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Abstract

In this paper, we consider the role of “leads” of the first difference of integrated variables

in the dynamic OLS estimation of cointegrating regression models. We demonstrate that the

role of leads is related to the concept of Granger causality and that in some cases leads are

unnecessary in the dynamic OLS estimation of cointegrating regression models. Based on a

Monte Carlo simulation, we find that the dynamic OLS estimator without leads substantially

outperforms that with leads and lags; we therefore recommend testing for Granger non-

causality before estimating models.
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1 Introduction

Since the seminal work of Engle and Granger (1987), cointegrating regressions have become

one of the standard tools in analyzing integrated (I(1)) variables. Although the ordinary least

squares (OLS) estimator is consistent in the presence of a serial correlation in the error term

and/or a correlation between the regressors and cointegration errors, it is well known that

the OLS estimator contains the so-called second-order bias. In the literature, there are three

typical estimators that deal with this problem: the fully modified OLS estimator proposed by

Phillips and Hansen (1990), Park’s (1992) canonical cointegrating regression estimator, and

the dynamic OLS (DOLS) estimator of Phillips and Loretan (1991), Saikkonen (1991), and

Stock and Watson (1993). These three estimators are known to be asymptotically equivalent

and efficient. In this paper, we focus on the DOLS estimator among the three estimators

and consider the role of “leads” of the first difference of the integrated variables in DOLS.

We investigate the case where leads are unnecessary for the DOLS method, and by using the

Monte Carlo simulation, we demonstrate that in such a case, we can expect the improvement

of the DOLS estimator in terms of the mean squared error (MSE) by excluding leads from

the regressors.

2 Relation between Leads and Granger Causality

We consider a typical cointegrating regression model as follows:

yt = α + β′xt + u1t = θ′zt + u1t (1)

∆xt = u2t

where θ = [α, β′]′, zt = [1, x′t]
′, xt is an n-dimensional I(1) vector, and ut = [u1t, u′2t]

′ is a

stationary process that satisfies the condition of the multivariate invariance principle. Under

the regularity condition given in Saikkonen (1991), u1t is expressed as

u1t =
∞∑

j=−∞
Π′

ju2t−j + vt (2)

where
∑∞

j=−∞ ‖Πj‖ < ∞ and vt is a stationary process such that E(u2svt) = 0 for all s and

t. See also Brillinger (1981). By inserting (2) into (1), the model can be expressed as

yt = α + β′xt +
K∑

j=−K

Π′
j∆xt−j + v̇t (3)

where v̇t = vt +
∑

|j|>K Π′
j u2t−j and K is known as the lead-lag truncation parameter.

Saikkonen (1991) showed that the OLS estimator of β based on (3) does not suffer from the

second-order bias and is efficient in a certain class of distributions.
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Let us consider the case where

Πj = 0 for ∀j < 0. (4)

In this case, the model becomes

yt = α + β′xt +
K∑

j=0

Π′
j∆xt−j + v̇t (5)

and then we do not have to include the leads of ∆xt as regressors. We therefore expect

an improvement of the finite sample efficiency by estimating (5) because we do not have to

include extra regressors. In this case, we note that condition (4) is related to the concept

of Granger causality. According to Sims (1972) and Proposition 11.3 in Hamilton (1994),

condition (4) holds if and only if u1t does not Granger-cause u2t. In other words, it is

possible to efficiently estimate the cointegrating regression model without any leads of the

first difference of integrated variables if the past values of u1t do not help to predict u2t.

Therefore, we recommend that the null of Granger non-causality be tested before estimating

the cointegrating regression model.

Tests for Granger non-causality can be conducted by approximating the process of ut by

a finite-order vector autoregressive model: ut = Ψ1ut−1 + Ψ2ut−2 + · · · + Ψput−p + et. Let

ût = [û1t, u
′
2t]

′, where û1t = u1t − (θ̂ − θ)′zt is the regression residual from (1) with θ̂ as the

OLS estimator of θ. We then estimate

ût = Ψ1ût−1 + Ψ2ût−2 + · · ·+ Ψpût−p + êt (6)

and test the hypothesis that Ψ1,21 = Ψ2,21 = · · · = Ψp,21 = 0 where Ψj,21 is the (2, 1) block

of Ψj and êt = et − (In+1 − Ψ1L − · · · − ΨpL
p)[z′t(θ̂ − θ), 0]′ and L being the lag operator.

Although û1t includes an estimation error, its effect is asymptotically negligible. In fact, we

can show that for j = −p, · · · , p,

1
T

∑
1≤t,t−j≤T

û1tû1t−j =
1
T

∑
1≤t,t−j≤T

u1tu1t−j + Op

(
1
T

)
,

1
T

∑
1≤t,t−j≤T

û1tu
′
2t−j =

1
T

∑
1≤t,t−j≤T

u1tu
′
2t−j + Op

(
1
T

)
while for j ≥ 0,

1√
T

∑
1≤t,t−j≤T

ût−j ê
′
t =

1√
T

∑
1≤t,t−j≤T

ut−je
′
t + Op

(
1√
T

)
.

by the asymptotic technique explained in, for example, Chapters 17–19 in Hamilton (1994).

If the evidence of Granger non-causality is observed by tests based on (6), we can expect the

finite sample efficiency gain by excluding the leads of ∆xt from (3) and estimating (5).

We may also consider verifying condition (4) by investigating whether or not the regres-

sion error from (5) is serially uncorrelated. For this purpose, the portmanteau tests are

available as explained in Lütkepohl (1993).
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To demonstrate the case where the model can be expressed as (5), we consider the

following case:

u1t =
∞∑

j=0

φjε1t−j and u2t = ε2t where
∞∑

j=0

j|φj | < ∞

and εt =

 ε1t

ε2t

 ∼ iid

 0

0

 ,

 σ11 σ12

σ21 Σ22

 . (7)

We then decompose ε1t as

ε1t = ε1·2t + ε̃2t (8)

where ε1·2t = ε1t − σ12Σ−1
22 ε2t and ε̃2t = σ12Σ−1

22 ε2t. Note that ε1·2t is uncorrelated with all

the leads and lags of ε2t and ε̃2t. Using this decomposition, u1t can be expressed as

u1t =
∞∑

j=0

φjε1·2t−j +
K∑

j=0

φj ε̃2t−j +
∞∑

j=K+1

φj ε̃2t−j

= vt +
K∑

j=0

Π′
j∆xt−j +

∞∑
j=K+1

φj ε̃2t−j (9)

where Π′
j = φjσ12Σ−1

22 and vt =
∑∞

j=0 φjε1·2t−j . Since E(ε2sε1·2t) = 0 for all s and t, it is

evident that vt is uncorrelated with ∆xt−j for all j. The regression form in (5) is obtained

by inserting (9) into (1).

To investigate the finite sample performance of the dynamic OLS estimator without

leads, we conduct a Monte Carlo experiment. We consider the case of n = 1 and assume

that u1t follows a first-order autoregressive model with the AR coefficient ρ, while u2t is an

iid sequence. We set T = 100, σ11 = Σ22 = 1, σ12 = σ21 = 0.4, 0.8, and ρ = 0.1, 0.5, 0.9.

The computation was conducted by using the GAUSS matrix language, and the number of

replications is 10,000 for all the cases. The simulation results are summarized in Table 1

(further simulation results are available from the author upon request).

For the choice of K, we use the general-to-specific method by Ng and Perron (1995) with

1% and 5% significant levels and information criteria, i.e., the Akaike information criterion

(AIC) and the Bayesian information criterion (BIC).

From Table 1, we observe that the dynamic OLS estimator without leads substantially

outperforms that with leads and lags in all the cases. In particular, in terms of the MSE,

the MSE of the DOLS estimator without leads are approximately half of that with leads and

lags in many cases.

3 Conclusion

In this paper, we considered the role of leads of the first difference of the I(1) regressors in

the dynamic OLS estimation. We demonstrated that leads are not necessary in cointegrating
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regression models when the cointegrating regression error does not Granger-cause the first

difference of the I(1) regressors. Based on a Monte Carlo simulation, we found that the

dynamic OLS estimator without leads substantially outperforms that with leads and lags

when leads are, in fact, unnecessary.
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Table 1: Simulation Results

T = 100, σ12 = 0.4 GS001 GS005 AIC BIC

ρ L&L Lags L&L Lags L&L Lags L&L Lags

BIAS 0.00231 0.00191 0.00138 0.00076 0.00156 0.00062 0.00229 0.00174

0.1 Std. Dev. 0.05592 0.03787 0.07115 0.04301 0.04820 0.03975 0.03448 0.03486

MSE 0.00313 0.00144 0.00506 0.00185 0.00233 0.00158 0.00119 0.00122

BIAS 0.01305 0.01239 0.00525 0.00482 0.00678 0.00378 0.01690 0.01178

0.5 Std. Dev. 0.09897 0.06823 0.12299 0.07647 0.10103 0.07482 0.06346 0.06415

MSE 0.00997 0.00481 0.01515 0.00587 0.01025 0.00561 0.00431 0.00425

BIAS 0.09278 0.09473 0.07786 0.07110 0.08037 0.06462 0.11620 0.09531

0.9 Std. Dev. 0.39449 0.27095 0.46348 0.29522 0.46084 0.30779 0.29436 0.27233

MSE 0.16423 0.08239 0.22087 0.09221 0.21883 0.09891 0.10015 0.08324

T = 100, σ12 = 0.8 GS001 GS005 AIC BIC

ρ L&L Lags L&L Lags L&L Lags L&L Lags

BIAS 0.00244 0.00268 0.00043 0.00083 0.00158 0.00068 0.00385 0.00269

0.1 Std. Dev. 0.03526 0.02498 0.04597 0.02889 0.03121 0.02612 0.02297 0.02324

MSE 0.00125 0.00063 0.00211 0.00084 0.00098 0.00068 0.00054 0.00055

BIAS 0.00913 0.00916 0.00312 0.00352 0.00460 0.00215 0.01402 0.00865

0.5 Std. Dev. 0.06438 0.04777 0.07958 0.05145 0.06938 0.05101 0.04811 0.04557

MSE 0.00423 0.00237 0.00634 0.00266 0.00483 0.00261 0.00251 0.00215

BIAS 0.14712 0.14187 0.12359 0.11137 0.12629 0.10198 0.18267 0.13415

0.9 Std. Dev. 0.30634 0.23202 0.32937 0.22818 0.33710 0.22879 0.27612 0.23326

MSE 0.11549 0.07396 0.12376 0.06447 0.12959 0.06275 0.10961 0.07240

Note: “GS001”, “GS005”, “AIC”, “BIC” denote the dynamic OLS estimator with K chosen by the general to specific

approach with 1% and 5% significant levels, AIC, and BIC, respectively. “L&L” denotes the dynamic OLS estimator with

leads and lags, and “Lags” denotes the dynamic OLS estimator without leads.
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