. We used exactly the same priors
and likelihood as in subsection 3.2. This includes the bounds for ωi to be
[0.025, 12.5 ] too. The details of the MCMC, such as the number of repli-
cations and burn-in’s, are also set exactly the same as in subsection 3.2.

The results are given in Figures 4 and 5. Posterior means are presented
in Figure 4. Since we thought that the stocks traded in TSE-1 (the first
section of the Tokyo Stock Exchange) and others (this includes venture
capital type stocks) may have different Var(ui), i.e., volatility, we decided
to mark the simulated posterior mean by a certain positive value. Hence, in
Figure 4, σ2ω3 is rather small (around 0.001) and it is identified as “TSE-1”
type return since “ts1” line sticks to the bottom. On the other hand σ2ω2

is relatively large (around 0.017), which is identified as the non-TSE-1 type
return by “ts1” line taking the value 0.0045. This value, i.e., 0.0045, is the
average of all return volatility.

Figure 4: posterior means of σ2ωi for the 50 pharmaceutical/biomedical
firms

Figure 4 demonstrates that our Bayesian method works. On the average,
non-TSE-1 type returns have higher volatility than the TSE-1 type returns.
This fact is also demonstrated in the following descriptive statistics.

11



Figure 5: posterior standard deviations of σ2ωi for the 50 pharmaceuti-
cal/biomedical firms

Type of Stocks average of posterior average of posterior
means standard deviations

TSE–1(36) 0.003596 0.002191
non TSE–1 (14) 0.008890 0.004463

n.b.: Inside (·) is the number of stocks.

From the table above, we see that the non-TSE–1 type stocks have, on the
average, twice as high estimated volatility compared to the TSE–1 type
stocks. This is quite reasonable in view of the well known anomaly in the
Japanese stock market: smaller company’s stocks tend to have higher volatil-
ity than the larger company’s.13

4 Concluding Remarks

In this paper, we developed a conditional Bayesian approach to estimate
diagonal elements of the regression error term variance-covariance matrix,
ω. Our method may be divided into two parts: (i) a nonparametrical OLS
estimation of the Eicker–White HCCM, and (ii) a conditional Bayesian esti-
mation of ω. We have supplied a numerical example, and also an empirical

13See, e.g., Chang and Dong (2006), among others.

12



example to show that our method works reasonably. Finally, as demon-
strated in our empirical research, obtaining W such that W ′(y X) = 0 is
no problem since W is not found as an empirical data but rather computer
generated data.

Let us suggest further task of this research. It would be nice if we could
go fully Bayesian from of the current conditional Bayesian. That is to start
assuming priors and likelihood for the first stage regression. Theoretically,
this is more complete compared to the present setup, however, this also
implies that we abandon the HCCM. If we dispense with the HCCM, there
is very little information that can be extracted for scedastic function from
data alone, i.e., (y, X).
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Appendix : Derivation of equation (4)

H is defined by H = X 0ΩX. Our purpose in this appendix is to derive
equation (4) in the text, ı.e., h ≡ vech(H) = Xnω. To this effect, we note
the following series of lemmas.

Lemma 1 . vec(H) = (X ′ ⊗ X ′)vec(Ω) ∼ K2 × 1.

proof : Just use the usual vec(ABC) = (C′ ⊗ A)vec(B) formula. See,
e.g., Lütkepohl (1996, p.97).

Lemma 2 . X ′⊗X ′ = [(x1⊗x1) . . . (x1⊗xn)] . . . [(xn⊗x1) . . . (xn⊗xn)] ∼
K2 × n2.

proof : Note X ′ = (x1 . . .xn) ∼ K × n, and the result follows.

Lemma 3 . vec(H) = [(x1 ⊗x1) . . . (xn ⊗xn)]ω, where ω = (ω1 . . .ωn)′ ∼
n × 1.

proof : Note

vec(Ω) = vec(diag(ω)) = (ω1 0 · · ·0 ... 0 ω2 0 · · ·0 ... · · · ... · · ·ωn)′ ∼ n2×1,

where ω′ = (ω1, . . . , ωn), “diag(ω)” denotes a diagonal matrix with the
vector ω in its diagonal. Note that vec(Ω) is a vector of size n2 × 1,
and picks up the columns (xt⊗xt) only for t = 1, . . . , n from X ′⊗X ′.
Lemmas 1 and 2, in conjunction with the above proves the lemma.

Lemma 4 . xt ⊗ xt =vec(xtx
′
t) ∼ K2 × 1.

proof : Use the vec(AB) = (B′ ⊗ A)vec(Ip) relationship, where p is the
column dimension of A (see e.g., Lütkepohl (1996, p.97)). In the
present case p = 1, hence, vec(Ip) is equal to a scalar one.

We now define a matrix that converts a vec(A) type vector to a vech(A)
vector.

Definition of LK′ matrix : Let K ′ ≡ K +(K −1)+ . . .+1 = 1
2K(K +1)

and define

LK′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

IK 0
0...

Ik−1

0...
0...

Ik−2

· · · · · ·
0

0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∼ K ′ × K2.
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In essence, the diagonal submatrices of LK′ shrink from IK , IK−1 . . .IK−j . . .

to IK−(K−1) = 1 but each submatrix is preceded by a zero matrix 0j,
where 0j ∼ (K − j) × j. Such LK′ converts vec(A) to vech(A) for a
K × K square matrix A as follows.

Lemma 5 . Let A ∼ K ×K square, then vech(A) = L
K ′vec(A) ∼ K ′×1.

proof : Let A = (a1 . . .aK) ∼ K × K and aj ∼ K × 1. Also let, for
instance,

aj(−1,2) = (a3j a4j · · · aKj)′ ∼ (K − 2)× 1,

i.e., aj(−1,2) deletes the first two elements from aj. Then,

LK ′vec(A) = LK ′

⎛
⎜⎜⎝

a1
...

a
K

⎞
⎟⎟⎠ = LK ′

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1
. . . . . .

0
a2(−1)
. . . . . .

0
0

a3(−1,2)
. . . . . .

...
a

KK

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= vech(A).

Lemma 6 . vech(xtx
′
t) = L

K ′vec(xtx
′
t).

proof : Omitted.

We are now, in a position to derive the vech(H) = Xnω relationship.
Use Lemmas 2 to 4 on the Lemma 1 relationship to obtain

vec(H) = [vec(x1x
′
1) . . .vec(xnx′

n)]ω.

Further, use Lemmas 5 and 6 to obtain the following.

vech(H) = LK ′vec(H)ω
= [L

K ′vec(x1x
′
1) . . .L

K ′vec(xnx′
n)]ω

= Xnω.

where Xn = [vech(x1x
′
1) . . .vech(xnx′

n)] ∼ K ′ × n.
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