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Abstract

In this paper, we show that the bias-corrected first-difference (BCFD) estimator
suggested by Chowdhury (1987) can be applied to the case where the error terms are
cross-sectionally dependent and heteroscedastic. By deriving the finite sample bias of
the BCFD estimator, we find that the BCFD estimator has small bias when T, the
dimension of the time series, is not very large and p, the autoregressive parameter, is
close to one. Simulation results show that the BCFD estimator performs better than

existing estimators, especially when 7' is not very large.
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1 Introduction

In recent years, a considerable number of studies discussing the estimation and inference
of stationary dynamic panel data models have been published.! However, most of these
studies assume that individuals are cross-sectionally independent, a restriction that is
unlikely to hold in many applications. For example, if we use panel data of countries,
regions, or industries, it is natural to assume that individuals are correlated.

Representative studies dealing with cross-sectional dependence in the context of
stationary dynamic panel data models are those by Phillips and Sul (2003, 2007). The
first of these (Phillips and Sul, 2003) investigated the effect of cross section dependence
on the performance of the least squares dummy variables (LSDV) estimator,? and
proposed panel median unbiased estimators as alternatives to the LSDV estimator.
Their second study (Phillips and Sul, 2007) derives the asymptotic properties of the
LSDV estimator under cross section dependence and heteroscedasticity and proposed
a panel feasible generalized mean unbiased estimator to reduce the bias of the LSDV
estimator.

The purpose of this paper is to show that the bias-corrected first-difference (BCFD)
estimator by Chowdhury (1987) can be applied to the case where errors are cross-
sectionally dependent and heteroscedastic.?

One of the advantages of the BCFD estimator is that, in the case of AR(1) models,
it is very easy to compute. Although the BCFD estimator can be extended to more
general AR(p) models, this would require the use of numerical optimization proce-
dures.* To utilize the advantage of the BCFD estimator, i.e., its tractability, and to
simplify the derivation of the theoretical properties, we mainly consider AR(1) panel
data models in this paper. However, it will be argued later that the BCFD estimator
can be applied to models with exogenous regressors exactly in the same way as Phillips
and Sul’s (2007) approach.

Although the use of AR(1) specifications is somewhat limited, a number of empirical

1For a recent review, see Arellano (2003).
2Phillips and Sul (2003) refer to the LSDV estimator as the pooled panel least squares estimator.
3For other studies on the BCFD estimator, see Wansbeek and Knaap (1999), Ramalho (2005), Han and

Phillips (2007), Phillips and Han (2006), and Hayakawa (2006, 2007).
4See Chowdhury (1987).



studies have used AR(1) panel data models. In the field of macroeconomics, Frankel
and Rose (1996), for example, used an AR(1) panel data model to estimate the speed
of adjustment toward purchasing power parity, while Shioji (2004) and Ho (2006) used
AR(1) panel data models to analyze growth convergence.® And in microeconomics,
Hirano (2002) used an AR(1) model to examine earning dynamics. Therefore, as these
empirical examples show, AR(1) specifications do have their uses.

The remainder of the paper is organized as follows. In Section 2, we define the
model, provide some assumptions, and review the BCFD estimator. The main results
of this paper are then presented in Section 3, while Section 4 examines the performance

of the BCFD estimator using Monte Carlo simulations. Section 5 concludes.

2 Model, assumptions, and the bias-corrected

first-difference estimator

We consider an AR(1) panel data model given by

Yit = Qi+ pYir—1 + Ui, pe(-1,1) (i=1,..,N;t=1,..,T)
Yit = a?—i_ygta yz(')t:pyzo,tfl—i_uita p=1 (22177Na t:177T)

where p is the parameter of interest and wu;; has the following factor component struc-
ture:

K
Ujp = Z 0si0st + it = 0,0, + € (3)

s=1

In the unit root case, we assume that 3% is O,(1). Moreover, following Phillips and

Sul (2007), we make the following assumptions:

Assumption 1. ¢;; have zero mean, finite 24 2v moments for some v > 0, are inde-
pendent over i and t with var(g;) = 022 for all t, and imy_oo N1 sz\il 022 =02,
Assumption 2. The factors 0; are iid(0,%g) over t and the factor loadings 6; are
nonrandom parameters satisfying limpy_co N1 Zf\il 0;0, = Ms. When K =1, we set

Yo = Jg and Mg = mg.

SFor a recent review of the literature on growth convergence, see Maddala (1999).



By first-differencing model (1), we have

Ayit = pAy; -1 + Augg i=1,...N and t=2,..T. (4)
The OLS estimator of this model is given by
Yy Ay SN Ay Auyy A
Pfd = T N 2 =p+ T N 2 —P‘i‘E (5)
D2 D int Ayi,t—l D=2 Dint Ayi,t—l

The BCFD estimator considered by Chowdhury (1987) takes the following form:

Pocfd = 2pfa + 1. (6)

The BCFD estimator is closely related to the bias-corrected estimator developed by
Bun and Carree (2005a, b, 2006) and Phillips and Sul (2007). Both studies proposed
a bias-correction method using the inverse function of p + B(p,T'), where B(p,T)
is the asymptotic bias of the LSDV estimator when N — oo. Since p + B(p,T) is
a complex function of p and T, it is quite difficult to derive the explicit expression
of the bias-corrected estimator and in practice we therefore need to use a numerical
optimization procedure. However, when the same bias-correction method is applied
to the OLS estimator of the first-differenced model, we can derive the bias-corrected
estimator explicitly as pjcrq. In other words, although the basic idea of bias-correction
underlying the BCFD estimator and the bias-corrected estimator by Bun and Carree
(2005a,b, 2006) and Phillips and Sul (2007) is the same, they differ in that the BCFD
estimator can be expressed explicitly as py.rq, while the bias-corrected estimator by
Bun and Carree (2005a,b, 2006) and Phillips and Sul (2007) cannot.

This implies that although the analysis in this paper concentrates on AR(1) panel
data models, it is also possible to use the BCFD estimator for models with exogenous
regressors using the same methodology as Phillips and Sul (2007, pp.176-177), since
the basic structure of bias-correction is identical.

In the next section, we consider the asymptotic and finite sample properties of the

BCFD estimator.

3 Some properties of the BCFD estimator

In this section, we first derive the asymptotic properties of the BCFD estimator under
a large N and fixed T and the large N and large T" asymptotics. We then derive the

finite sample bias associated with the order of T1.
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The asymptotic properties of pyq are established in the following theorem:

Theorem 1. Let Assumptions 1 and 2 hold. Then, as N — oo with T fized, we have
T(fl Zthz trace(AFy -1 A0, My) — o

phmﬁd = pt y PE (_171)
N—oo ! TO ! 23;2 trace(AFg,t,lAFéiflM(g) + %02
(7)
_ Ty ' o trace(6,_10; M,
phm Pra = 0 Zt72 TCLC(B( t—1Y¢ 5) p= 1 (8)

N—oo Tyt SoT, trace(8;160,_ Ms) + o2

where Ty =T — 1. When T — oo regardless of whether N is fixred or N — 0o, we have

N -1
plim prg = pT p€(=1,1) (9)
T—o0
plimprg = 0 p=1 (10)
T—o0

where Fpy = Z?io 0.

Remark 1 When N is large and T is fixed, the probability limit of pf4 is random,
since it depends on the random variable 6. Phillips and Sul (2007) obtained a similar
result for the LSDV estimator. When T is large regardless of whether N is fixed or

large, pyq is inconsistent and the probability limit is a linear function of p when |p| < 1.

The asymptotic properties of py.rq are provided in the following theorem:

Theorem 2. Let Assumptions 1 and 2 hold. Then, as N — oo with T fized, we have,
271 Zthl trace(AFp -1 A0, Ms) — 20>

plim ppera = 2p+1+ pe€(-1,1
N—oo <l T-1 Zthl trace(AF97t,1AF9”t71M5) + %pUQ ( )
(11)
L~ 2T ST trace(6,_10]M;
plim pperg = 1+ = thl ( /t i Ms) p=1.
N—oo T-1%_ trace(0i—10;_ Ms) + o2
(12)
When T — oo regardless of whether N is fized or large, we have
plim ppera = p pe(=11) (13)
T—o0
plim ppepg = 1 p=1 (14)
T—o0



Remark 2 We find that py.fq is still inconsistent under large N and fixed T" asymp-
totics since its probability limit depends on the random variable 6;. However, when 7' is
large regardless of N, pycrq is consistent. This result is different from the independent

panel case where either only N or T is required to tend to infinity to be consistent.

We proceed to consider the finite sample properties of the BCFD estimator. The

finite sample bias of the BCFD estimator is given in the next lemma.

Lemma 1. Let Assumptions 1 and 2 hold. Furthermore, let us assume that 0; is
normally distributed. Then, in the single factor case (K = 1), the finite sample bias of
Pvcfa with T fized is given by

2
S l—p m3o; -1
E( pl = T c(—1,1 15
(pim sa) = o+ 575 (1) o) pe-Ly) ()
E<phmﬁbcfd) = 1+0o(T7h p=1 (16)
N—oo

Remark 3 We impose the normality assumption on 6; to simplify the expression of

the finite sample bias. Note that normality is not required to obtain the consistency

of Pycfa-

Remark 4 From this expression, we find that when p is close to unity, the bias of
Pvefa becomes small. This is in contrast to the LSDV estimator, pjsq,. Phillips and Sul

(2007) derived the following results using an expansion when 7' is large:

PR 14+p 2p mgag 1
E| pl =p—— = | "= T). 17
(]I\?_lglo plsdv) T T (02 + mgo_g + 0( ) ( )

From (17), we find that the bias of pjs4, increases as p approaches unity. Therefore, in
terms of the bias, py.rq is preferable to pisqy, especially when 7' is not very large and

p is close to one.

In terms of empirical applications, and especially the analysis of macro panel data,
there are two cases where the property that py.rq has small bias when T" is not very
large and p is close to one is important. First, if we use large 1" panel data, we can of
course capture the dynamics of variables more precisely than in the case where we use
small T" panel data. However, if we use large T" panel data, data are likely to be subject

to structural breaks and resulting estimates might not be reliable. Although data are



less likely to be subject to structural breaks if we use shorter panel data, the bias of
Pisdv tends to be large. In a situation such as this, py.rq is useful since the bias of py.fq
is small even if 7" is not very large. The second situation in which py.fq is useful is
in the analysis of growth models. In the analysis of growth models, we often use data
at, say, five-year intervals, since data then are less likely to be serially correlated and
the effects of business cycle fluctuations are mitigated. In this case, the dimension
of available time series T" becomes small and pjsq, tends to be biased, while py.¢q has
small bias. Thus, in these situations, the BCFD estimator is more useful than the

LSDV estimator in terms of bias.

In the next section, we compare the performance of the BCFD estimator with

existing estimators via Monte Carlo experiments.

4 Monte Carlo experiments

In this section, we conduct Monte Carlo experiments to examine the performance of

the BCFD estimator. We consider the following AR(1) model:

Yit = Qi+ pYit—1 + Wit (18)

Uiy = €00y + vy (19)

where a; and 60; are independently generated from N(0, 1), §; are generated from uni-
form distribution UJ0, 1], and y; ¢ are generated to satisfy stationarity.” We consider

the following four cases:

(i) uy are iid, (c = 0,var(vy) = o2).

(ii) u; are cross-sectionally dependent and vy are homoscedastic, (¢ = 1,var(vy) =
o?).

(iii) w; are cross-sectionally independent and vy are heteroscedastic, (¢ = 0, var(vy) =

o?).

(iv) w; are cross-sectionally dependent and v are heteroscedastic, (¢ = 1,var(vy) =

022).

6See Islam (1995, p.1140).
7§; are generated once and used repeatedly in each replication.

7



For cases (i) and (ii), v;; are generated from v;; ~ tdN (0, 1), while for cases (iii) and
(iv), vt are independently generated from N (0,0?) with 07 ~ x?(1). The sample
sizes we consider are N = 10,25,50,100,200 and 7" = 10,15,25,50. p is set to p =
0.5,0.9,0.95. The number of replications is 5000 for all cases. We computed the BCFD
estimator, py.fq, the LSDV estimator, pjsqy, and Phillips and Sul’s (2007) feasible
generalized mean unbiased estimator (FGMUE) based on the residual variance of mean
unbiased estimator with common time effects, ﬁps.s Tables 1, 2, 3, and 4 correspond
to case (i), (ii), (iii), and (iv), respectively.

Looking at Tables 1 to 4, we find that the bias of the BCFD estimator is very small
in almost all cases. In case (i), pps has larger bias than py.rq when 7" = 10. In case
(ii), the bias of pjsqy is substantial when p = 0.95 even when 7' = 50. p,s performs well
when T is as large as 25. However, when 7' = 10 and p = 0.95, p,s exceeds one. In
case (iii), the performance of pjsq, is similar to that in case (ii). However, p,s exhibits
quite different results from case (ii). The bias of p,s is substantial. Especially when
p = 0.95, p,s exceeds unity even when 7' = 50. In terms of the bias and the root mean
squred error (RMSE), py.rq performs best when 7" < 25 and p is large. The reason why
pps does not work well with heteroscedastic errors is that it requires the estimation of
the variance 2. In fact, estimating o2 based on the method by Phillips and Sul (2003)
is not expected to work well unless T is large. In contrast, since py.rq does not require
the estimation of o2, the bias of p,s remains small. In case (iv), similar comments as
in case (iii) apply. The bias of psq, is large, although it has the smallest RMSE among
the three estimators in some cases. The bias of p,, is also substantial. For example,
even when T' = 50, there remains large bias, especially when p is large. However, unlike
Plsdv and pps, Pyefa has very small bias.

As a final assessment of the estimators, we consider the case of small T', say, T = 5.
In this case, the common factor 6, which is assumed to be random (Assumption 2),
might be fixed since the choice of the time horizon is not random if long panel data are
not available. In this case, of course, Lemma 1 does not hold since it is derived under
the assumption that 6; is random. Thus, we compare the cases when 6, is random and
fixed for T' = 5. The simulation result is given in Table 5. For the case of random 6, a

new 0; is generated for each replication, and for the case when 6; is fixed, 0; is generated

8pps corresponds to (E) in Table 2 in Phillips and Sul (2007).
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once and used repeatedly in each replications. We find from Table 5 that when 6, is
random, the biases of py.rq are quite small, while when 6; is fixed, all estimators do not
work well. This implies that if there is evidence that #; cannot be regarded as random,
all estimators considered in this paper are inappropriate and a new estimator will be
required.

Therefore, we can conclude that, in terms of the bias, the BCFD estimator performs
best in almost all the cases, and in terms of the RMSE, the BCFD estimator is superior
to the other two estimators when T is moderately large, say T = 15, and when the
error terms are heteroscedastic. When T is small and when it might be inappropriate
to assume that 6; is random, all the estimators do not work well, resulting in the need

to develop a new estimator. This is, however, beyond the scope of the present paper.

5 Conclusion

In this paper, we showed that the bias-corrected first-difference estimator developed
by Chowdhury (1987) can be applied to the case where the errors are cross-sectionally
dependent and heteroscedastic. The theoretical analysis indicated that the BCFD
estimator is consistent when T is large regardless of N, and is inconsistent when N
is large and T is fixed. However, using asymptotic expansions, we showed that the
BCFD estimator has small bias when p is close to one even if T' is not very large.
The simulation results showed that the BCFD estimator has smaller bias than the two
existing estimators, pjsq, and pps. Therefore, we conclude that the BCFD estimator is
useful when T is not very large and when p is close to one. Also, if 6; is considered to
be fixed as in the case of small T, we need to note that all the estimators including the

BCFD and Phillips and Sul’s (2007) estimators do not work well.



A Mathematical Proofs

Proof of Theorem 1 Note that A and B in (5) can be decomposed as follows:

1

A
NT,

1

B
NT,

N ZZ [0{AFy 1 8600; + 6;AFy 41 Aeiy + Awi—105;A0; 1 + Aw; g1 Ay
0

i=1 t=2
A1+A2+A3+A4

N T
1
NTOZZ [6jAFy i1 AF),_16; — 26]AFp 1 Awiy—y + Aw?, 4]

i=1 t=2
By — 2By + Bg

Let us define w;; = Z;io pj €it—j- Then, the probability limit of A and B under large

N and fixed T" asymptotics are given by

plim Ay
N—o00
plim Ay
N—o00
plim Ag
N—o00
plim Ay

N—o00
plim B;
N—oo
plim By

N—oo

plim Bs

N—oo

N T

lim —ZZtrace Ath 1A0;6; 5'

=1 t=2

N T
lim —ZZtrace AFy 1 AFy, 10:6;] =

—O0
1+p

Ztrace Ath 1A M5]

Ztrace AFp;— 1AF9t 1M5]

Then the first result follows. The result under large T' asymptotics is obtained from

the following probability limit:

plim A;
T—oo
plim Ay
T—o0

plim As

T—o0

plim Ay

T—o0

plim B,

T—o0
plim By

T—o0

plim Bj

T—o00

1 N
— 2 0iZ00;
=1
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Note that we allow N to be finite or infinite since the terms associated with a summa-

tion over ¢ are cancelled out.

Proof of Theorem 2 The proof of Theorem 2 is straightforward to show using

Theorem 1.

Proof of Lemma 1 We first prove the stationary case. After taking the limit

N — oo, we have

m5T0 Zt o(Fot—1 — Fot—2)(Fot — Foi-1) — o? (%ﬁ)

plim pfq = (20)
N—oo m6T0 Zt o(Fo -1 — Fot)? "‘12%2
1-p
m5Y+ % Y

where Ty = T—1, X = Ty ' Sy (Fou—1—Foi—2)(Fou—Fp 1), and Y = Ty oL o (Fy o1 —
Fyi9)%
Note that E(prq) = E(X/Y) can be expanded up to O(T 1) as follows:

X\ _ EX) cov(X,Y)  war(Y) N
b <?> T EY) [1 “ExEY) T EeE] T h. (22)

First, after a simple manipulation, we have

BX) = - (152) i+ (23
BY) = (%p) (03md + o). (24)

Next, we consider cov(X,Y) and var(Y). Note that cov(X,Y) = micov(X,Y) and
var(Y) = mivar(Y). Hayakawa (2006) shows that

cou(X,V) = 04[7,?%] (25)
var(Y) = [;0%] (26)
Using these results, it follows that
cov(X,Y) = mjop [;—j%} (27)
var(Y) = miol [Tio(fjpg)i%]‘ (28)

Substituting (23), (24), (27) and (28) into (22), we obtain

2
PR p—1 1 Ugmg
E | pl = "~ |71 — (=00
(]I\;ir?o pfd) 2 To <0’§m§ + o2
11

+o(T™h). (29)




Then, it follows that

1—p o2m? 2
E ( plim p; = M) 7. 30
<£ir£opbcfd> p+ T (ngngU%) +o(T77) (30)

In the nonstationary case, note that X = mngl ZtTZQ 0;_10; andY = mngl Zthz 02 |+
o?. Since E(X) =0 and E(Y) = mo3 + o2, the result is readily obtained in view of

(22).
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Table 1: (i) iid errors

Case Mean Std. Dev. RMSE
p T N Poefd  Plsdv  Pps Pocfd  Plsdv  Pps Poefd  Plsdv  Pps
0.5 10 50 0.504 0.314 0.481 0.088 0.048 0.084 0.088 0.192 0.086
0.5 10 100 0.498 0.317 0.478 0.061 0.033 0.072 0.061 0.186 0.075
0.5 10 200 0.501 0.318 0.480 0.043 0.024 0.125 0.043 0.183 0.126
0.5 15 25 0.504 0.386 0.495 0.097 0.052 0.070 0.097 0.125 0.071
0.5 15 50 0.499 0.384 0.490 0.069 0.038 0.054 0.069 0.122  0.055
0.5 15 100 0.497 0.384 0.490 0.047 0.026 0.041 0.047 0.119 0.042
0.5 25 25 0.504 0.434 0.496 0.073 0.038 0.046 0.073 0.076  0.047
0.5 25 50 0.501 0.434 0.497 0.052  0.027 0.034 0.052 0.071 0.034
0.5 25 100 0.499 0.435 0.498 0.036 0.019 0.025 0.036  0.068 0.025
0.5 50 10 0.502 0.467 0.498 0.080 0.041 0.044 0.080 0.053 0.044
0.5 50 25 0.500 0.467 0.498 0.050 0.026  0.029 0.050 0.042 0.029
0.5 50 50 0.501 0.468 0.499 0.037 0.018 0.020 0.036 0.037 0.020
0.9 10 50 0.901 0.624 0.922 0.098 0.044 0.085 0.098 0.280 0.088
0.9 10 100 0.898 0.628 0.926 0.067 0.031 0.065 0.067 0.274 0.070
0.9 10 200 0.901 0.630 0.928 0.048 0.022 0.101 0.048 0.271 0.105
0.9 15 25 0.904 0.726 0.908 0.109 0.043 0.070 0.109 0.179 0.070
0.9 15 50 0.899 0.724 0.903 0.078 0.031 0.050 0.078 0.179  0.050
0.9 15 100 0.897 0.724 0.903 0.053 0.022 0.037 0.053 0.177  0.037
0.9 25 25 0.903 0.798 0.897 0.081 0.030 0.040 0.081 0.106 0.041
0.9 25 50 0.900 0.800 0.899 0.058 0.021 0.028 0.058 0.102 0.028
0.9 25 100 0.899 0.801 0.899 0.040 0.014 0.021 0.040 0.100 0.021
0.9 50 10 0.901 0.852  0.896 0.090 0.027 0.031 0.090 0.056 0.031
0.9 50 25 0.899 0.853 0.897 0.057 0.017 0.019 0.057 0.050 0.019
0.9 50 50 0.900 0.854 0.899 0.041 0.012 0.014 0.041 0.048 0.014
0.95 10 50 0.950 0.659 0.985 0.100 0.043 0.086 0.100 0.294 0.093
095 10 100 0.948 0.663 0.993 0.069 0.031 0.086 0.069 0.288 0.096
0.95 10 200 0.951 0.665 0.999 0.049 0.021 0.148 0.049 0.286 0.155
095 15 25 0.955 0.764 0.965 0.110 0.042 0.072 0.110 0.191 0.073
0.95 15 50 0.949 0.761 0.960 0.079 0.029 0.050 0.079 0.191 0.051
0.95 15 100 0.947 0.762 0.960 0.054 0.022 0.036 0.054 0.189 0.038
0.95 25 25 0.953 0.839 0.949 0.082 0.029 0.040 0.082 0.115 0.040
0.95 25 50 0.950 0.841 0.951 0.059 0.020 0.028 0.059 0.111  0.028
095 25 100 0.949 0.842 0.952 0.040 0.013 0.020 0.040 0.109 0.020
0.95 50 10 0.951 0.897 0.947 0.091 0.024 0.030 0.091 0.059 0.030
0.95 50 25 0.949 0.897 0.948 0.057 0.015 0.018 0.057 0.055 0.018
0.95 50 50 0.950 0.899 0.949 0.041 0.011 0.013 0.041 0.052 0.013
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Table 2: (ii) Cross-sectionally dependent errors

Case Mean Std. Dev. RMSE
p T N Poefd  Plsdv  Pps Pocfd  Plsdv  Pps Poefd  Plsdv  Pps
0.5 10 50 0.507 0.311 0.493 0.178 0.094 0.075 0.178 0.211  0.075
0.5 10 100 0.504 0.311 0.494 0.155 0.082  0.082 0.155 0.206  0.082
0.5 10 200 0.505 0.313 0.499 0.143 0.075 0.165 0.143 0.201 0.165
0.5 15 25 0.505 0.379 0.492 0.158 0.083 0.066 0.158 0.147 0.066
0.5 15 50 0.503 0.380 0.493 0.140 0.075 0.048 0.140 0.141 0.049
0.5 15 100 0.503 0.382 0.493 0.125  0.065 0.036 0.125 0.135 0.036
0.5 25 25 0.504 0.430 0.496 0.119 0.063 0.044 0.119 0.094 0.044
0.5 25 50 0.503 0.431 0.496 0.108 0.055 0.031 0.108 0.088 0.031
0.5 25 100 0.500 0.433 0.497 0.096 0.049 0.022 0.096 0.083 0.023
0.5 50 10 0.503 0.466 0.498 0.099 0.050 0.043 0.099 0.061 0.043
0.5 50 25 0.502 0.467 0.499 0.084 0.043 0.027 0.084 0.054 0.027
0.5 50 50 0.502 0.467 0.499 0.077 0.039 0.019 0.077 0.051 0.019
0.9 10 50 0.903 0.618 0.937 0.198 0.084 0.089 0.198 0.294 0.096
0.9 10 100 0.900 0.620 0.938 0.173  0.072  0.098 0.173  0.289 0.105
0.9 10 200 0.902 0.622 0.937 0.159  0.065 0.159 0.159 0.286 0.163
0.9 15 25 0.901 0.715  0.903 0.177  0.067 0.069 0.177 0.197 0.069
0.9 15 50 0.900 0.717 0.906 0.157 0.060 0.051 0.157 0.192 0.052
0.9 15 100 0.901 0.719 0.907 0.139 0.051 0.037 0.139 0.188 0.038
0.9 25 25 0.901 0.793 0.897 0.134 0.044 0.037 0.134 0.116 0.037
0.9 25 50 0.901 0.795 0.899 0.120 0.039 0.027 0.120 0.112 0.027
0.9 25 100 0.900 0.798 0.900 0.107 0.034 0.019 0.107 0.108 0.019
0.9 50 10 0.902 0.849 0.896 0.111 0.032  0.030 0.111  0.060 0.030
0.9 50 25 0.901 0.851 0.898 0.095 0.026 0.019 0.095 0.056 0.019
0.9 50 50 0.901 0.852 0.899 0.086 0.023 0.013 0.086 0.053 0.013
0.95 10 50 0.952 0.653 1.000 0.202 0.082 0.092 0.202 0.308 0.105
095 10 100 0.950 0.655 1.005 0.175 0.071  0.120 0.175 0.303 0.132
0.95 10 200 0.951 0.657 1.008 0.161 0.064 0.184 0.161  0.300 0.193
095 15 25 0.951 0.752 0.959 0.179 0.064 0.072 0.179 0.208 0.072
0.95 15 50 0.949 0.755 0.963 0.159  0.058 0.053 0.159  0.203 0.055
0.95 15 100 0.951 0.757  0.965 0.141 0.049 0.049 0.141  0.199 0.051
0.95 25 25 0.951 0.834 0.949 0.136  0.041 0.038 0.136  0.123  0.038
0.95 25 50 0.951 0.836 0.951 0.122  0.036  0.027 0.122  0.120 0.027
095 25 100 0.950 0.838 0.952 0.108 0.032 0.019 0.108 0.116  0.020
0.95 50 10 0.952 0.894 0.946 0.112  0.029 0.029 0.112  0.063 0.029
0.95 50 25 0.951 0.896 0.948 0.096 0.023 0.018 0.096  0.059 0.018
0.95 50 50 0.951 0.897 0.949 0.087 0.020 0.013 0.087 0.057 0.013
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Table 3: (iii) Heteroscedastic errors

Case Mean Std. Dev. RMSE
p T N Poefd  Plsdv  Pps Pocfd  Plsdv  Pps Poefd  Plsdv  Pps
0.5 10 50 0.509 0.316 0.648 0.143 0.073 0.082 0.144 0.198 0.169
0.5 10 100 0.501 0.317 0.659 0.104 0.052 0.039 0.104 0.191 0.164
0.5 10 200 0.503 0.318 0.668 0.072  0.037 0.027 0.073 0.185 0.171
0.5 15 25 0.508 0.380 0.574 0.155 0.080 0.075 0.155 0.144 0.105
0.5 15 50 0.504 0.382 0.589 0.113  0.059 0.069 0.113 0.131 0.112
0.5 15 100 0.498 0.383 0.596 0.081 0.042 0.023 0.081 0.124 0.099
0.5 25 25 0.504 0.431 0.538 0.117 0.060 0.051 0.117 0.091 0.064
0.5 25 50 0.502 0.433 0.546 0.085 0.044 0.044 0.085 0.080 0.064
0.5 25 100 0.502 0.434 0.552 0.061 0.031 0.016 0.061 0.073 0.054
0.5 50 10 0.503 0.464 0.510 0.122  0.063 0.036 0.122  0.073 0.037
0.5 50 25 0.503 0.468 0.515 0.083 0.041 0.022 0.083 0.053 0.027
0.5 50 50 0.503 0.468 0.519 0.060 0.030 0.017 0.060 0.044 0.026
0.9 10 50 0.906 0.624 1.170 0.159 0.067 0.112 0.159 0.284 0.292
0.9 10 100 0.900 0.628 1.193 0.115 0.047 0.070 0.115 0.276 0.302
0.9 10 200 0.902 0.629 1.210 0.080 0.034 0.054 0.080 0.273 0.315
0.9 15 25 0.904 0.718 1.059 0.174  0.063 0.098 0.174 0.193 0.186
0.9 15 50 0.902 0.722 1.079 0.126  0.046 0.067 0.126 0.184 0.191
0.9 15 100 0.897 0.724 1.094 0.089 0.033 0.035 0.090 0.179 0.197
0.9 25 25 0.902 0.797 0.984 0.130 0.042 0.036 0.130 0.111  0.091
0.9 25 50 0.901 0.799  0.996 0.095 0.030 0.024 0.095 0.105 0.099
0.9 25 100 0.901 0.800 1.004 0.068 0.022 0.016 0.068 0.103 0.105
0.9 50 10 0.901 0.847 0.924 0.138 0.039 0.026 0.138 0.066 0.035
0.9 50 25 0.903 0.852 0.933 0.093 0.025 0.017 0.093 0.054 0.037
0.9 50 50 0.902 0.853 0.938 0.067 0.019 0.015 0.067 0.050 0.041
0.95 10 50 0.954 0.658 1.225 0.163 0.068 0.130 0.163 0.300 0.305
095 10 100 0.949 0.662 1.257 0.117  0.048 0.083 0.117 0.292 0.318
0.95 10 200 0.952 0.664 1.279 0.081 0.034 0.067 0.081 0.288 0.336
095 15 25 0.953 0.754 1.122 0.176  0.063  0.109 0.176  0.205 0.204
0.95 15 50 0.951 0.759 1.147 0.128 0.046 0.063 0.128 0.196  0.207
0.95 15 100 0.947 0.761 1.168 0.090 0.032 0.045 0.090 0.191 0.222
0.95 25 25 0.952 0.837 1.052 0.132  0.039 0.061 0.132  0.119 0.119
0.95 25 50 0.951 0.840 1.068 0.096 0.028 0.042 0.096 0.114 0.126
095 25 100 0.950 0.840 1.078 0.069 0.020 0.021 0.069 0.112 0.130
0.95 50 10 0.951 0.892 0.983 0.140 0.033 0.028 0.140 0.067 0.043
0.95 50 25 0.953 0.897 0.994 0.094 0.021 0.018 0.094 0.057 0.047
0.95 50 50 0.952  0.898 1.000 0.068 0.016 0.012 0.068 0.054 0.052
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Table 4: (iv) Cross-sectionally dependent and heteroscedastic errors

Case Mean Std. Dev. RMSE
p T N Poefd  Plsdv  Dps Poefd  Plsdv  Pps Poefd  Plsdv  Dps
0.5 10 50 0.506 0.309 0.618 0.198 0.104 0.242 0.198 0.218 0.269
0.5 10 100 0.502 0.311 0.627 0.168 0.089 0.235 0.168 0.209 0.267
0.5 10 200 0.500 0.312 0.630 0.147  0.079  0.262 0.147  0.204 0.292
0.5 15 25 0.507 0.379  0.550 0.183 0.097 0.218 0.183 0.155 0.223
0.5 15 50 0.506 0.380 0.571 0.158 0.086 0.214 0.159 0.148 0.225
0.5 15 100 0.504 0.383 0.576 0.138 0.073 0.245 0.138 0.138 0.256
0.5 25 25 0.505 0.428 0.523 0.140 0.073 0.135 0.140 0.102 0.137
0.5 25 50 0.503 0.431 0.535 0.122 0.064 0.168 0.122 0.094 0.171
0.5 25 100 0.501 0.431 0.544 0.105 0.054 0.207 0.105 0.088 0.211
0.5 50 10 0.502 0.464 0.504 0.128 0.064 0.132 0.128 0.074 0.132
0.5 50 25 0.504 0.465 0.510 0.099 0.051 0.126 0.099 0.061 0.126
0.5 50 50 0.503 0.467 0.519 0.086 0.044 0.161 0.086 0.055 0.162
0.9 10 50 0.901 0.617 1.118 0.221 0.092 0.273 0.221  0.298 0.350
0.9 10 100 0.898  0.620 1.136 0.189 0.078 0.272 0.189 0.291 0.361
0.9 10 200 0.898 0.621 1.146 0.167 0.070 0.273 0.167 0.288 0.367
0.9 15 25 0.905 0.714 1.021 0.206 0.078 0.216 0.206 0.201 0.248
0.9 15 50 0.904 0.716 1.058 0.180 0.068  0.204 0.181 0.196 0.258
0.9 15 100 0.903 0.719 1.068 0.155 0.056  0.223 0.155 0.189 0.279
0.9 25 25 0.902 0.791 0.965 0.157 0.051 0.144 0.157 0.120 0.157
0.9 25 50 0.902 0.795 0.985 0.138 0.044 0.140 0.138 0.114 0.163
0.9 25 100 0.900 0.796 0.990 0.118 0.037 0.199 0.118 0.110 0.219
0.9 50 10 0.901 0.847 0917 0.143 0.040 0.124 0.143 0.066 0.126
0.9 50 25 0.902 0.849 0.926 0.111  0.031 0.106 0.111  0.060 0.109
0.9 50 50 0.902 0.851 0.939 0.097 0.027 0.135 0.097 0.056 0.140
0.95 10 50 0.950 0.651 1.162 0.225 0.092 0.277 0.225 0.313 0.349
095 10 100 0.947 0.654 1.187 0.192  0.077  0.290 0.192 0.306 0.374
0.95 10 200 0.947 0.656 1.188 0.170  0.069 0.317 0.170 0.302 0.396
095 15 25 0.955 0.752 1.080 0.209 0.076  0.233 0.209 0.213 0.267
0.95 15 50 0.954 0.753 1.115 0.184 0.066 0.238 0.184 0.208 0.290
0.95 15 100 0.953 0.756 1.123 0.157 0.054 0.261 0.157 0.201 0.313
0.95 25 25 0.952  0.832 1.031 0.159 0.047 0.154 0.159 0.127 0.174
0.95 25 50 0.951 0.835 1.053 0.140 0.041 0.148 0.140 0.122 0.180
095 25 100 0.949 0.837 1.057 0.120 0.035 0.203 0.120 0.118 0.229
0.95 50 10 0.951 0.892 0.972 0.144 0.034 0.117 0.144 0.067 0.119
0.95 50 25 0.952 0.894 0.992 0.113  0.027 0.141 0.113 0.062 0.147
0.95 50 50 0.952  0.896 0.996 0.098 0.023 0.125 0.098 0.059 0.133
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Table 5: Simulation results for random and fixed 6;, (T' = 5)

Case Mean Std. Dev. RMSE
p T N Pocfd  Plsdv Pps Pocfd  Plsdv  Pps Pocfd  Plsdv  Pps
Cross-sectionally dependent errors with random 6
0.5 5 50 0.511  0.080  0.706 0.265 0.141 0.471 0.266  0.443 0.514
0.5 5 100 0.503  0.084  0.652 0.234 0.129 0.613 0.234 0.435 0.631
0.5 5 200 0.506 0.076 0.679 0.233 0.122 0.788 0.233 0.441 0.808
0.9 5 50 0.902 0.322 1.271 0.294 0.145 0.480 0.294 0.596 0.606
0.9 5 100 0.896 0.329 1.235 0.268 0.135 0.621 0.268 0.587 0.705
0.9 5 200 0.900 0.332 1.222 0.237 0.119 0.798 0.236  0.581 0.860
095 5 50 0.939 0.351 1.322 0.312  0.152  0.449 0.312 0.618 0.583
0.95 5 100 0.947  0.355  1.324 0.264 0.130 0.608 0.264 0.609 0.713
0.95 5 200 0.950  0.362  1.280 0.238 0.118 0.798 0.238 0.600 0.863
Cross-sectionally dependent errors with fixed 6
0.5 5 50 0.642 0.166  0.683 0.156  0.112  0.440 0.211  0.352 0.476
0.5 5 100 0.424  0.028 0.641 0.108 0.071  0.499 0.132 0.478 0.519
0.5 5 200 0.439  0.103  0.698 0.148 0.107  0.707 0.160 0.411 0.734
0.9 5 50 1.030 0.388 1.269 0.164 0.103 0.462 0.209 0.522 0.591
0.9 5 100 0.827 0.279 1.215 0.124 0.062 0.520 0.143 0.624 0.607
0.9 5 200 0.831 0.381 1.244 0.130 0.084 0.853 0.147 0.526  0.919
095 5 50 1.070 0.410 1.337 0.160 0.096 0.449 0.200 0.548 0.593
0.95 5 100 0.883  0.313  1.340 0.122  0.062 0.541 0.139 0.640 0.666
0.95 5 200 0.878  0.413  1.242 0.113  0.070 0.860 0.134 0.541 0.907
Cross-sectionally dependent and heteroscedastic errors with random 6
0.5 5 50 0.525 0.087 0.805 0.299 0.157 0.448 0.300 0.441 0.542
0.5 5 100 0.513  0.082  0.822 0.255 0.140 0.533 0.255 0.441 0.623
0.5 5 200 0.515  0.086  0.850 0.245 0.130 0.627 0.245 0.434 0.718
0.9 5 50 0.911 0.326  1.323 0.331 0.168  0.540 0.331 0.598 0.685
0.9 5 100 0.905 0.326 1.310 0.288 0.149 0.566 0.288 0.593 0.698
0.9 5 200 0.910 0.333 1.344 0.270 0.137 0.745 0.270 0.583 0.867
095 5 50 0.957 0.353 1.341 0.338 0.171  0.601 0.338 0.621 0.717
095 5 100 0.954 0.356 1.369 0.293 0.150 0.623 0.293 0.613 0.750
0.95 5 200 0.959  0.363 1.355 0.274 0.137  0.766 0.274  0.603  0.867
Cross-sectionally dependent and heteroscedastic errors with fixed 6
0.5 5 50 0.643 0.106 0.780 0.219 0.138 0.380 0.262 0417 0472
0.5 5 100 0.520 0.089 0.827 0.164 0.081 0.367 0.165 0.419 0.491
0.5 5 200 0.195 -0.110 0.729 0.083 0.107  0.799 0.316 0.620 0.831
0.9 5 50 0.991 0.279 1.244 0.235 0.121  0.500 0.251 0.633 0.607
0.9 5 100 0.867 0.321  1.325 0.173  0.090 0.429 0.176  0.585 0.604
0.9 5 200 0.469 0.067 1.124 0.079 0.066 0.827 0.438 0.836 0.856
095 5 50 1.028 0.297 1.244 0.237 0.120 0.536 0.250 0.664 0.611
095 5 100 0.901 0.343 1.354 0.176  0.092 0.476 0.183 0.614 0.624
095 5 200 0.504 0.088 1.179 0.081 0.064 0.864 0.453 0.864 0.893
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