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1 Introduction

Recent literature on optimal monetary policy with the zero interest rate bound has assumed that capital

stock is exogenously given. This assumption of fixed capital stock has some important implications. First,

the natural rate of interest is exogenously determined simply due to the lack of endogenous state variables:

namely, it is affected by exogenous factors such as changes in technology and preference, but not by changes

in endogenous variables. For example, Jung et al. (2005) and Eggertsson and Woodford (2003a, b) among

others, start their analysis by assuming that the natural rate of interest is an exogenous process, which is a

deterministic or a two-state Markov process. More recent researches such as Adam and Billi (2004a, b) and

Nakov (2005) extend analysis to a fully stochastic environment, but continue to assume that the natural rate

process is exogenously given. These existing researches typically consider a situation in which the natural

rate of interest, whether it is a deterministic or a stochastic process, declines to a negative level entirely due

to exogenous shocks, and conduct an exercise of characterizing optimal monetary policy responses to the

shock, as well as monetary policy rules to implement the optimal outcome.

Second, no serious attention has been paid to the channel through which interest rate adjustments con-

ducted by a central bank would affect an equilibrium through a change in capital stock. The existing

researches have found that it would contribute to consumption smoothing and consequently to an improve-

ment in welfare if a central bank lowers short-term interest rates before and/or after the periods during

which the natural rate of interest is below zero. Specifically, Jung et al. (2005) and Eggertsson and Wood-

ford (2003a, b) emphasize the role of history dependent monetary policy by showing that central bank’s

credible commitment about monetary easingafter the periods with a negative natural rate would contribute

to consumption smoothing. On the other hand, Adam and Billi (2004a, b) and Nakov (2005) stress the

role of central bank’s preemptive action by showing that an interest cutbeforethe periods with a negative

natural rate would mitigate a downward pressure upon consumption and inflation, thereby improving eco-

nomic welfare. However, the existing papers are entirely silent about the possible effects of an interest rate

change, whether it is before or after the shock periods, upon a change in capital stock, which should be

closely related to consumption smoothing and therefore economic welfare.

The purpose of the present paper is to see how analysis would change if we remove the assumption

of fixed capital stock and instead employ a more realistic assumption of endogenous capital formation.

Specifically, we introduce the zero bound constraint into the variable capital model in which rental market

for capital stock exists, and characterize optimal monetary policy responses to shocks that lead to a decline

in the natural rate of interest to a negative level, as well as monetary policy rules to implement the optimal
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outcome.

To illustrate the role of endogenous capital stock in an economy with the zero interest rate bound, let us

consider a situation in which a substantial decline in productivity growth in periodT leads to a decline in

the natural rate of interest to a negative level. The best action that a central bank can take in periodT is to

lower nominal interest rate to its lower bound; however, because of a negative natural rate in periodT, the

interest rate gap, defined as the discrepancy between the real interest rate and its natural rate counterpart,

takes a positive value in periodT. Then the consumption Euler equation implies that, other things being

equal, the positive interest rate gap in periodT leads to a decline in consumption in periodT. Then we ask

ourselves how one can fix this problem.

Let us first think about a discretionary solution under the assumption of fixed capital stock. Consumption

in the period just after the shock,cT+1 must coincide with its natural rate counterpart,cn
T+1, simply because

a central bank under discretionary policy chooses to close a interest rate gap whenever it is possible. More-

over, the natural level of consumption is exogenously given under the assumption of fixed capital. Therefore

cT+1 is determined entirely by exogenous sources, and there is no way to avoid the decline in consumption

in periodT. However, if the central bank can make a credible commitment about future monetary policy,

there is a room to improve the situation. Specifically, as shown by Jung et al (2005) among others, the cen-

tral bank’s commitment to monetary easing in periodT +1 leads to an increase incT+1, thereby contributing

to an increase incT , even if the interest rate gap in periodT remains unchanged.

In fact, this kind of history dependent policy is the sole way to fix the problem as far as we stick to the

assumption of fixed capital. If we relax this assumption, however, we have another channel to fix it. That

is, if the central bank lowers short-term interest rate in periodT − 1, firm investment in periodT − 1 would

increase, and thus capital stock at the end of periodT − 1 would increase as well.*1 Other things being

equal, this increase in capital stock at the end of periodT − 1 leads to an increase in capital stock at the

end of periodT as well, which contributes to an expansion of production capacity in periodT + 1, thereby

successfully increasingcn
T+1. An important thing to note is that even a central bank without commitment

technology is able to increasecT making use of this channel; it is still possible for such a central bank to

increasecT even if the bank sticks to closing the gap after the shock (cT+1 = cn
T+1). This mechanism can

be seen as a new channel to realize consumption smoothing through capital stock adjustments, which is

entirely missing in the fixed capital model that has been used in the analysis of optimal monetary policy

with the zero interest rate bound.

This paper characterizes optimal monetary policy in an economy with the zero interest rate bound and

*1 Note that, in periodT, labor supply and production increases in response to monetary easing.
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endogenous capital formation. First, we show that, given an adverse shock to productivity growth, the

natural rate of interest is less likely to fall below zero in an economy with endogenous capital than the

one with fixed capital. However, our numerical exercises show that, unless investment adjustment costs

are very close to zero, we still have a negative natural rate of interest for large shocks to productivity

growth. Second, the optimal commitment solution is characterized by a negative interest rate gap (i.e., real

interest rate is lower than its natural rate counterpart) before and after the shock periods during which the

natural rate of interest falls below zero. The negative interest rate gapafter the shock periods represents the

history dependence property, while the negative interest rate gapbeforethe shock periods emerges because

the central bank seeks to increase capital stock before the shock periods, so as to avoid a decline in capital

stock after the shock periods, which would otherwise occur due to a substantial decline in investment during

the shock periods.

The main findings of this paper are as follows. First, we show that, given an adverse shock to productivity

growth, the natural rate of interest is less likely to fall below zero in an economy with endogenous capital

model than the one with fixed capital. This is a direct reflection of consumption smoothing through capital

adjustments in an economy with perfectly flexible prices. However, our numerical exercises show that,

unless investment adjustment costs are very close to zero, we still have a negative natural rate of interest for

large and persistent shocks to productivity growth.

Second, the optimal commitment solution is characterized by a negative interest rate gap (i.e., real interest

rate is lower than its natural rate counterpart) before and after the shock periods with negative natural rate of

interest. The negative interest rate gapafter the shock periods represents the history dependence property,

which was emphasized by the existing studies such as Jung et al (2005) and Eggertsson and Woodford

(2003). On the other hand, the negative interest rate gapbeforethe shock periods emerges because the

central bank seeks to increase capital stock just before the shock periods, so as to avoid a decline in capital

stock after the shock periods, which would otherwise occur due to a substantial decline in investment during

the shock periods.

The latter property may be seen as a central bank’s preemptive action against future binding shocks, which

is unique to endogenous capital model. It should be emphasized that such a preemptive action is completely

different from the central bank’s pre-shock behavior extensively studied by Adam and Billi (2004a, b) and

Nakov (2005) among others in the setting of fixed-capital model. The preemptive action these papers

have focused on is nothing but a central bank’s policy response to a decline in thecurrent inflation rate,

which occurs because private agents anticipate the possibility of hitting the zero lower bound in the future

and thereby adjust their inflation expectations and their spending. We also show that the targeting rule to
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implement the commitment solution is characterized by history-dependent inflation-forecast targeting.

Third, a central bank governor without sophisticated commitment technology tends to resort to preemp-

tive action more than the one with it. The governor without commitment technology controls natural rates

of consumption, output, and so on in the future periods, by changing capital stock today through monetary

policy.

The rest of the paper is organized as follows. Section 2 presents a model with endogenous capital forma-

tion, and characterizes its steady state, natural rates, log-linearized system, and utility-based loss function.

Section 3 discusses when and how frequently the zero bound constraint is binding. Section 4 characterizes

solutions under commitment, as well as under discretion. Section 5 concludes the paper.

2 The model

2.1 The optimal decisions of economic agents

We use a New Keynesian dynamic general equilibrium model with capital stock accumulation. For

simplicity, we assume the rental market for capital stock, which Woodford(2005) describes in his paper in

comparison with his model of firm-specific capital stock. We assume that there is one firm that specializes

in accumulating capital stock of the entire economy (type I firm) and there are other firms which rent

capital stock through the rental market for producing goods (type II firms). The optimality conditions for

the representative household are as below.

uc (Ct; ξt) = λt (2.1)

vh (ht(i); ζt) = wt(i)λt, (i ∈ [0,1]) , (2.2)

λtQt,t+1
Pt+1

Pt
= βλt+1, (2.3)

whereλt is the marginal utility of real income,Ct is the aggregate consumption,uc (·) is the marginal utility

of consumption,ht(i) is the supply of labor to firmi of type II firms, vh (·) is the marginal disutility of

labor,wt is the real wage rate,ξt andζt are the preference shocks affecting the utility functions,Qt,t+1 is the

nominal stochastic discount factor,Pt is the price level,β is the subjective discount factor. The risk-free

one-period (gross) nominal interest rate,Rt, must satisfy

(Rt)
−1 = Et

{
Qt,t+1

}
. (2.4)

The type I firm is endowed with the capital stock at time 0,K0, and makes an investment decision every

period in order to maximize the following objective function.

max
{Kt+1}∞t=0

E0

∞∑

t=0

Q0,t
Pt

P0

[
ρtKt − It

]
,
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s.t. It = I

(
Kt+1

Kt

)
Kt. (2.5)

I
(

Kt+1
Kt

)
is a convex function representing costs of investment, adjustment and depreciation altogether per

unit of the existing capital stock when the firm choosesKt+1 to be the level of capital stock next period. As

in Woodford(2005), this function satisfiesI (1) = δ, I ′(1) = 1 andI ′′(1) = εψ, whereδ is the depreciation

rate of capital stock andεψ > 0. This firm’s first-order condition is

I ′
(
Kt+1

Kt

)
= EtQt,t+1Πt+1

[
ρt+1 − I

(
Kt+2

Kt+1

)
+ I ′

(
Kt+2

Kt+1

)
Kt+2

Kt+1

]
, (2.6)

whereρt is the real rental rate of capital stock, andΠt is the gross inflation rate from timet to t + 1.

Type II firms, which produce intermediate goods for consumption and investment in monopolistic com-

petition, exist continuously along the [0,1] line. Whenever possible, each individual firm makes a pricing

decision for its product to maximize the discounted sum of profits in the future states in which it is unable to

reoptimize its price. The specification of price stickiness is assumed to be the Calvo type as in Rotemberg

and Woodford(1997). We also assume that government subsidizes the type II firms at a rateτ = 1/(θ−1) per

unit of production in order to remove the distortion of monopolistic competition*2. We first characterize real

marginal cost function for firmj ∈ [0,1], which can be derived by solving the following cost minimization

problem.

min
{hd

t ( j), kt( j)}
wt( j)hd

t ( j) + ρtkt( j)

s.t. yt( j) = f

(
At

hd
t ( j)

kt( j)

)
kt( j), (2.7)

wherehd
t ( j) andkt( j) are the demand for labor and capital stock, respectively,At is the productivity level

and f (·) is the strictly increasing and convave production function. Since the Lagrange multiplier associated

with (2.7) is the real marginal cost function, denoted bySt( j), it can be expressed as

St( j) =
wt( j)

At f ′
(
At

hd
t ( j)

kt( j)

) =
ρt

f
(
At

hd
t ( j)

kt( j)

)
− At

hd
t ( j)

kt( j) f ′
(
At

hd
t ( j)

kt( j)

) . (2.8)

We assume constant-returns-to-scale production technology so that the profit maximization problem for

firm j is to set a price,pt( j), to maximize the following objective function.

max
{pt( j)}

Et

∞∑

k=0

αkQt,t+k

{
pt( j) (1 + τ)

(
pt( j)
Pt+k

)−θ
Yt+k − Pt+kSt+k( j)

(
pt( j)
Pt+k

)−θ
Yt+k

}

Here, we assume that every firm can optimally choose its price every period with probability 1−α, indepen-

dent of its history, andQt,t+k is the nominal stochastic discount factor from timet to t+k. We have also used

*2 θ is the elasticity of demand derived from the Dixit-Stiglitz aggregator for consumption goods.
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the demand condition,yt( j) =
(

pt( j)
Pt

)−θ
Yt, to substituteyt( j) in the objective function, whereyt( j) andYt

are firm j’s output the aggregate production, respectively. It is then straightforward to derive the first-order

condition,

pt( j) =
Et

∑∞
k=0 (αβ)k uc (Ct+k; ξt+k) Pθ

t+kYt+kSt+k( j)

Et
∑∞

k=0 (αβ)k uc (Ct+k; ξt+k) Pθ
t+kYt+kP−1

t+k

. (2.9)

Finally, we specify the following market-clearing conditions.

Yt = Ct + It + Gt, (2.10)

Kt =

∫ 1

0
Kt( j)d j (2.11)

ht(i) = hd
t ( j) for i = j ∈ [0,1] . (2.12)

2.2 The steady state

We characterize the zero-inflation steady state around which we shall log-linearize the optimality con-

ditions. We denote steady-state variables in characters without time subscripts. Assuming thatA = 1 and

ξ = ζ = G = 0 in the steady state, the optimality conditions obtained in the previous section can be written

as below.

vh (h(i); 0)
uc (C; 0)

= w(i), (2.13)

1 = β (ρ + 1− δ) , (2.14)

R = β−1,

P− PS( j) = 0 (2.15)

S( j) =
w( j)

f ′
(

hd( j)
K( j)

) =
ρ

f
(

hd( j)
K( j)

)
− hd( j)

K( j) f ′
(

hd( j)
K( j)

) , (2.16)

Equation (2.13) represents the steady-state consumption-leisure choice and equation (2.14) is the corre-

sponding no-arbitrage condition between risk-free nominal interest rate and the rental rate of capital. Equa-

tion (2.15) states that price is set at the marginal cost level reflecting the fact that government subsidy

induces production of goods at the efficient level. The market-clearing conditions and constraints for opti-

mization problems in the steady state are

Y = C + δK,

h(i) = hd( j) for i = j, (2.17)

K =

∫ 1

0
K( j)d j,

y( j) = f

(
hd( j)
K( j)

)
K( j),

whereY is defined asY ≡
(∫ 1

0
y( j)

θ−1
θ d j

) θ
θ−1

.
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From the set of equations above, we can observe some properties of the steady state. First, labor-capital

ratio is identical across firms. To see this, combine equation (2.15), (2.16) and (2.17) to obtain

ρ = f

(
h( j)
K( j)

)
− h( j)

K( j)
f ′

(
h( j)
K( j)

)
. (2.18)

Since the right-hand side of equation (2.18) is positive and strictly increasing inh( j)
K( j) , there exists a unique

positive h( j)
K( j) that satisfies this equation. This in turn implies that the steady-state wages across firms are

identical. Consequently, from equation (2.13), the level of employment is the same across firms and hence

the level of capital used in each firm must be equivalent.

Accordingly, the steady state can be characterized by the following equations.

vh (h; 0)
uc (C; 0)

= w, (2.19)

1 = β (ρ + 1− δ) , (2.20)

R = β−1,

w = f ′
(

h
K

)
, (2.21)

ρ = f

(
h
K

)
− h

K
f ′

(
h
K

)
, (2.22)

Y = C + δK

Thus, given the initial level of capital stock, we can identify the steady-state values of all the variables.

Finally, for the later purpose of approximating welfare function, we derive some convenient expressions.

First, denoting thatφh ≡ f (y/k) /
(
f ′

(
f −1 (y/k)

)
f −1 (y/k)

)
, (2.19) and (2.21) yield

Yuc

hvh
=

f
(
f −1 (y/k)

)

f ′
(
f −1 (y/k)

)
f −1 (y/k)

= φh. (2.23)

Second, (2.20) and (2.22) imply that

1− φ−1
h = 1−

h
K f ′

(
h
K

)

f
(

h
K

) =
ρ

f
(

h
K

) =
ρK

f
(

h
K

)
K

= ρk = k
(
β−1 − (1− δ)

)
. (2.24)

2.3 Log-linearized system

In this section, we log-linearize the structural equations derived in section 2 around the zero-inflation

steady state.
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2.3.1 Market-clearing conditions

The market-clearing conditions (2.10) and (2.11) and the identity (2.5) are linearized in the following

way*3.

Ŷt = Ĉt + Ît + Ĝt, (2.25)

K̂t =

∫ 1

0
K̂t( j)d j,

Ît = k
{
K̂t+1 − (1− δ) K̂t

}
, (2.26)

whereŶt ≡ (Yt − Y) /Y, Ĉt ≡ (Ct −C) /Y, Ît ≡ (It − I ) /Y, K̂t ≡ (Kt − K) /K andĜt ≡ Gt/Y*4.

2.3.2 Household behavior

Log-linearizing equations (2.1) to (2.4) and noticing the market-clearing condition for labor, (2.12), we

obtain the following approximation.

−σ−1
(
Ĉt − c̄t

)
= λ̂t, (2.27)

νĥt( j) − νh̄t = ŵt( j) + λ̂t,

Q̂t,t+1 + Π̂t+1 = λ̂t+1 − λ̂t,

λ̂t = R̂t − EtΠt+1 + Etλ̂t+1, (2.28)

whereσ−1 ≡ − uccY
uc

, c̄t ≡ − ucξ

uccY
ξt, ν ≡ vhhh

vh
, h̄t ≡ − vhζ

vhhh
ζt. From (2.25),(2.26), (2.27) and (2.28), we obtain the

following IS relation.

Ŷt − k (2− δ) K̂t+1 + k (1− δ) K̂t + kEtK̂t+2 − EtŶt+1 + σR̂t − σEtΠ̂t+1 − gt + Etgt+1 = 0, (2.29)

wheregt ≡ Ĝt + c̄t.

2.3.3 Firm behavior

For type II firms, we have (2.8) from the cost minimization problem and the first-order condition (2.9).

Two log-linearized expressions can be obtained from (2.8), the former being the real marginal cost function

and the latter being the relation between marginal products of labor and capital.

Ŝt( j) = ω
(
ŷt( j) − k̂t( j)

)
+ νk̂t( j) − λ̂t − ωqt, (2.30)

ρ̂t = ρyŷt( j) − ρkk̂t( j) − λ̂t − ωqt, (2.31)

*3 To simplify notation, we hereafter do not distinguish labor supply and demand.
*4 We follow this notation in Woodford(2005).
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whereωqt ≡ (1 + ν)at + νh̄t*
5. Defining the average of log-linearized variables in the production sector as

X̂t ≡
∫ 1

0
X̂t( j)d j for a variableX,*6 the respective averages of (2.30) and (2.31) are simply

Ŝt = ω
(
Ŷt − K̂t

)
+ νK̂t − λ̂t − ωqt, (2.32)

ρ̂t = ρyŶt − ρkK̂t − λ̂t − ωqt. (2.33)

Then, subtracting the averages from their original equations, we obtain

Ŝt( j) = Ŝt + ω
(
ŷt( j) − Ŷt

)
− (ω − ν)

(
k̂t( j) − K̂t

)
,

ρy

(
ŷt( j) − Ŷt

)
= ρk

(
k̂t( j) − K̂t

)
. (2.34)

Hence,

Ŝt( j) = Ŝt +

(
ρy − ω

)
ν

ρk

(
ŷt( j) − Ŷt

)
. (2.35)

Since the demand for firmj is yt( j) = (pt( j)/Pt)
−θ Yt, we can derive the following relationship between

price and output deviations from average.

ŷt( j) − Ŷt = −θ
(
p̂t( j) − P̂t

)
. (2.36)

Turning to the first-order condition (2.9) and log-linearizing, we obtain

∞∑

k=0

Et (αβ)k
(
p̂t( j) − P̂t+k − Ŝt+k( j)

)
= 0.

Then, substitute (2.35) and (2.36) into the above equation to obtain

0 =

∞∑

k=0

Et (αβ)k

p̂t( j) − P̂t+k − Ŝt+k + θ

(
ρy − ω

)
ν

ρk

(
p̂t( j) − P̂t+k

)

=

∞∑

k=0

Et (αβ)k

ψp̃t( j) − Ŝt+k − ψ
k∑

h=1

Π̂t+h

 ,

whereψ = 1 + θ
(ρy−ω)ν

ρk
and p̃t( j) ≡ p̂t( j) − P̂t. After some manipulation, we can solve out the optimal

pricing rule of firm j as follows.

p̃∗t =
1− αβ
ψ

Ŝt + αβEtΠ̂t+1 + αβEt p̃
∗
t+1,

wherep̃∗t denotes the optimal price in periodt for all firms revising their prices. But because of the type of

price rigidity that we assume, ˜p∗t = α
(1−α) Π̂t. Substituting this relationship into the optimal pricing formula,

we obtain the standard New Keynesian Phillips curve.

Π̂t = κŜt + βEtΠ̂t+1, (2.37)

*5 at ≡ logAt.

*6 Note thatYt =

{∫ 1
0 ŷ

θ−1
θ

t ( j)d j

} θ
θ−1

and its first-order approximation isYt =
∫ 1
0 ŷt( j)d j.
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whereκ =
(1−αβ)(1−α)

αψ
. Combining (2.25),(2.26), (2.27), (2.32) and (2.37), we can express the Phillips curve

in the following way.

Π̂t = κ
(
ω + σ−1

)
Ŷt − κσ−1kK̂t+1 + κ

(
σ−1k (1− δ) − (ω − ν)

)
K̂t − κσ−1gt − κωqt + βEtΠ̂t+1 (2.38)

For the type I firm, the capital-stock dynamics is given by log-linearizing (2.6).

λ̂t + εψ
(
K̂t+1 − K̂t

)
= Etλ̂t+1 +

[
1− β (1− δ)] Etρ̂t+1 + βεψ

(
EtK̂t+2 − K̂t+1

)
. (2.39)

Repeating the same procedures to substitute outλ and using (2.33), we can write (2.39) as below.

0 =Ŷt +
[
k (1− δ) + σεψ

]
K̂t −

[
k + σεψ (1 + β) + βk (1− δ)2 + σρk {1− β (1− δ)}

]
K̂t+1

+
[
σρy {1− β (1− δ)} − β (1− δ)

]
EtŶt+1 +

[
βk (1− δ) + βσεψ

]
EtK̂t+2

− gt + β (1− δ) Etgt+1 − σ [
1− β (1− δ)]ωEtqt+1. (2.40)

2.4 Natural variables

In this section, we explain how the natural variables are defined and determined in the model with endoge-

nous capital formation. Consider the following system of equations that are consistent with a hypothetical

flexible-price economy that begins at timet.*7 We denote any variable determined in the system of equa-

tions at timet as ẑf
t+ j|t for ∀ j > 0. The time-t flexible-price economy is characterized by the following

equations.

−σ−1Ŷ f
t+ j|t + σ−1kK̂ f

t+1+ j|t − σ−1k (1− δ) K̂ f
t+ j|t + σ−1gt+ j = λ̂

f
t+ j|t, (2.41)

λ̂
f
t+ j|t = Etλ̂

f
t+1+ j|t + r̂ f

t+ j|t, (2.42)

λ̂
f
t+ j|t + εψ

(
K̂ f

t+1+ j|t − K̂ f
t+ j|t

)
= Etλ̂

f
t+1+ j|t +

[
1− β (1− δ)] Etρ̂

f
t+1+ j|t + βεψ

(
K̂ f

t+2+ j|t − K̂ f
t+1+ j|t

)
, (2.43)

0 = ωŶ f
t+ j|t − (ω − ν) K̂ f

t+ j|t − ωqt+ j − λ f
t+ j|t, (2.44)

ρ̂
f
t+ j|t = ρyŶ

f
t+ j|t − ρkK̂ f

t+ j|t − λ̂ f
t+ j|t − ωqt+ j . (2.45)

Equation (2.41) shows the determinants of the marginal utility of consumption. (2.42) comes from the Euler

equation for the household and (2.43) is the optimality condition for capital stock accumulation. (2.44) is

derived from the real marginal cost function in the flexible-price economy and (2.45) results from the cost

minimization problem of the firm. Note that the determination of variables in the flexible-price economy

starting at timet depends on the level of capital stock in the sticky-price economy,Kt. Thus, if the path of

capital stock in the sticky-price economy after timet does not coincide with the path of
{
K̂ f

t+1+ j|t
}∞

j=0
, the

flexible-price economy equilibrium starting from a period later thant is different from the path of time-t-

flexible-price-economy equilibrium.

*7 We call the flexible-price economy that starts at timet ”time-t flexible-price economy”.
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The natural variables defined in Woodford(2003), ˆzn
t+ j , is equivalent to ˆzf

t+ j|t+ j (∀ j ≥ 0) in the notation

that we use. That is, it conditions each natural variable on the capital stock determined in the sticky-price

economy in each period. On the other hand, Neiss and Nelson(2003) consider the flexible-price-economy

equilibrium starting at a particular fixed-date as natural variables. If we consider natural levels of variables

to be the central bank’s targets to achieve, both definitions have their own merits. In the case of discretionary

monetary policy, Woodford’s definition is suitable since the central bank reoptimizes every period by taking

the existing level of capital stock as given. In the case of commitment, on the other hand, the flexible-price-

economy-equilibrium paths starting at the time of commitment is the appropriate central bank’s target.

Whether the difference matters depends on the situation considered. As we can see from the shape of

the loss function for the central bank in the next section, the distinction between the two is unnecessary

in the present model when the zero-lower-bound of nominal rate of interest (hereafter referred to as the

ZLB) is not an issue of concern. This is because the central bank is able to completely offset the effects of

shocks represented as the natural rate of interest by controlling the nominal rate of interest. As a result, the

equilibrium in the sticky-price economy will be identical to that of the flexible-price economy every period.

If there is a positive probability that the ZLB will bind, however, the distinction will be important*8.

For the convenience of discussion in later sections, we denote the gap between the sticky-price-economy

equilibrim and the time-t flexible-price-economy equilibrium for any variable ˆzt+ j as below.

z̃∗t+ j|t ≡ ẑt+ j − ẑf
t+ j|t

2.5 Utility-based loss function

In order to derive optimal monetary policies, an appropriate criterion for the central bank’s optimization

problem should be established. In this section, following the methods of Edge(2003) and Onatski and

Williams(2004), we approximate the households’ welfare function around the steady state up to second

order. Households’ welfare in this model can be defined as

W0 ≡ E0

∞∑

t=0

βt

{
u (Ct; ξt) −

∫ 1

0
v (ht (i) ; ζt) di

}
.

As a result of approximation, we obtain the central bank’s loss function.*9

L0 = E0

∞∑

t=0

βt L̂t + t.i.p.+ O(3),

*8 If there exists a cost-push shock or any other type of disturbance whose impact the central bank cannot offset, the distinction
will also be important.

*9 The derivation of loss function is discussed in Appendix A.
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where

L̂t =
(
σ−1 + ω

)
Ŷ2

t + σ−1Î2
t + εψk

(
K̂t+1 − K̂t

)2
+ ρkk

(
β−1 − (1− δ)

)
K̂2

t − 2σ−1Ŷt Ît

− 2Ŷt

(
σ−1gt + ωqt

)
− 2(ω − ν) ŶtK̂t − 2k (1− δ)

(
σ−1gt + ωqt

)
K̂t

+ 2k
(
σ−1gtK̂t+1 + β−1ωqtK̂t

)
+

1 +

(
ρy − ω

)
ν

ρk
θ


αθ

(1− α) (1− αβ)
Π̂2

t , (2.46)

and t.i.p. are the terms independent of policy. The loss function can be further expressed in terms of

deviation of each variable from time-0 flexible-price economy equilibrium path. That is,

L̂t =
(
σ−1 + ω

) (
Ŷt − Ŷ f

t|0
)2

+ σ−1
(
Ît − Î f

t|0
)2

+ ρkk
(
β−1 − (1− δ)

) (
K̂t − K̂ f

t|0
)2

+ εψk
((

K̂t+1 − K̂ f
t+1|0

)
−

(
K̂t − K̂ f

t|0
))2 − 2σ−1

(
Ŷt − Ŷ f

t|0
) (

Ît − Î f
t|0
)

− 2(ω − ν)
(
Ŷt − Ŷ f

t|0
) (

K̂t − K̂ f
t|0
)

+

1 +

(
ρy − ω

)
ν

ρk
θ


αθ

(1− α) (1− αβ)
Π̂2

t

=
(
σ−1 + ω

)
Ỹ∗2t|0 + σ−1

(
kK̃∗t+1|0 − k (1− δ) K̃∗t|0

)2
+ ρkk

(
β−1 − (1− δ)

)
K̃∗2t|0

+ εψk
(
K̃∗t+1|0 − K̃∗t|0

)2 − 2σ−1Ỹ∗t|0
(
kK̃∗t+1|0 − k (1− δ) K̃∗t|0

)

− 2(ω − ν) Ỹ∗t|0K̃∗t|0 +

1 +

(
ρy − ω

)
ν

ρk
θ


αθ

(1− α) (1− αβ)
Π̂2

t ,

Hence, the first-best outcome for the economy is to follow exactly the same paths as the time-0 flexible price

economy achieves in equilibrium. If we can ignore the ZLB, this is actually what the optimal commitment

and discretionary policies must achieve in the present model. To see this intuitively, transform the structural

equations in the gap form:

0 = Ỹ∗t|0 − k (2− δ) K̃∗t+1|0 + k (1− δ) K̃∗t|0 + kEtK̃
∗
t+2|0 − EtỸ

∗
t+1|0 + σ

(
R̂t − EtΠ̂t+1 − r̂ f

t|0
)
, (2.47)

Π̂t = βEtΠ̂t+1 + ω
(
Ỹ∗t|0 − K̃∗t|0

)
+ νK̃∗t|0 + σ−1

(
Ỹ∗t|0 − kK̃∗t+1|0 + k (1− δ) K̃∗t|0

)
,

0 =Ỹ∗t|0 +
[
k (1− δ) + σεψ

]
K̃∗t|0 −

[
k + σεψ (1 + β) + βk (1− δ)2 + σρk {1− β (1− δ)}

]
K̃∗t+1|0

+
[
σρy {1− β (1− δ)} − β (1− δ)

]
EtỸ

∗
t+1|0 +

[
βk (1− δ) + βσεψ

]
EtK̃

∗
t+2|0.

Suppose that the central bank commits to set the policy rate atR̂t = r̂ f
t|0 in (2.47) each period. This is consis-

tent with all the gap variables and inflation rate being zero all the time, which is the first-best outcome. Thus

the optimal commitment policy demands the central bank to attain the flexible-price-economy equilibrium

starting at the initial period in the absence of ZLB. Discretionary central bank reoptimizes every period but

will achieve the same outcome because the central bank governor in the initial period knows that leaving

the capital stock at the level equivalent toK f
1|0 is consistent with all the governors in the following periods

setting the policy rates at the appropriate levels that realize the capital stock level at
{
K̂ f

t|0
}∞
t=2

. The same

argument applies to all the following periods. Of course, this argument no longer holds if the ZLB binds,

which is the topic we address in this paper.
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3 When does the ZLB bind?

In section 2.5, we observed that the optimal policies can achieve the first-best solution if the nominal

interest rates never hit the ZLB. As Rogoff(1998) points out, however, there are reasons to question the

possibility of negative natural rate of interest when it is endogenously determined. In the context of our

model, the question is related to the variability of the capital stock. For a representative household with

consumption smoothing motive, investment contributes to diminishing the volatility in the real interest

rate through the consumption Euler equation. Here, we attempt to illustrate whether the ZLB matters for

the central bank through a simple numerical exercise*10. Suppose there is an unexpected 3 percent rise

in productivity at time 0,a0, which follows an AR(1) process with the persistence parameter denoted by

ρa*11. This shock generates negative expected productivitygrowthwhich lowers current and expected future

natural rates of interest. Figure 1(a) presents impulse responses of the natural capital stock and the natural

rate of interest in percentage deviation from the steady state for various values ofεψ whenρa = 0.5. It

is observed that the larger the size ofεψ, the greater the responses of natural rate of interest. However, in

this case, the natural rate of interest is lower than the ZLB only for high values ofεψ. Figure 1(b) presents

the case whenρa = 0 for the same unexpected shock in productivity at time 0. In contrast to the previous

case, the natural rate of interest hits the ZLB for lower values ofεψ. These two examples suggest that as

long as a change in productivity stems from an unexpected shock in productivity, given that the magnitude

of the shock is large enough, the size ofεψ and the statistical property of the shock play an important role

in determining whether the natural rate of interest hits the ZLB. The optimal monetary policy when the

natural rate of interest unexpectedly falls below the ZLB is discussed in Jung et al (2005) and Eggertsson

and Woodford (2003).

The recent interests in the practical discussion of monetary policy include how the central bank should

act against imminent danger of liquidity trap not necessarily implied by the current level of shocks. The

simple numerical exercise above implies that if a sharp drop in productivity is expected to occur in the near

future, then the central bank may not be free from the ZLB unless the adjustment cost of capital stock is

very small. This calls for the central bank to act pre-emptively to minimize the damage from a liquidity

trap, which we shall discuss in the following sections.

*10 For all the numerical exercises in this paper, we employ the following parameter values that were taken from Woodford(2003,
2005):α = 0.66, β = 0.99, σ−1 = 1, ν = 0.11, φ−1

h = 0.75, ωp = 0.33, (θ − 1)−1 = 0.15, δ = 0.12/4 = 0.03.
*11 In the numerical exercises of this paper, we only consider productivity shocks and hold other shocks constant. Therefore,gt = 0

for all t andωqt = (1 + ν) at.
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4 Optimal monetary policy with the ZLB

4.1 Optimal policy under commitment

Commitment solution can be obtained by minimizing (2.46) subject to (2.29), (2.38), (2.40) andR̂t ≥
− 1−β

β
. By taking derivatives with respect tôYt, Π̂t and K̂t+1, first-order conditions can be obtained as

follows.

0 =
(
σ−1 + ω

)
Ŷt −

(
σ−1gt + ωqt

)
− (ω − ν) K̂t − σ−1k

(
K̂t+1 − (1− δ) K̂t

)

+ φ1t − β−1φ1,t−1 − κ
(
ω + σ−1

)
φ2t + φ3t + β−1

(
σρy (1− β (1− δ)) − β (1− δ)

)
φ3,t−1 (4.1)

0 = ΘΠ̂t − β−1σφ1,t−1 + φ2t − φ2,t−1 (4.2)

0 = σ−1k2
(
K̂t+1 − (1− δ) K̂t

)
− βσ−1k2 (1− δ)

(
EtK̂t+2 − (1− δ) K̂t+1

)
+ εψk

(
K̂t+1 − K̂t

)

− βεψk
(
EtK̂t+2 − K̂t+1

)
+ ρkk (1− β (1− δ)) K̂t+1 − σ−1kŶt + βσ−1k (1− δ) EtŶt+1 − β (ω − ν) EtŶt+1

− βk (1− δ)
(
σ−1Etgt+1 + ωEtqt+1

)
+ σ−1kgt + kωEtqt+1 + β−1kφ1,t−1 − k (2− δ) φ1t + βk (1− δ) Etφ1,t+1

+ κσ−1kφ2t − βκ
[
σ−1k (1− δ) − ω + ν

]
Etφ2,t+1 +

[
k (1− δ) + σεψ

]
φ3,t−1

−
[
k + σεψ (1 + β) + βk (1− δ)2 + σρk {1− β (1− δ)}

]
φ3t + β

[
k (1− δ) + σεψ

]
Etφ3,t+1 (4.3)

0 = φ1t

(
R̂t +

1− β
β

)
(4.4)

whereφ1t, φ2t andφ3t are Lagrange multipliers associated with (2.29), (2.38) and (2.40), respectively, and

Θ ≡
(
1 +

(ρy−ω)ν
ρk

θ
)

αθ
(1−α)(1−αβ) . The Kuhn-Tucker condition requires thatφ1t > 0 if and only if R̂t > − 1−β

β
.

We rearrange (4.1), (4.2) and (4.3) in order to eliminateφ2t andφ3t, and obtain a first-order condition of the

form

G (L) Etφ1,t = −H (L)
(
EtΠ̂t + µEt∆Ỹ∗t|0

)

≡ −H (L) Π̃t, (4.5)

where the lag polynomials are given by

G (L) = 5.3411(1− 0.5561L−1)(1− 1.0748L)(1− 0.9380L)(1− 0.6316L),

H (L) = 62.7678(1− 0.9286L−1)(1− 0.9380L),

µ = 0.1343,

under the parameter values used in section 3 andεψ = 3.*12 Similar to the fixed-capital-stock model of

Jung et al. (2005) and Eggertsson and Woodford (2003a, b), the first-order condition (4.5) presents policy

inertia responding to past economic performances. In addition, the optimal commitment policy responds

to expectations of future deviation in endogenous variables, due to the presence of channel to affect future

states via capital stock. But notice that capital-stock gaps do not appear in (4.5). This presumably reflects

*12 Note that in deriving (4.5), we replace exogenous variables with the time-0-flexible-price-economy equilibrium path. The same
computational procedure is used to transform the loss function into the gap form. See Appendix A for the details.
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the fact that the central bank is consistent in its policy through time under commitment and there is no

concern about possible future shifts in its target, which can be characterized as the deviation of capital stock

from the first-best path.

4.2 Targeting rules to implement the commitment solution

To know more about central bank’s behavior in the commitment solution, we derive targeting rules to

implement it. First of all, we rewrite the first-order condition (4.5) in three different ways.*13

(1− 1.7983L)(1− 0.6316L)φ1t = −19.6637

[
1− 0.9286L−1

1− 0.9304L−1
EtΠ̃t

]
(4.6)

(1− 1.0748L)(1− 0.6316L)φ1t = −11.7519

[
1− 0.9286L−1

1− 0.5561L−1
EtΠ̃t

]
(4.7)

(1− 0.6316L)φ1t = 10.9343

[
(1− 0.9286L−1)L−1

(1− 0.9304L−1)(1− 0.5561L−1)
EtΠ̃t

]
(4.8)

These three equations have a similar structure in that terms with lag operators are all gathered on the left

hand side, while terms with lead operators are all put together on the right hand side. Lag terms represent

monetary policy inertia, while lead terms represent central bank’s reaction to their inflation-forecasts, in

which inflation is measured bỹΠ. Generally speaking, as pointed out by Giannoni and Woodford (2002a,

b), multiple targeting rules could be consistent with a single first-order condition. In our case, the above

three equations are all consistent with the first-order condition (4.5), and it could be possible to obtain

multiple targeting rules, corresponding to each of the above three equations, to implement the commitment

solution.

An important criterion to choose one among these multiple targeting rules is that it should include a

targeting rule for the fixed-capital model as a special case. This criterion is particularly important if one

wants to compare a targeting rule derived in the variable-capital model with those obtained in the fixed-

capital model, such as “history dependent price level targeting” in Eggertsson and Woodford (2003a, b)

and “history dependent inflation targeting” in Iwamura et al. (2005). To see whether these three equations

include a targeting rule for the fixed-capital model as a special case, we compute (4.6)-(4.8) again, but now

under the assumption that investment adjustment costs are extremely large (εψ = 100).

(1− 1.5119L)(1− 0.6706L)φ1t = −11.5703

[
1− 0.9789L−1

1− 0.9789L−1
EtΠ̃t

]

*13 We divide the both sides of equation (4.5) by 1−0.9380L before obtaining these equations. In that sense, these equations should
be seen as an approximation of equation (4.5).
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(1− 1.0216L)(1− 0.6706L)φ1t = −7.8180

[
1− 0.9789L−1

1− 0.6614L−1
EtΠ̃t

]

(1− 0.6706L)φ1t = 7.6528

[
(1− 0.9789L−1)L−1

(1− 0.9789L−1)(1− 0.6614L−1)
EtΠ̃t

]

It should be noted that the denominator and the numerator in the squared bracket on the right hand side of

the first equation are canceled out, so that the expression in the squared bracket equals toΠ̃t, implying that

the central bank does not pay any attention to inflation forecasts in this limiting case. This is exactly the

property of a targeting rule for the fixed-capital model: the central bank never takes inflation forecasts into

consideration, simply because there is no endogenous state variable that could be controlled by the central

bank through monetary policy. In this sense, equation (4.6) includes a targeting rule for the fixed-capital

model as a special case. In contrast, the second and third equations, each of which corresponds to (4.7) and

(4.8), contain inflation forecasts even in this limiting case, implying that neither of equations (4.7) and (4.8)

doesnot include a targeting rule for the fixed-capital model as a special case.

Given the above argument, we now concentrate on equation (4.6), and characterize a targeting rule cor-

responding to it. We first define central bank’s inflation forecasts as of periodt as

Ft(Π̃) ≡
∞∑

j=0

Ψ jEtΠ̃t+ j =
1− 0.9286L−1

1− 0.9304L−1
EtΠ̃t, (4.9)

whereFt(z) denotes a linear combination of forecasts of the variablez at various future horizons, with

weights{Ψ j} being normalized byΨ0 = 1. Closely following a procedure adopted by Eggertsson and

Woodford (2003a, b) and Iwamura et al. (2005), we denote a target for inflation forecastFt(Π̃) by ΠT AR
t .

We also denote the target shortfall by∆Π
t (∆Π

t ≡ ΠT AR
t − Ft(Π̃)). Given these definitions, we substitute

φ1t = 19.6637∆Π
t and (4.9) into (4.6) to obtain a target updating rule of the form

ΠT AR
t+1 = 2.4299∆Π

t − 1.1358∆Π
t−1. (4.10)

Consider the following targeting rule. The inflation target for period 0 is set at zero (ΠT AR
0 = 0), and the

targets for the subsequent periods are determined by equation (4.10). The central bank chooses, in each

periodt, the level of the overnight interest rate in each period so as to achieve the target criterion

Ft(Π̃) = ΠT AR
t . (4.11)

if it is possible. If it is not possible because of the zero lower bound on nominal interest rates, the central

bank simply sets the overnight interest rate at zero. If the central bank successfully shoots the target in each

period starting from period 0, then∆Π
t is always zero, therefore the target in each period never deviates from

zero. This can be seen as a standard inflation targeting. However, if the central bank fails to achieve the

target due to the zero bound constraint,∆Π
t takes a positive value, and consequently the predetermined target
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for the next period becomes higher than zero. Given a higher target, the central bank must adopt an easier

monetary policy (probably, a zero interest rate policy) in the near future. This raises inflation expectations

further in the liquidity trap, which is exactly needed to escape from the trap.*14

The targeting rule characterized by (4.10) and (4.11) can be interpreted as “history-dependent inflation-

forecast targeting”. First, it has the feature of history dependence represented by lagged target shortfalls,

∆Π
t and∆Π

t−1, in equation (4.10). This is exactly the same property observed by Eggertsson and Woodford

(2003a, b) and Iwamura et al. (2005) in the setting of fixed-capital model. Second, not only the inflation

rate in the current period, but also forecasts of the inflation rate in the future periods enter the target criterion

(4.12). This is in sharp contrast with the targeting rules derived in the fixed capital model, in which only

current inflation (or current price-level) comes in. Adjustments in current overnight interest rates have no

influences on future inflation rates in the setting of fixed capital model, so that the central bank needs not

pay any attention to future inflation. In the setting of variable capital, however, since changes in current

overnight interest rates could affect future inflation rates through changes in capital stock, the central bank

needs to take into account future developments in inflation.

Inflation-forecast targeting could be interpreted as central bank’s preemptive actions against future in-

flation or deflation. It should be emphasized that such a preemptive action is completely different from

the central bank’s pre-shock behavior extensively studied by Adam and Billi (2004a, b) and Nakov (2005)

among others in the setting of fixed-capital model. The preemptive action these papers have focused on is

nothing but a central bank’s policy response to a decline in thecurrent inflation rate, which occurs because

private agents anticipate the possibility of hitting the zero lower bound in the future and thereby adjust their

inflation expectations and spending. To see how the preemptive action in the variable capital model differs

from the one studied by the previous papers, it must be sufficient to recall that the target criterion (4.11)

converges to

Π̃t = ΠT AR
t

if investment adjustment costs are extremely large (εψ takes an extremely large value); namely, inflation

forecasts disappear when investment adjustment costs are extremely large. In the fixed capital model,

including the one studied by Adam and Billi (2004a, b) and Nakov (2005), private agents behave in a

forward-looking manner but the central bank does not do so. The central bank’s forward-looking behavior

*14 Price-level targeting to implement the commitment solution can be derived in a similar way. We denote a price-level forecast

asFt(P̃) ≡ 1−0.9286L−1

1−0.9304L−1 Et P̃t, whereP̃t is defined byP̃t ≡ P̂t + 0.1343Ỹ∗t|0. Denote the target shortfall as∆P
t ≡ PT AR

t − Ft(P̃).

Then, substitutingφ1t = 19.6637∆P
t into (4.5) yields a target updating rule:PT AR

t = PT AR
t−1 + 2.4299∆P

t−1 − 1.1358∆P
t−2. Note

that the target criterion,Ft(P̃) = PT AR
t , involves price-level forecasts rather than inflation forecasts. This could be seen as an

extended version of the history-dependent price-level targeting, derived by Eggertsson and Woodford (2003a, b), to the setting
of variable capital.
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is entirely absent, simply because the current central bank governor has no weapon to fight against future

inflation/deflation.

To evaluate a quantitative importance of central bank’s preemptive action, Figure 2 shows the relative

importance of forecasts for̃Πt+ j at future horizons, for different values ofεψ. Under the standard value

of εψ (εψ = 3), the relative weight on one-period and two-period ahead forecasts are 0.0019 and 0.0017,

respectively, indicating that the weights are extremely small with the exception of very smallεψ (i.e., when

investment adjustment costs are very small). Indeed, the mean future horizon of these forecasts, which is

defined by
∑

j≥1

Ψ j j/
∑

j≥1

Ψ j ,

is equal to 1.3725 quarters in the case ofεψ = 3. These results indicate that central bank’s preemptive action

indeed exists in the targeting rule of the commitment solution, but it does not play an important role at least

quantitatively.

4.3 A Non-inertial Policy

The analysis in the previous subsection indicates that a central bank governor with sophisticated com-

mitment technology is able to reduce losses by making use of policy inertia. This might be a reason why a

preemptive action does not play an important role, at least quantitatively, in the targeting rule to implement

the commitment solution. If this is the case, we might be able to observe a stronger preemptive action in

the behavior of a central bank without such a sophisticated commitment technology. Based on this idea,

this subsection derives a targeting rule under the assumption that the central bank conducts policy in a

discretionary manner, and compares it with the targeting rule obtained in the previous subsection.

Discretionary policymaking is defined as a process that presumes period-by-period reoptimization in-

volving each period’s start-up conditions. Specifically, we consider a central bank that reoptimizes in each

period independently of past events. To express this idea of policy “resetting”, we assume that a central

bank governor takes a restriction of the form

0 = φ1,t−1 = φ2,t−1 = φ3,t−1 (4.12)

into consideration when he reoptimizes in periodt. As we saw in the previous subsection, it is possible for a

central bank governor in periodt to improve economic welfare by manipulating private-sector’s expectations

about future inflation and outputs. However, such a management of expectations is worthless to thegovernor

we are now considering, because he has a perception that it never affects economic welfare. The governor

perceives in periodt, for example, that the lagged Lagrange multiplier associated with the IS equation,

φ1,t−1, is zero; therefore, the IS equation is not binding in periodt − 1; consequently, any change inEt−1Ŷt
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has no impacts on central bank losses. In this sense, the restriction (4.12) can be interpreted as representing

the governor’s perception of “bygones-be-bygones”.

McCallum and Nelson (2000) studies a targeting rule in a model in which the AS equation with inflation

persistence is assumed, and thusπt−1 plays a role of endogenous state variable in decision making in period

t. In their discussion of discretionary optimization, they make an interesting statement that there are two

different concepts in discretion: the one obtained by a dynamic programming approach (i.e., optimal dis-

cretionary solution) and the other obtained under the restriction that the Lagrange multiplier in periodt − 1

equals to zero, as in (4.12).

Discretionary policymaking with (4.12) has the following features. First, the central bank governor does

not pay attention to the channel through which a change in overnight interest rate in periodt affects in-

flation and outputs in periodt + 1 through a change in capital stock at the end of periodt. In particular,

the central governor ignores the channel through which private-sector’s expectations in periodt, including

EtŶt+1，Etπ̂t+1 andEtK̂t+2, are altered through a change in capital stock at the end of periodt, K̂t+1. Ignoring

this channel obviously deteriorates economic welfare (although it is perceived to be costless to the gover-

nor), implying that the non-inertial solution (i.e., discretionary policymaking with (4.12)) leads to a lower

economic welfare as compared with the optimal discretionary solution, not to speak of the commitment

solution.*15 Second, the central bank governor does his best in each period so as to close gaps, i.e., the

deviation of each variable from its natural rate counterpart that is conditioned on the current level of capital

stock (Woodford (2003)), including̃Y∗t，K̃∗t+2，andΠ̂t. To see this, we simply rewrite periodt + j loss in

the gap form

L̂t+ j =
(
σ−1 + ω

)
Ỹ∗2t+ j|t + σ−1

(
kK̃∗t+ j+1|t − k (1− δ) K̃∗t+ j|t

)2
+ ρkk

(
β−1 − (1− δ)

)
K̃∗2t+ j|t

+εψk
(
K̃∗t+ j+1|t − K̃∗t+ j|t

)2 − 2σ−1Ỹ∗t+ j|t
(
kK̃∗t+ j+1|t − k (1− δ) K̃∗t+ j|t

)

−2(ω − ν) Ỹ∗t+ j|tK̃
∗
t+ j|t +

1 +

(
ρy − ω

)
ν

ρk
θ


αθ

(1− α) (1− αβ)
Π̂2

t+ j

and the three structural equations again in the gap form.

0 = Ỹ∗t+ j|t − k (2− δ) K̃∗t+ j+1|t + k (1− δ) K̃∗t+ j|t + kEtK̃
∗
t+ j+2|t − EtỸ

∗
t+ j+1|t + σ

(
R̂t+ j − EtΠ̂t+ j+1 − r̂ f

t+ j|t
)

Π̂t+ j = βEtΠ̂t+ j+1 + ω
(
Ỹ∗t+ j|t − K̃∗t+ j|t

)
+ νK̃∗t+ j|t + σ−1

(
Ỹ∗t+ j|t − kK̃∗t+ j+1|t + k (1− δ) K̃∗t+ j|t

)

0 = Ỹ∗t+ j|t +
[
k (1− δ) + σεψ

]
K̃∗t+ j|t −

[
k + σεφ (1 + β) + βk (1− δ)2 + σρk {1− β (1− δ)}

]
K̃∗t+ j+1|t

+
[
σρy {1− β (1− δ)} − β (1− δ)

]
EtỸ

∗
t+ j+1|t +

[
βk (1− δ) + βσεψ

]
EtK̃

∗
t+ j+2|t

*15 Note that the optimal discretionary solution has a feature of policy inertia since a central bank manipulates private-sector’s
expectations through a change in capital stock. The main purpose of our analysis in this subsection is to derive a targeting rule
for policy making without inertia, and compare it with the one obtained in the previous subsection. The non-inertial solution is
more suitable to that purpose than the optimal discretionary solution.
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These two features of the non-inertial solution imply its suboptimality, but a casual observation seems to

indicate that central banking practice is more close to, and well approximated by the non-inertial solution:

there are many central banks that do not pay much attention to the policy transmission channel via capital

stock; there are many central banks that mainly focus on closing inflation and output gaps, which are

conditioned on the current level of capital stock.

The targeting rule for the non-inertial solution can be characterized as follows. We first substitute (4.12)

into (4.1), (4.2), and (4.3), and then eliminateφ2 andφ3 using those equations to obtain a difference equation

with respect toφ1t.
[
k (1− δ) − σεψ (1 + β) − βk (1− δ)2 − σρk {1− β (1− δ)}

]
φ1,t + βσεψEtφ1,t+1

= κΘ
[(
ω + σ−1

) (
k + σεψ (1 + β) + βk (1− δ)2 + σρk {1− β (1− δ)}

)
− σ−1k

] (
Π̂t + (κΘ)−1 Ŷt

)

− β
[
k (1− δ) + σεψ

] [
σ−1k (1− δ) − (ω − ν)

]
K̂t+1

+
[(

k + σεψ (1 + β) + βk (1− δ)2 + σρk {1− β (1− δ)}
) (
σ−1k (1− δ) − (ω − ν)

)
− σ−1k2 (1− δ) − εψk

]
K̂t

+ βκΘ
[
σ−1k (1− δ) − (ω − ν) −

(
ω + σ−1

) {
k (1− δ) + σεψ

}] (
EtΠ̂t+1 + (κΘ)−1 EtŶt+1

)

+ k
(
σ−1gt − σ−1Etgt+1

)
−

[
k + σεψ (1 + β) + βk (1− δ)2 + σρk {1− β (1− δ)}

] (
σ−1gt + ωqt

)

+
[
k + βσεψ

] (
σ−1Etgt+1 + ωEtqt+1

)
. (4.13)

Furthermore, using the following relationship, we replace the exogenous shocks with the variables deter-

mined in the time-t flexible-price economy.

σ−1gt + ωqt =
(
ω + σ−1

)
Ŷ f

t|t − σ−1kK̂ f
t+1|t + σ−1k (1− δ) K̂t − (ω − ν) K̂t (4.14)

σ−1Etgt+1 + ωEtqt+1 =
(
ω + σ−1

)
EtŶ

f
t+1|t − σ−1kEtK̂

f
t+2|t + σ−1k (1− δ) K̂ f

t+1|t − (ω − ν) K̂ f
t+1|t

(4.15)

σ−1gt − σ−1Etgt+1 = σ−1Ŷ f
t|t − σ−1k

(
K̂ f

t+1|t − (1− δ) K̂t

)
− εψ

(
K̂ f

t+1|t − K̂t

)
+ βεψ

(
EtK̂

f
t+2|t − K̂ f

t+1|t
)

+
[
(1− β (1− δ))

(
ρy − ω − σ−1

)
− σ−1β (1− δ)

]
EtŶ

f
t+1|t

+ σ−1k
(
EtK̂

f
t+2|t − (1− δ) K̂ f

t+1|t
)

+ (1− β (1− δ)) (ω − ν − ρk) K̂ f
t+1|t (4.16)

Finally, by substituting (4.14), (4.15) and (4.16) into (4.13), we can express the first-order condition in a

much simpler way.

Γφ1t + βσεψEtφ1,t+1 = Λ1

(
Π̂t + (κΘ)−1 Ỹ∗t|t

)
+ Λ2

(
EtΠ̂t+1 + (κΘ)−1 EtỸ

∗
t+1|t

)
+ Λ3K̃∗t+1|t, (4.17)

where

Γ ≡ k (1− δ) − σεψ (1 + β) − βk (1− δ)2 − σρk {1− β (1− δ)} ,
Λ1 ≡ κΘ

[(
ω + σ−1

) (
k + σεψ (1 + β) + βk (1− δ)2 + σρk {1− β (1− δ)}

)
− σ−1k

]
,

Λ2 ≡ βκΘ
[
σ−1k (1− δ) − (ω − ν) −

(
ω + σ−1

) {
k (1− δ) + σεψ

}]
,

Λ3 ≡ −β
{
k (1− δ) + σεφ

} {
σ−1k (1− δ) − (ω − ν)

}
.
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A simple comparison between (4.17) and the corresponding condition in the commitment solution, (4.5),

shows the following features of the non-inertial solution. First, lagged Lagrange multipliers,φ1,t−1, φ1,t−2

and so on, are entirely absent in (4.17). Second, variables appearing in (4.17) are all expressed in the gap

form, in which the corresponding natural rates are all conditioned on the current level of capital stock.

This reflects the bygones-be-bygones property of the non-inertial solution. Third, we compute a numerical

expression of (4.17) to evaluate quantitative importance of central bank’s preemptive action in the non-

inertial solution. The equation corresponding to (4.6) in the case of the commitment solution is

φ1t = −27.0970
1− 0.3719L−1

1− 0.5135L−1
Et

(
Π̂t + 0.1343Ỹ∗t|t

)
+ 8.9455

1
1− 0.5135L−1

EtK̃
∗
t+1|t,

where the relative importance of forecasts of inflation and the output gap at various future horizons is

represented by

1− 0.3719L−1

1− 0.5135L−1
Et

(
Π̂t + 0.1343Ỹ∗t|t

)
.

Figure 3 shows the relative weights on forecasts at different future horizons for̂Πt andỸ∗t|t, with the weight

on the current period being normalized to unity. If we compare them with the corresponding figures in the

case of the commitment solution, which is shown in Figure 2, we see that the relative weights on one-period

and two-period ahead forecasts are now 0.1416 and 0.0727, respectively, under the standard value ofεψ

(εψ = 3), and are much greater than the corresponding figures in Figure 2. Also, the mean future horizon of

these forecasts is now 1.4634 quarters, indicating that preemptive action plays an important role, not only

qualitatively but also quantitatively.

5 Numerical analysis

In this section, we have two purposes to present numerical exercises. First, we would like to see the

equilibrium paths of endogenous variables under the optimal commitment, optimal discretionary and non-

inertial policies for the baseline parameter specification in order to confirm the basic characteristics of these

solutions discussed in the previous section. For simplicity, we take up the perfect foresight equilibrium in

each case. The baseline setting assumes -3 percent change in the productivity from its steady-state level in

periods 5,6 and 7, which are correctly anticipated in period 0.*16 It is also assumed that the economy has

been in the steady state before the news of the shock is revealed in period 0, and that other types of shocks

do not disturb the economy. Under the baseline setting, the anticipated change in productivity from period

4 to 5 makes the natural rate of interest in period 4 to fall below the ZLB. The reason for focusing on the

anticipated shock is to see how pre-emptive monetary easing may differ under different policy regiemes.

*16 That is,â5 = â6 = â7 = −0.03.
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The responses of various variables under the respective policies are shown in Figures 4 to 6. In each figure,

the red lines in the panels for output, capital stock, consumption, inflation and nominal interest rate show

paths of the hat variables in the log-linearized system. The blue and green lines superimposed in each panel

present the movements of the associated time-0 flexible price equilibrium and natural levels in Woodford’s

definition, respectively.

Second, we alter the value ofεψ to analyze how the equilibrium nominal interest rate paths under the

optimal commitment and discretionary policies would change. The discussion in section 3 indicates that a

larger value ofεψ brings about a greater fall in the natural rate of interest. Our interest lies in how the length

of periods with binding ZLB varies depending on the value ofεψ.

5.1 Solutions for the baseline case

Figures 4 to 6 show the numerical solutions of endogenous variables under the optimal commitment,

optimal discretionary, and non-inertial policies, respectively. The baseline parameter values are taken from

Woodford (2005) withεψ = 3.

Figure 4 confirms the analysis in section 3.1. The commitment policy reacts to the positive real interest

rate gap in period 4 by the pre-emptive monetary easing in period 3, followed by the zero-interest-rate

policy in period 4 and the inertial monetary easing in period 5.*17 As a result, the equilibrium inflation

is positive in period 5, which mitigates the deflationary pressure in the previous periods. Recalling the

discussion in section 3.2 that the forward-lookingness of the target criterion is not very large under the

parameter values we assume in this paper, monetary easing in period 3 is considered to be a central bank’s

response to potential deflationary pressure in that period, which results from the private sector’s anticipation

of the binding shock in period 4, rather than its own response to the binding shock in period 4. The figure

also indicates the target paths for the central bank with commitment technology by the blue line; that is, the

time-0 flexible price economy equilibrium. Overall, the commitment solutions closely track the paths that

the central bank would wish to attain in the initial period if the ZLB constraint on the nominal interest rate

did not exist.

The optimal discretionary solution is shown in Figure 5. With the lack of commitment technology,

the central bank in period 5 will never wish to create positive inflation to counteract a substantial decline

in the natural rate of interest in period 4. For the central bank after period 5 will set the nominal rate

of interest equal to the natural rate of interest (in Woodford’s definition) every period. This makes the

*17 The numerical algorithm that we use is an extension of Jung et al. (2005), which can be applied for solving the perfect foresight
equilibrium.
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optimal discretionary solution inferior to the optimal commitment solution in terms of economic welfare

evaluated at the initial-period. Therefore, the discretionary optimizer in the variable capital stock model

must be forward-looking in deciding optimally the level of capital stock upon which the paths of endogenous

variables and their target paths, which can be characterized as the time-t flexible price equilibrium for the

period-t central bank, are conditioned. If̂Kt+1 deviates from its natural level,̂K f
t+1|t, the central bank in the

next period will have the target paths different from the current ones even when the shocks are deterministic.

Because the central bank would wish the future target paths to be kept as close as possible to their own,

the decision of the central bank in each period involves passing on the capital stock to the next generation,

such that it helps minimize the discounted sum of future expected losses,
∑∞

j=1 β
j L̂t+ j . To illustrate how this

works, let us compare the discretionary solution with the outcome obtained under a simple-minded Taylor

rule of the form,R̂t = max
{
r̂n
t + EtΠ̂t+1,1− 1/β

}
. This is the policy which attempts to set the real rate of

interest at the natural rate whenever possible. Obviously, this policy is able to achieve full stabilization after

(and including) period 5 so that the endogenous variables are always equivalent to the time-5 flexible-price

equilibrium. However, as Figure 7 shows, the suboptimality of this policy not only leads to unfavorable

outcomes prior to period 5 but also renders the paths of endogenous variables distant from the time-0

flexible-price-equilibrium paths even after period 5. A simple comparison between Figures 5 and 7 clearly

shows that central bank’s deliberate decision making about capital stock transferred to future generations

significantly improves economic welfare. Note that this feature of the discretionary policy is entirely absent

in the fixed-capital stock model where the future value function is independent from the current decision,

or in the model with inflation inertia where the natural variables (in Woodford’s definition) do not depend

on the state variables determined in the sticky-price economy.

Finally, we make a comparison between the equilibrium paths under the non-inertial policy and the opti-

mal discretionary policy. A comparison between Figures 5 and 6 shows that there are only minor differences

between the two, which might suggest that the targeting rule to implement the non-inertial solution, which

was derived in section 4, be a good approximation to the one to implement the optimal discretionary solu-

tion, at least under the baseline parameter values and the type of shock that we assume here.

5.2 Policy regime and the length of ZLB binding

In this section, we make alterations to the baseline setting in the previous analysis by changing the

parameter values ofεψ in order to compare how the length of periods in which the central bank must set

the nominal rate of interest at zero changes in equilibrium under the optimal commitment and discretionary

solutions.

24



Figures 8 and 9 show the equilibrium paths forεψ = 10 and 30, respectively. The results indicate that,

with the commitment technology to manage expectations, the central bank needs to confront with the ZLB

only in period 4 even for a larger size of natural-rate-of-interest shock. In constrast, for the discretionary

central bank, the number of periods with binding ZLB increases with the value ofεψ. Whenεψ = 30,

the discretionary central bank begins the zero-interest-rate policy as early as period 2. A largerεψ, which

increases the size of shock in terms of the natural rate of interest, induces the discretionary central bank

to fight against a greater expected deflation and thus to take pre-emptive action earlier to make its future

expected loss as small as possible. This result confirms the strong stabilization property of the commitment

policy analyzed in section 4.

6 Conclusion

This paper has characterized optimal monetary policy in an economy with the zero interest rate bound

and endogenous capital formation, and obtained the following findings. First, we have shown that, given

an adverse shock to productivity growth, the natural rate of interest is less likely to fall below zero in

an economy with endogenous capital model than the one with fixed capital. This is a direct reflection of

consumption smoothing through capital adjustments in an economy with perfectly flexible prices. However,

our numerical exercises show that, unless investment adjustment costs are very close to zero, we still have

a negative natural rate of interest for large and persistent shocks to productivity growth.

Second, the optimal commitment solution is characterized by a negative interest rate gap (i.e., real interest

rate is lower than its natural rate counterpart) before and after the shock periods with negative natural rate of

interest. The negative interest rate gapafter the shock periods represents the history dependence property,

which was emphasized by the existing studies such as Jung et al (2005) and Eggertsson and Woodford

(2003). On the other hand, the negative interest rate gapbeforethe shock periods emerges because the

central bank seeks to increase capital stock just before the shock periods, so as to avoid a decline in capital

stock after the shock periods, which would otherwise occur due to a substantial decline in investment during

the shock periods.

The latter property may be seen as a central bank’s preemptive action against future binding shocks, which

is unique to endogenous capital model. It should be emphasized that such a preemptive action is completely

different from the central bank’s pre-shock behavior extensively studied by Adam and Billi (2004a, b) and

Nakov (2005) among others in the setting of fixed-capital model. The preemptive action these papers

have focused on is nothing but a central bank’s policy response to a decline in thecurrent inflation rate,

which occurs because private agents anticipate the possibility of hitting the zero lower bound in the future
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and thereby adjust their inflation expectations and their spending. We also show that the targeting rule to

implement the commitment solution is characterized by history-dependent inflation-forecast targeting.

Third, a central bank governor without sophisticated commitment technology tends to resort to preemp-

tive action more than the one with it. The governor without commitment technology controls natural rates

of consumption, output, and so on in the future periods, by changing capital stock today through monetary

policy.
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Appendix A: Deriving the loss function

The derivation of loss function in this paper follows a method similar to Edge(2003) and Onatski and

Williams(2004). Supposef (xt; ηt) is the function to be approximated wherext is an endogenous variable

and ηt is a vector of exogenous variables. Letxt = g (zt, µt) be the function relatingxt to vectors of

endogenous variableszt and exogenous variablesµt. A second-order Taylor approximation tof (·) with

respect tozt andηt is

f (xt; εt) = f (x; 0) +
[
f T
z , f T

µ , f T
ε

]

dzt

dµt

dεt

 +
1
2

[
dzT

t ,dµt,dε
T
t

]


fzzT fzµT fzεT

fµzT fµµT fµεT

fεzT fεµT fεεT




dzt

dµt

dεt

 + O
(
‖η‖3

)
,

whereT is transpose of a matrix and the subscripts,zandε, represents first and second derivatives off with

respect to these vectors evaluated at the steady state. LettingΛ (z) denote a diagonal matrix formed from a

vectorzandẑt be a vector whose elements are percentage deviation of elements ofzt from their steady state

values,

dzt = Λ (z)

(
ẑt +

1
2

Λ (ẑt) ẑt

)
+ O (3) .

Substituting this into the above equation and rearranging, we obtain

f (xt; εt)

=
[
fxg

T
z Λ (z) , f T

µ , f T
ε

]


ẑt

dµt

dεt



+
1
2

[
ẑT
t ,dµ

T
t ,dε

T
t

]

Λ (z)

(
fxgzzT + fxxgzgT

z

)
Λ (z) + Λ (z) Λ ( fxgz) Λ (z) fxgµ Λ (z) fxεgz

fxgT
µΛ (z) fµµT fµεT

fxεgT
z Λ (z) fεµT fεεT




ẑt

dµt

dεt



+ t.i.p.+ O
(
‖ε‖3

)
. (A.1)

To approximate utility of consumption, letf = u (Ct; ξt), g = Yt − I
(

K̂t+1

K̂t

)
K̂t − Gt, zt = [Yt,Kt+1,Kt]T ,

µt = Gt, εt = ξt, ẑt =
[
Ŷt, K̂t+1, K̂t

]T
andz = [Y,K,K]T .*18 We can compute the matrices of coefficients as

*18 Note that we defined̂Gt ≡ Gt
Y rather than in percentage deviation from the steady state of itself. Hence,dGt = YĜt. The

formula needs an adjustment such that appropriate elements of the second-order coefficient matrix are multiplied byY or Y2.
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below.

Λ (z) fxgz = Yuc


1
−k

(1− δ) k

 , Λ (z) fxgzzT Λ (z) = Yuc


0 0 0
0 −εψk εψk
0 εψk −εψk

 ,

Λ (z) fxxgzg
T
z Λ (z) = Yuc


−σ−1 σ−1k −σ−1k (1− δ)
σ−1k −σ−1k2 σ−1k2 (1− δ)

−σ−1k (1− δ) σ−1k2 (1− δ) −σ−1k2 (1− δ)

 ,

Λ (z) Λ ( fxgz) = Yuc


1 0 0
0 −k 0
0 0 (1− δ) k



If we substitute these matrices in (A.1), it follows that

u (Ct; ξt) =Yuc

[
Ŷt − kK̂t+1 + k (1− δ) K̂t

]

+
ucY
2

[
−

(
σ−1 − 1

)
Ŷ2

t − k
(
σ−1k + 1 + εψ

)
K̂2

t+1 − k
(
σ−1k (1− δ)2 − (1− δ) + εψ

)
K̂2

t

+ 2σ−1kŶtK̂t+1 − 2σ−1k (1− δ) ŶtK̂t + 2k
(
σ−1k (1− δ) + εψ

)
K̂t+1K̂t + 2σ−1gtŶt

− 2σ−1kgtK̂t+1 + 2σ−1k (1− δ) gtK̂t

]
+ t.i.p.+ O

(
‖ξ‖3

)
. (A.2)

Similarly, disutility of labor can be computed by lettingf = v (ht( j); ζt), g = f −1 (yt( j)/kt( j)) kt( j)/At,

zt =
[
yt( j), kt( j),At

]T andεt = ζt. The coefficient matrices are

Λ (z) fxgz = hvh


φh

(1− φh)
−1

 , Λ (z) fxgzzT Λ (z) = hvh


ωpφh −ωpφh −φh

−ωpφh ωpφh φh − 1
−φh φh − 1 2

 ,

Λ (z) fxxgzg
T
z Λ (z) = h2vhh


φ2

h φh (1− φh) −φ
φh (1− φh) (1− φh)2 − (1− φh)
−φh − (1− φh) 1

 ,

Λ (z) Λ ( fxgz) = hvh


φh 0 0
0 (1− φh) 0
0 0 −1

 .

Invoking the relationship betweenYuc andhvh in equation (2.23),

∫ 1

0
v (ht( j); ζt) d j =Yuc

∫ 1

0

[
ŷt( j) +

1− φh

φh
k̂t( j)

]
d j

+
Yuc

2

∫ 1

0

[
(1 + ω) ŷ2

t ( j) +
1− φh

φh
(1− ρk) k̂2

t ( j) − 2(ω − ν) ŷt( j)k̂t( j)

− 2ωqt

(
ŷt( j) +

1− φh

φh
k̂t( j)

)]
d j + t.i.p. + O

(
‖ζ‖3

)
. (A.3)

Recall that we definedYt ≡
(∫ 1

0
yt( j)

θ−1
θ d j

) θ
θ−1

andKt ≡
∫ 1

0
kt( j)d j. Second-oder approximation to these
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aggregators are

Ŷt = E j ŷt( j) +
1− θ−1

2
varj ŷt( j) + O (3) ,

K̂t = E j k̂t( j) +
1
2

varj k̂t( j) + O (3) .

From (2.34), we have

varj k̂t( j) =

(
ρy

ρk

)2

varj ŷt( j),

covj

{
ŷt( j), k̂t( j)

}
=
ρy

ρk
varj ŷt( j).

Substituting these expressions into (A.3) yields
∫ 1

0
v (ht( j); ζt) d j = Yuc

[
Ŷt +

1− φh

φh
K̂t

]

+
ucY
2

[
(1 + ω) Ŷ2

t +
1− φh

φh
(1− ρk) K̂2

t − 2(ω − ν) ŶtK̂t

− 2ωqt

(
Ŷt +

1− φh

φh
K̂t

)
+

(
ω + θ−1

)
varj ŷt( j)

+
φh − 1
φh

ρkvarj k̂t( j) − 2(ω − ν) covj

{
ŷt( j), k̂t( j)

}]

= Yuc

[
Ŷt +

1− φh

φh
K̂t

]

+
ucY
2

[
(1 + ω) Ŷ2

t +
1− φh

φh
(1− ρk) K̂2

t − 2(ω − ν) ŶtK̂t

− 2ωqt

(
Ŷt +

1− φh

φh
K̂t

)
+

(
ω + θ−1 +

φh − 1
φh

ρy
2

ρk
− 2(ω − ν) ρy

ρk

)
varjŶt

]

= Yuc

[
Ŷt +

1− φh

φh
K̂t

]

+
ucY
2

[
(1 + ω) Ŷ2

t +
1− φh

φh
(1− ρk) K̂2

t − 2(ω − ν) ŶtK̂t

− 2ωqt

(
Ŷt +

1− φh

φh
K̂t

)
+ θ−1

1 +

(
ρy − ω

)
ν

ρk
θ

 varj ŷt( j)

]
. (A.4)

The final line in (A.4) used the fact that

ω + θ−1 +
φh − 1
φh

ρ2
y

ρk
− 2(ω − ν) ρy

ρk
= ω + θ−1 +

ρy

ρk

(
φh − 1
φh

ρy − 2(ω − ν)
)

= ω + θ−1 +
ρy

ρk

(
φh − 1
φh

(
φhν +

φh

φh − 1
ωp

)
− 2(ω − ν)

)

= ω + θ−1 − ρy

ρk
(ω − ν)

= θ−1

1 +

(
ρy − ω

)
ν

ρk
θ

 > 0.
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This term is positive sinceρy − ω = φhν +
φh

φh−1ωp − ω =
ωp

φh−1 > 0. The output dispersion term in (A.4),

varj ŷt( j), can be replaced by inflation. To show this, log-linearize the demand function for an individual

firm.

ŷt( j) − Ŷt = −θ
(
p̂t( j) − P̂t

)
+ O(2).

Squaring both sides and taking expections overj,

varj ŷt( j) = θ2varj p̂t( j) + O(3).

As in Rotemberg and Woodford(1997), the price dispersion on the right-hand side can be further trans-

formed as below.

varj p̂t( j) = varj log pt( j)

= varj
{
log pt( j) − p̄t−1

} (
wherep̄t ≡ E j

{
log pt( j)

})

= E j
{
log pt( j) − p̄t−1

}2 −
(
E j log pt( j) − p̄t−1

)2

= αE j
(
log pt−1( j) − p̄t−1

)2
+ (1− α)

(
log p∗t − p̄t−1

)2 − (∆p̄t)
2 , (A.5)

where logp∗t is the optimal price for firms that are allowed to reoptimize at timet. Note that in this model,

firms are able to hire capital input for production every period depending on the level of production in the

same period. Thus, firms that are free from price rigidity must choose to set the same price. This also

implies that

E j log pt( j) = αE j log pt−1( j) + (1− α) log p∗t .

Therefore, logp∗t − p̄t−1 = 1
1−α∆p̄t and (A.5) reduces to

varj p̂t( j) = αvarj p̂t−1( j) +
α

1− α (∆p̄t)
2

= αt+1varj p̂−1( j) +
α

1− α
t∑

h=0

αhΠ̂2
t−h.

If we integrate this forward,

∞∑

t=0

βtvarj p̂t( j) =
α

1− α
∞∑

t=0

t∑

h=0

βtαhΠ̂2
t−h + t.i.p.

=
α

(1− α) (1− αβ)

∞∑

t=0

βtΠ̂2
t + t.i.p.

Hence, the output dispersion term can be replaced by

varj ŷt( j) =
αθ2

(1− α) (1− αβ)
Π̂2

t + t.i.p. + O(3). (A.6)
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As a result, (A.2), (A.4) and (A.6) constitute the approximation of households’ utility function.

However, for the reasons explained in Benigno and Woodford(forthcoming), we need to show that the

first-order terms in (A.2), and (A.3) cancel out. If we collect the first-order terms and recalling (2.24),

Ŷt − kK̂t+1 + k (1− δ) K̂t −
[
Ŷt +

1− φh

φh
K̂t

]
= −kk̂t+1 + k (1− δ) K̂t − 1− φh

φh
K̂t

= −k
[
K̂t+1 − β−1K̂t

]
. (A.7)

Integrating this expression forward,

−
∞∑

t=0

βtk
[
K̂t+1 − β−1K̂t

]
=

K
β

K̂0 = t.i.p. (A.8)

Thus, the welfare function consists of second-order terms only. Collecting the remaining terms from (A.2),

(A.3) and (A.8), the loss function of central bank can be expressed asL0 = Yuc

2 L̂0 + t.i.p. + O(3), whereL̂0

is given below

L̂0 =

∞∑

t=0

βt

{(
σ−1 + ω

)
Ŷ2

t + σ−1Î2
t + εψk

(
K̂t+1 − K̂t

)2
+ ρkk

(
β−1 − (1− δ)

)
K̂2

t − 2σ−1Ŷt Ît

− 2Ŷt

(
σ−1gt + ωqt

)
− 2(ω − ν) ŶtK̂t − 2k (1− δ)

(
σ−1gt + ωqt

)
K̂t

+ 2k
(
σ−1gtK̂t+1 + β−1ωqtK̂t

)
+

1 +

(
ρy − ω

)
ν

ρk
θ


αθ

(1− α) (1− αβ)
Π̂2

t

}
(A.9)

Finally, we shall change (A.9) into a form using gap variables. This requires replacing the exogenous

terms that appear in (A.9) by flexible-price equilibrium values. From the discussion in§5, variables in

time-0 flexible price equilibrium have the following relationship.

σ−1gt + ωqt =
(
ω + σ−1

)
Ŷ f

t|0 − σ−1kK̂ f
t+1|0 +

[
σ−1k (1− δ) − ω + ν

]
K̂ f

t|0 (A.10)

−σ−1Ŷ f
t|0 + σ−1Î f

t,0 + σ−1gt + εψ
(
K̂ f

t+1|0 − K̂ f
t|0
)

= β (1− δ) Et

(
−σ−1Ŷ f

t+1|0 + σ−1Î f
t+1|0 + σ−1gt+1

)
+ βεψ

(
EtK̂

f
t+2|0 − K̂ f

t+1|0
)

+
[
1− β (1− δ)] Et

(
ρyŶ

f
t+1|0 − ρkK̂ f

t+1|0 − ωqt+1

)
(A.11)

(A.11) can be further transformed to

σ−1gtK̂t+1 =σ−1Etgt+1K̂t+1 + K̂t+1

[
σ−1Ŷ f

t|0 − σ−1Î f
t|0 − εψ

(
K̂ f

t+1|0 − K̂ f
t|0
)

+ βεψ
(
EtK̂

f
t+2|0 − K̂ f

t+1|0
)

+
{
(1− β (1− δ))

(
ρy − ω − σ−1

)
− σ−1β (1− δ)

}
EtŶ

f
t+1|0 + σ−1Et Î

f
t+1|0

+ (1− β (1− δ)) (ω − ν − ρk) K̂ f
t+1|0

]
(A.12)

33



Substitute (A.10) and (A.12) into (A.9). After a bit of algebra, we obtain

L̂0 =

∞∑

t=0

βt

{(
σ−1 + ω

) (
Ŷ2

t − 2Ŷ f
t|0Ŷt

)
+ σ−1

(
Î2
t − 2Î f

t|0Ît

)
+ ρkk

(
β−1 − (1− δ)

) (
K̂2

t − 2K̂ f
t|0K̂t

)

+ εψk
(
K̂2

t+1 − 2K̂t+1K̂t + K̂2
t − 2K̂ f

t+1|0K̂t+1 + 2K̂ f
t|0K̂t+1 + 2K̂ f

t+1|0K̂t − 2K̂ f
t|0K̂t

)

− 2σ−1
(
Ŷt Ît − Ŷ f

t|0Ît − Î f
t|0Ŷt

)
− 2(ω − ν)

(
ŶtK̂t − Ŷ f

t|0K̂t − K̂ f
t|0Ŷt

)

+

1 +

(
ρy − ω

)
ν

ρk
θ


αθ

(1− α) (1− αβ)
Π̂2

t

}

=

∞∑

t=0

βt

{(
σ−1 + ω

) (
Ŷt − Ŷ f

t|0
)2

+ σ−1
(
Ît − Î f

t|0
)2

+ ρkk
(
β−1 − (1− δ)

) (
K̂t − K̂ f

t|0
)2

+ εψk
((

K̂t+1 − K̂ f
t+1|0

)
−

(
K̂t − K̂ f

t|0
))2 − 2σ−1

(
Ŷt − Ŷ f

t|0
) (

Ît − Î f
t|0
)

− 2(ω − ν)
(
Ŷt − Ŷ f

t|0
) (

K̂t − K̂ f
t|0
)

+

1 +

(
ρy − ω

)
ν

ρk
θ


αθ

(1− α) (1− αβ)
Π̂2

t

}
(A.13)
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Appendix B: Computational method for the optimal discretionary

solution

We present the method for computing the optimal discretionary solution in section 5, where the produc-

tivity shock is assumed to follow a particular deterministic process. In this particular case, the optimal

discretionary solution can be computed by solving the problem backwards, starting from period 8. More

specifically, we first compute the value and policy functions under the optimal discretionary policy for pe-

riod 8. Since it is assumed that no shock is expected to occur after period 8, this problem can be solved

in the linear-quadratic framework using the algorithm of Söderlind(1999). Then, for periods 0 to 7, we

create scenarios for the central bank, describing in which periods it conducts the zero-interest-rate policy.

The number of possible scenarios is 28 in total. For each scenario, we compute value and policy functions

backwards and numerical values of solutions in each period recursively using the initial condition on the

capital stock,K̂0 = 0. Finally, we check whether these results do not violate non-negativity of the nominal

interest rate and whether the central bank taking the zero-interest-rate policy in any period has an incentive

to deviate. The details of each computational procedure are described below.

Step1: Dynamic programming specification

Write the Bellman equation for the problem in period 0 to 7 as below.

[
K̂t, st

]
Pt

[
K̂t

st

]
= min
{xt}


[
xT

t , K̂t, ωqt

]
Q


xt

K̂t

ωqt

 + β
[
K̂t+1, sT

t+1

]
Pt+1

[
K̂t+1

st+1

] (B.1)

s.t.


M1xt+1 + M2xt + M3K̂t + M4qt + M5 (1− 1/β) = 0 if R̂t = 1− 1/β

N1xt+1 + N2xt + N3K̂t + M4qt = 0 if R̂t > 1− 1/β
, (B.2)

where

xt =
[
Π̂t, Ŷt, K̂t+1

]T
, qt =

[
ωqt, ωqt+1

]T
, st =

[
ωqt, ωqt+1, . . . , ωq7, (1− 1/β)

]T
.

Q andP are the matrices representing coefficients in (2.46) and the value function in quadratic form, re-

spectively. In periods where the ZLB bind,xt is determined by (2.29), (2.38) and (2.40) only. The matrices

M1 to M5 contain the coefficients of these structural equations.*19 On the other hand, when the ZLB does

not bind, the optimization problem to solvext in that period is considered subject to (2.38) and (2.40). The

nominal interest rate can be backed out from (2.29).N1 to N4 are the coefficient matrices for (2.38) and

(2.40).

*19 The value function can be obtained by inserting the values of endogenous variables into (B.1).
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Step2: Value and policy functions for t = 8

Using the algorithm in S̈oderlind(1999), the value and policy functions in period 8 can be computed.

In this period, the problem is to minimize (2.46) subject to (2.38) and (2.40). In addition,ωqt = 0 and

st = 0 ∀t. Since the policy function is known to take the form ofxt+1 = Ct+1K̂t+1,*20 it can replace the

expectation term in the constraints, and the optimization problem is equivalent to*21

K̂tPtK̂t = min
{xt}

{[
xT

t , K̂t

] [Q11 Q12

Q21 Q22

] [
xt

K̂t

]
+ βxT

t RT Pt+1Rxt

}
(B.3)

s.t. (N2 + N1Ct+1R) xt + N3K̂t = 0. (B.4)

After taking the first-order conditions and rearranging, we finally obtain the following recursive expressions.

xt = CtK̂t

Pt = CT
t Q11Ct + 2CT

t Q12 + Q22 + βCT
t RT Pt+1RCt (B.5)

Ct ≡ −
(
Q11 + βRT Pt+1R

)−1 {
Q12 + (N2 + N1Ct+1R)T Γt

}
(B.6)

Γt ≡
{
(N2 + N1Ct+1R)

(
Q11 + βRT Pt+1R

)−1
(N2 + N1Ct+1R)T

}−1 {
N3 − (N2 + N1Ct+1R)

(
Q11 + βRT Pt+1R

)−1
Q12

}
.

If P andC converge, starting from some appropriate initial values forPt+1 andCt+1, those are the value and

policy functions to be used in the next step.

Step3: Solving backwards

For periodst = 0,1,2, ...,7, the problem can be solved backwards, given the value and policy functions

in period 8. Note that we guess scenarios for the timing of taking the zero-interest-rate policy and check

whether each scenario satisfies the optimality conditions later. In our problem, policy funciton is linear and

thus can be expressed in the form ofxt = Xk,tK̂t + Xs,tst.

If the ZLB binds

Substitutext+1 = Xk,t+1K̂t+1 + Xs,t+1st+1 in the first set of constraints in (B.2) to obtain

Xk,t = − (
M1Xk,t+1R+ M2

)−1 M3

Xs,t = − (
M1Xk,t+1R+ M2

)−1 (
M1Xs,t+1Ss + M4Sq + M5Sr )

Ss ≡
[
0(8−t)×1 I(8−t)

]
, Sq ≡

[
I2 02×(7−t)

]
, Sr ≡

[
01×(8−t) 1

]

The value function for periodt can be computed by substituting the above results in (B.1). If we divide the

coefficient matrix for the value function into four appropriately-sized blocks of matrices, it can be expressed

*20 Ct+1 is a 3× 1 matrix whose elements are to be determined
*21 K̂t+1 = Rxt, whereR = [0, 0, 1].
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as

Pt =

[
Pt(11) Pt(12)
Pt(12)T Pt(22)

]
(B.7)

Pt(11) = XT
k,tQ11Xk,t + 2XT

k,tQ12 + Q22 + βXT
k,tR

T Pt+1(11)RXk,t (B.8)

Pt(12) =XT
k,tQ11Xs,t + QT

12Xs,t + XT
k,tQ13S

ω + Q23S
ω

+ β
(
XT

k,tR
T Pt+1(11)RXs,t + XT

k,tR
T Pt+1(12)Ss

) (B.9)

Pt(22) =XT
s,tQ11Xs,t + 2Xs,tQ13S

ω + SωT Q33S
ω

+ β
(
XT

s,tR
T Pt+1(11)RXs,t + 2XT

s,tR
T Pt+1(12)Ss + SsT Pt+1(22)Ss

)
,

(B.10)

whereSω ≡ [1,0, . . . ,0] is a 1× (8− t) vector.

If the ZLB does not bind

In a period where the ZLB does not bind, minimize (B.1) subject to the second set of constraints in (B.2)

to obtain

Xk,t = −
(
Q11 + βRT Pt+1(11)R

)−1 (
Q12 + ATΓ1,t

)
(B.11)

Xs,t = −
(
Q11 + βRT Pt+1(11)R

)−1 (
Q13S

ω + βRT Pt+1(12)Ss + ATΓ2,t

)
(B.12)

A ≡ N2 + N1Xk,t+1R

B ≡ N3

C ≡ N1Xs,t+1Ss + N4Sq

Γ1,t ≡
{
A

(
Q11 + βRT Pt+1(11)R

)−1
AT

}−1 {
B− A

(
Q11 + βRT Pt+1(11)R

)−1
Q12

}

Γ2,t ≡
{
A

(
Q11 + βRT Pt+1(11)R

)−1
AT

}−1 {
C − A

(
Q11 + βRT Pt+1(11)R

)−1 (
Q13S

ω + βRT Pt+1(12)Ss
)}
.

The coefficient matrix for the value function are the same as (B.7) to (B.10), given (B.11) and (B.12).

Step4: Consistency with the optimality conditions

For each scenario regarding the choice of taking the zero-interest-rate policy in periods 0 to 7, we can

compute the values of{xt}7t=0 and
{
R̂t

}7

t=0
by applying the methods in step 1 to 3 and using the initial condition

on the capital stock. If̂Rt < 1− 1/β in any period, that scenario violates the non-negativity of the nominal

interest rate. We also need to check whether the central bank is optimally taking the zero-interest-rate

policy. Given the capital stock in each period and the next period’s value function, the central bank must

have no incentive to deviate from the zero-interest-rate policy. If choosing a positive level of interest rate

turns out to improve the economic welfare under a certain scenario, that should be excluded from the set of

possible solutions. Scenarios which survived this consistency-check process are the solutions.
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Fig. 1 Impulse responses of capital stock and nominal interest rate to an unexpected productivity shock att = 0.
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(b) ρa = 0
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Note: Fixed-capital stock model used in this numerical example is the one in which capital stock at the individual firm level is fixed.

Thus, it is not exactly the same as the case in whichεψ → ∞ in the variable-capital stock model that we use.
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Fig. 2 Relative weights on forecasts at different horizons in the optimal commitment policy.
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Fig. 3 Relative weights on forecasts at different horizons in the non-inertial policy.
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Fig. 4 The optimal commitment solution (εψ = 3)
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Fig. 5 The optimal discretionary solution (εψ = 3)
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Note: In each panel, a red line indicates the level of sticky-price equilibrium path (hat variables in the log-linearized system). Green

and blue lines show the natural levels (rates) in Woodford’s definition and the time-0 flexible-price equilibrium paths, respectively.
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Fig. 6 The non-inertial policy (εψ = 3)
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Fig. 7 R̂t = max
{
r̂n

t + EtΠ̂t+1,1− 1/β
}
, (εψ = 3)
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Note: In each panel, a red line indicates the level of sticky-price equilibrium path (hat variables in the log-linearized system). Green

and blue lines show the natural levels (rates) in Woodford’s definition and the time-0 flexible-price equilibrium paths, respectively.
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Fig. 8 The length of periods with binding ZLB (εψ = 10)

(a) The optimal commitment solution
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(b) The optimal discretionary solution
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Note: In each panel, a red line indicates the level of sticky-price equilibrium path (hat variables in the log-linearized system). Green

and blue lines show the natural levels (rates) in Woodford’s definition and the time-0 flexible-price equilibrium paths, respectively.
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Fig. 9 The length of periods with binding ZLB (εψ = 30)

(a) The optimal commitment solution
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(b) The optimal discretionary solution
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Note: In each panel, a red line indicates the level of sticky-price equilibrium path (hat variables in the log-linearized system). Green

and blue lines show the natural levels (rates) in Woodford’s definition and the time-0 flexible-price equilibrium paths, respectively.
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