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Abstract

This paper complements Alvarez and Arellano (2003) by showing the asymptotic
properties of the system GMM estimator for AR(1) panel data models when both
N and T tend to infinity. We show that the system GMM estimator with the
instruments which Blundell and Bond (1998) used will be inconsistent when both
N and T are large. We also show that the system GMM estimator with all available

instruments, including redundant ones, will be consistent if 0,2] /o2 =1 — a holds.
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1 Introduction

With the growing availability of comprehensive statistical databases, the use of dy-
namic panel models has increased steadily in recent decades. The advantages are
clear: dynamic panel models not only allow us to take the dynamics of economic
activity into account, they also make it possible to control for unobservable het-
erogeneity. To estimate dynamic panel data models, several estimators have been
proposed. These include the instrumental variables estimator (Anderson and Hsiao,
1981), the within groups estimator (Nickell, 1981), the first difference GMM esti-
mator (Arellano and Bond, 1991), the level and the FOD-GMM estimator! (Arel-
lano and Bover, 1995), the system GMM estimator (Blundell and Bond, 1998), the
LIML-type estimator (Alonso-Borrego and Arellano, 1999), and the random effect
maximum likelihood (RML) estimator (Blundell and Smith, 1991; Alvarez and Arel-
lano, 2003). Among these estimators, the system GMM estimator is the most widely
used in empirical analysis. For example, Blundell and Bond (2000), Bond, Hoeffler
and Temple (2001), Dollar and Kraay (2002), Beck, Levine and Loayza (2000) and
others have all used the system GMM estimator.

Motivated by the increasing availability of micropanels in which 7T, the time
series dimension, is not negligible relative to IV, the cross-sectional size, a seminal
paper by Alvarez and Arellano (2003) discussed the asymptotic properties of some
of the estimators mentioned above when both N and T are large. Included in their
discussion were the FOD-GMM, the LIML, the first difference GMM, and the RML
estimators. However, oddly enough, Alvarez and Arellano did not show the asymp-
totic properties of the system GMM estimator even though this estimator is widely
used in empirical analyses. One possible reason for this omission may be the tech-
nical difficulties involved. In fact, to derive the asymptotic properties of the system
GMM estimator, we need to show the asymtotic properties of the level GMM esti-
mator. However in deriving the asymptotic properties of the level GMM estimator,

we need to derive the explicit expression of the inverse matrix of the population

!The FOD-GMM estimator refers to the GMM estimator where individual effects in the model are
removed by the forward orthogonal deviation transformation, and the instruments in levels are used
in estimation. In Alvarez and Arellano (2003), the FOD-GMM estimator is simply called the GMM

estimator.



moment matrix of the instruments. Although deriving the explicit expression of
the inverse matrix is somewhat trivial in the case of the first difference GMM es-
timator, it seems nontrivial in the case of the level GMM estimator. The purpose
of the present paper thus is to derive the explicit expression of the inverse matrix
and show the asymptotic properties of the level and the system GMM estimators,
thereby complementing the work of Alvarez and Arellano (2003).

We find that the level GMM estimator with all instruments becomes inconsistent
when both N and T are large, and that the level GMM estimator which Blundell
and Bond (1998) used to construct the system GMM estimator will be consistent
when NV is large regardless of whether T is fixed or tends to infinity. Combining
the results of the first difference and the level GMM estimators, we provide the
results for the system GMM estimator. We consider three cases. The first is the
case where all available instruments, including the redundant ones, are used. In this
case, the system GMM estimator will be inconsistent unless 1 — a = 072] / Ug holds,
where « is the parameter of the lagged dependent variable and 0727 and o2 are the
variances of individual effects and disturbances respectively. The second case we
consider is where one instrument is used for each period in the first differenced and
level models. In this case, the GMM estimator will be consistent when N is large
regardless of whether T is fixed or tends to infinity. The third case, finally, is to
examine the instruments used by Blundell and Bond (1998). In this case, the GMM
estimator will be inconsistent when both N and T are large.

The remainder of this paper is organized as follows. In the next section. we
provide the model and the estimators, while the main results are reported in Section
3. In Section 4, simulation results are provided to assess the theoretical implications

obtained in Section 3. Section 5 concludes.

2 The Model and Estimators

We consider an AR(1) panel data model given by
Yt =ayi—1+n+vy i=1,...,N and t=2,.,T (1)

where « is the parameter of interest with |o| < 1 and vy has mean zero given

NisYils - Yit—1- By letting yr = (Y1, Un)s Yem1 = W11, Yt—1,N)s Ut =
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(w1, - ue,v) and wy = 1; + v, (1) can be expressed in vector form as

Y = ayp—1 + wy (2)
By stacking by time we obtain

y=ay-1+u (3)

where y= (yéa '-'73/’/1*)/ and Yy-1= (yllv "'72/&“71)/'

We impose the following assumptions.

Assumption 1. {v;} (t=2,...,T;i =1,....,N) are i.i.d across time and individu-
als and independent of m; and y;1 with E(vy) = 0, var(vy) = 02, and finite moments

up to fourth order.

Assumption 2. n; are i.i.d across indiwviduals with E(n;) = 0, var(n;) = 0727, and

finite moments up to fourth order.
Assumption 3. The initial observations satisfy

Yi1 = 12—104 + w1 for i=1,...,.N (4)

where w; 1S wj; = Z;io ajvl-71,j and independent of n;.

These assumptions are the same as those in Alvarez and Arellano (2003).

The GMM estimators we consider in this paper are the first differencing GMM
estimator by Arellano and Bond (1991), the level GMM estimator by Arellano and
Bover (1995), and the system GMM estimator by Blundell and Bond (1998). For
simplicity, we consider the inefficient one-step GMM estimator. We now define these
estimators.

By first differencing model (2), we have
Ay = alAy; 1+ Avy t=3,...,T (5)

We consider two types of instrumental variables, Z& = (y1, ...,y:_2) and Z§2 = y;_».
Let Z% and Z92 denote block diagonal matrices whose (t — 2)th blocks are Z¢! and
Z@ respectively. Then the first differencing GMM estimators are

G — Ay/—1pdlAy _ ZfzsAyé—lﬂdlAyt
AL PAAY YT Ay B Ay

(6)



Qgo = Ay’ PP Ay _ Ztha Ayé—lptdQAyt
Ay’_lPdQAy_l ZZ;S AygflPtdQAyt,l

(7)

where P = zdl(zdV zd\=17dV" anq pd2 — zd2( 742 7d2\=1 7d2"
Next, we consider the level estimator. As instruments for the level model, we use
Z' = (Ays, ...,Ay;_1) and Z? = Ay,_q, and let Z' and Z'? denote block diagonal

matrices whose blocks are Z,fl and Z,fQ respectively. Then the level GMM estimators

are
T
= Zl/_1Pl1y _ Zt:3y£—1pt“yt (8)
Yy Py Z?:Syé—lpt“ytfl
T
.y PPy o Y gy PPy
Q2 = 9)

v PPy > iz Y PPy

where P/t = ZI(Z zIM =121V and P2 = z12(Z21 z?)~171%
We consider three types of system estimators by choosing different instruments.

The model of the system estimator can be expressed as

Ai Ai— AUZ‘
Yit — 0y Yit—1 " t (10)

Yit Yit—1 Ust
Let Z¢ = diag(Z{', ZY), Z"" = diag(Z{?, Z{?), and Z?* = diag(Z{', Z!?). Then

the system GMM estimator with the instruments Z!, Z"" and Z% are

buy = TZths Ay P Ay + Yy Pl )
Sies Ayp PR Ay + 3y Py
min = ;tha Ayi PP Ay, + Zgzs i PPy (12)
S ims Ay PP Ay + 30,5 v PPy
Ztha Ay, P Ay, + Zthg yi_1 PPy

T T
Zt:S Ayi—lptdlAytfl + Zt:S yé—lptlzytﬂ

Qg exploits all available instruments in the first differencing and the level es-

Qb (13)

timators. Some instruments in the level estimators are redundant since they are
linear transformations of the instruments used in the first differencing estimator.
Gnin USes the minimum number of instruments in the sense that it uses one instru-
ment for each period. &y, is the system estimator proposed by Blundell and Bond

(1998) in which the redundant instruments in the level model are excluded.



3 Asymptotic Properties of the Estimators

In this section, we derive the asymptotic properties of the GMM estimators defined
in the previous section when both N and T are large. To derive the main results, we

provide some lemmas. Some of these are reported in Alvarez and Arellano (2003).

Lemma 1. Let Assumptions 1, 2, and 8 hold. Then, as both N and T tend to
infinity, provided that T/N — ¢, 0<c<1,?

N g A ~oi3 4
myl_ﬂDHU —P %CUT% <1 i a> (16)
mylflpﬂy—l =" %C"?v <1 - a>2 "1 igoﬂ an

Lemma 2. Let Assumptions 1, 2, and 8 hold. Then, as N tends to infinity, re-
gardless of whether T is fized or tends to infinity,

N g AP A =0 (18)
-1
l1+a 1+a)?

— Ay PRAy_ P 52 1

NT ) AV y-r =P o\t ) PRl (19)
1
N(T—Q)yl_lp Fu =70 (20)
2 1
I Pl2 - P & 21

By utilizing the above lemmas, the following results are readily obtained.

Theorem 1. Let Assumptions 1, 2, and 8 hold. Then, as both N and T tend to
infinity, provided that T/N — ¢, 0 <c <1,

b —P a— —— (22)

5411 - a+

42752
where k = o, /0.

2We impose this condition since in most of the micro panels N is larger than T



Theorem 2. Let Assumptions 1, 2, and 3 hold. Then as N — oo regardless of

whether T — oo or is fized,

@dg e (24)

ap =P« (25)

Remark 1 We find that &g is inconsistent and the direction of the bias is down-
ward. This result has already been shown by Alvarez and Arellano (2003). On the

other hand, &g is consistent with large N regardless of whether T' — oo or is fixed.

Remark 2 We find that A;; is inconsistent when both N and T are large, and
the direction of the bias is upward. On the other hand, &;o is consistent when N is

large regardless of whether T — oo or is fixed.

Now we consider the system GMM estimators. They can be derived by utilizing

the results obtained above.

Theorem 3. Let Assumptions 1, 2, and 8 hold. Then, as both N and T tend to
infinity, provided that T/N — ¢, 0 <c <1,

%c [—1 + ﬁk]

Gay =P a+ M —ap 2 (26)
—« 1 1
[W + 50] +3k (m)
Gy —" o — % (27)
c+ T

Theorem 4. Let Assumptions 1, 2, and 8 hold. Then, as N — oo regardless of

whether T — oo or is fized,
OA‘min —ra (28)
Remark 3 ¢,y will be consistent only when 0727 /02 =1 — a holds. However, in

other cases with 072] /012} % 1 — «, Qg is inconsistent. &y, Will be consistent when

N is large regardless of whether T'— oo or is fixed.



Remark 4 In the case of a4y, since &g has negative asymptotic bias and &
has positive asymptotic bias, the biases cancel each other out in the system GMM
estimator. However, in the case of &gy, since &g4; has negative asymptotic bias and
Qyo is consistent, the ”"balance” between &41 and &;o breaks down. Hence, unlike

Qqi1, Qpp 1s always inconsistent unless ¢ = 0.

4 Monte Carlo Experiments

In this section, we confirm the theoretical implication through Monte Carlo experi-

ments. We consider the following AR(1) model:

Yit = QYip—1 + 1 + Vit (29)

where 7; ~ iidN(0,02), yi1 ~ iidN(n; /(1 — a),05 /(1 — a?)), and vy ~ idN(0,07).

Oy
Here we consider N = 50,100, T = 10,25,50 and o7 = 0.2,1,10. o} is set to 1.
The number of replications is 1000 for all cases. For each estimator, we compute
the median (median), the interquartile range (iqr), and the median absolute error
(mae).

Tables 1 and 2 show the results for the first differencing and the level GMM
estimators for the cases of N = 50 and N = 100, respectively. Tables 3 and 4 report
the results for the system GMM estimator for the cases of N = 50 and N = 100,
respectively. The theoretical asymptotic biases calculated in the previous section
are tabulated in Table 5.

We begin by considering the first differencing and level GMM estimators. Since
the asymptotic properties of &g4; are discussed by Alvarez and Arellano (2003), here
we focus on the other estimators, dgs, qj1, and &go. Although G40 is consistent when
N is large regardless of whether T is fixed or tends to infinity, its finite sample bias
is substantial even in the case of @ = 0.2,0.5, where the effects of weak instruments
may be small. Especially as 0727 /o2 gets larger, the bias gets larger.

Next, we turn to the level GMM estimators. Table 1 shows that the bias of ¢&;; is
substantial when 71" and 0727 /o2 are large. For example, in the case of a = 0.2, T' = 50
and 03)/03 = 10, although the true value is @ = 0.2, the median is 0.908. This value
obtained by simulation is close to the theoretical asymptotic bias reported in Table

5. Also, although &g is consistent when N is large, its finite sample bias crucially



depends upon the magnitude of 072] /o2 In the case of a = 0.2 and 0727/03 = 0.2, the
finite sample biases of d;» at around 0.21 are not so large. However, when a = 0.2
and 0727 / 012) = 10, the biases of @q;o are around 0.52 and the finite sample bias is
substantially large.

Finally, we consider the system GMM estimator. The theoretical results indi-
cate that if 1 —a = 0,2] /o2 holds, é,y is consistent. The simulation confirms this
theoretical result. In the case of « = 0.8 and 0,2] /o2 = 0.2, dqy will be consistent
when both N and T are large. Looking at Table 4, the biases of & are very small
irrespective of T and N. However, in the other cases where &,y is inconsistent,
the biases of &y are very large. The magnitude of the asymptotic biases obtained
by simulation is very close to the theoretical values. For example, in the case of
a =02 T =N =50 and 0} /o7 = 10, the simulation value is 0.776, while the
theoretical value is 0.774. Although &, is consistent when N is large regardless
of whether T is fixed or tends to infinity, its finite sample biases are quite large
especially when 0727 /o2 is large.® With regards to dyp, the magnitude of the biases is
substantially large in almost all the cases. Comparing the theoretical value for the
asymptotic bias and the simulation result for the case of « = 0.2, N =T = 50, and
0727 /o2 = 0.2, we find that both are very close: the theoretical value is -0.116, while
the simulation value is -0.111. However, in the case of 0727 /o2 = 10, the simulation
value is 0.061 but theoretical value is -0.116. This difference springs from the large
finite sample bias of the consistent estimator &;s.

These simulation results have several implications. The first is that the instru-
ments which Blundell and Bond (1998) used does not provide desirable results when
T is large. Using all instruments, including redundant ones, would be preferable
since &y is consistent if 1 — a = 0727 / 012) holds. In contrast, g, is not consistent.
Second, although we can reduce the number of instruments and obtain consistency,
there remain large finite sample biases when 072] /o2 is large. Thus, when the value
of T' is not negligible relative to NV, and 0727 /o2 is large, the system GMM estimator
does not work well. In such cases where the system GMM estimator breaks down,

it is advisable to use the FOD-GMM estimator.

3Bun and Kiviet (2006) and Hayakawa (2005) have shown that the finite sample bias of the system

GMM estimator is heavily affected by the magnitude of o7 /7.
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Alvarez and Arellano (2003) have shown that the FOD-GMM estimator is con-
sistent when both N and 7" are large, and it is robust to large 0727 /o2, However, Okui
(2005) and Hayakawa (2006) have shown that inference based on the FOD-GMM
estimator is inaccurate. To overcome this problem, Hayakawa (2006) proposed a
new form of instruments with which both the asymptotic bias and the variance of
the GMM estimator can be reduced simultaneously and which allow accurate infer-
ences. Hence, when T is large and 0,2] /o2 may be large, we propose to use the GMM

estimator by Hayakawa (2006) instead of the system GMM estimator.

5 Conclusion

In this paper, we considered the asymptotic properties of the system GMM esti-
mators when both N and T are large. We showed that if we use the all available
instruments, including redundant ones in the level model, the system GMM estima-
tor will be inconsistent except for the case when 1 — a = 0727 /o2 holds. If we reduce
the number of instruments so that we use one instruments for each period, the
system GMM estimator is consistent, although its finite sample bias becomes very
large when 0727 /o2 is large. We also showed that the original system GMM estimator
by Blundell and Bond (1998) will be inconsistent unless ¢ = 0. Thus, the system
GMM estimator is not recommendable when T is not negligible relative to N and
0727 /o2 may be large. In this case, one possible solution is to use the GMM estimator
proposed by Hayakawa (2006), since its asymptotic bias and variance become small

simultaneously and inference is accurate even if there is large heterogeneity.
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A Appendix

In this appendix, we give the proofs of the lemmas and theorems given in the main
context. To begin with, note that, under Assumptions 1, 2, and 3, y; can be
expressed as

1
Yit = <—) N + Wit (30)

l1—«a
where w;; = Z;io al v;t—j. Note that Ay, = Aw; holds. We give some lemmas

which are useful to prove the main results.

Lemma 3. Under Assumptions 1, 2, and 8, we have

2 1— 4 (1-a) |
() - ()
-1 - (%J—r—a =
/ _ o (&4
B = o |
4 (1= 2
o (58) T
_ Y11 E(2l wig 1) E(wig—12 ) T1
= Tu - 2 1’ 11 (31)
E(wi,tfl) + E(wig—12y )T 11 E (2 wig—1)
1 1 op(t —2)
E(wiyt_lzit )TllE(Zit wi’t_l) = m (32)

where 2l} = (Aw; g, ..., Awip 1), B(wi g2 ) = o3 (al75, -+ 1) /(14a), E(w}, ) =
o2/(1 —a?), and

T = o2’ —a+ ) g+0,°(1-0a) v
ti—3 A
[ 1 2—-a 2—-a 2-a --- 2—-—«
2—-a 2—-a 3-2a 3—-2a --- 3 — 2«
2—a 3-2a 3—-2a 4—-3a --- 4 — 3«
A = 2—a 3—2a 4—3a 4-3«a
(t—3)—(t—4)
2—a 3—-2a 4-3a (t—=3)—(t—4)a (t—-3)—(t—4)a
s = (1,1
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Proof of (31) and (32) To derive the explicit expression of [E(z1211")] 71, let

us define Z; as follows:

_ _ -1 1 0 0]
AU}LQ _
0 -1 1 w; 1
Awig,
~ Zﬁ . W; 2
Zit = = : = ]
—W; -1 1 0
Awi,tfl
-1 1 | wig-1 |
—Wjt—1
B B 0] 0 -1
= Dwi(t*l) (34)
where w1V = Wi 1,...,w;+—1)". Then it follows that
3 El ’
~ ro~ -1 ~ -1 s 1—1 N\ —1
[E(fitfgt)]fl _ [DE(wlgt—l)wz(t—l) )D’} _ (D’) {E(wgt_l)wgt_l)) (D)
’ -1 T
. E(zf%zﬁ ) —E(Zﬁwi,tfl) B Ti1 Yoo
—B(2lf wig1) E(w?,_4) To1 Yoo |

where Y11, T19, To1, and Y99 are partitioned conformably, i.e. Tq1isa (t—2)x(t—2)
matrix, T and Y%, are (t—2) x 1 vectors, and Yoy is a scalar. From the partitioned

inverse formula, we have

Ti = [E(zﬁ%zﬁ%/) - E(wi,tflzgtl)[E(wi?,t—l)]_lE(Zgwi,t—l)}_1 (36)
After some algebra, we obtain

(B = [0+ Bl ) B )] B wi)] (37)
Using the fact that (A + BCB')™! = A=! — A='B[C~' + B’A='B]7'B’A~!, (37)
can be expressed as

[E(zﬁzﬁ )} =T — 11 (Zzth,t 1) (wz,t 1zzt) 1

: (38)
B(w?, 1) + E(wi 12l )T 1B (w;p12l})

If T1; can be expressed explicitly, the explicit form of [E(zﬁ zﬁ/)}_l is readily ob-
tained since it is straightforward to obtain the expectations in (38). To this end, we
need to calculate D~! and [E(wgt_l)w(t_l)l)]*l in (35). To begin with, from Tanaka

2

(1996) we have

MR

D! = ;‘ (39)
O ~1

14




Next, it follows that*

’ —1
E(wgt_l)wgt_l) ) = 0,°L'L (40)
where
[ VI—aZ 0 0 0 0]
—o 1 0 0 0
L= 0 —a 1 0 0 (41)
0 0 0 - —a 1|

Thus, using these results, we can calculate Y17 as in (33) and, hence, the explicit

formula of [E(zl1211)] 7! is obtained. With regards to (32), after some manipulation,

we get
, , Tii Tio E(2w; 1)
B(wigzy )TnE(Zwie) = | B(wi12) ] .
Tor Too 0
_ 03 (t—2) (42)
(14 «)?

Lemma 4. Under Assumptions 1, 2, and 3, as T — oo regardless of whether N —

oo or is fized, we have

T

1 / dl s
_— P _ p L 43
N(T—2)§wt2twt2_> 1- a2 (43)
T
1 /ol o)
_— P, _ p z 44

and as N — oo regardless of whether T'— oo or is fized, we have

1 L o2 14+a\]™"
S A =/ C7T PN SR § iy 45
J\f(T—2)tZ;wt—Ww“_> —a | TP\1=a (45)
T 2
1 / (2 g 1
- P _ p v 4
N(T_2);wtl twt 1 9 <1+Oé> (6)

Proof of Lemma 4

Proof of (43) See Lemma C2 in Alvarez and Arellano (2003).

4See Hamilton (1994, p.120).
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Proof of (44) Let & denote the N x 1 vector of errors of the population linear

projection of w;_; on Z}1:

w1 = 74" + & (47)
where &; = [E(z}] zﬁ/)]_lE(zgwivt_l). Using Lemma 3, d; can be expressed as
BE(w?, )
6 = Y1 EC w4 Z’tf} 48
t 11 ( it Wit 1) (E(wi%t_l) +E(wi7t_1z,ﬁt1 )TllE(Z,Etlwz‘yt_l) ( )
Also, note that
T11E (2 wig—1) B T Tio E(2lwiq)
Yo1E (2w, 1) Tor Yoo 0
= (D) Bl (p) | e
(2 (2 O
T

Hence, from (47), (48), and (49), it follows that

’ E(wgt—l)
eir = wig—1 — 2 T1E(zl{wi—1) < 5 -

E(w;, 1)+ E(wiz—12i ) Y11 E (2w 1)

wi—1 —wi + (1 —a){(t =3)w; ;1 — (wio+--- +wi_2)}
’ 1+«

« E(wz?,t—l)
E(w},_y) + B(wig—12i )T 11 B(2lwi—1)

(%> (HLJ (1 — Q) (wiy + - +wis 1)+ alw 1 +wip)]

2 2
(1%r) + gt -2)
(1+a) (wiger+ - +vi2) +wia
1+ (352) (t-2)

The last equality is due to the fact that (1 — a)(wiz—1 + -+ + wi1) = (vig—1 +

(50)

<9+ w;i1) — aw;p—q. Since (50) is a linear combination of (¢ — 1) independent
random variables, we have
2
(1+a)72(t = 2oy + 125 o (1>
2 =
_ t
[+ (2) -2

B = (51)
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Now we consider the decomposition:
w;tflpt“wtfl = wi_qwiy —wy_ (Iy — Pt“)wtfl (52)
= wi w1 — &Iy = Ber (53)

The second equality is due to the fact that (Iy — PN w1 = (In — PP (216 + &).

Then we have

T T
1
N(T—_22Ewt Plwy) = E(w,_,) - ZE€tIN PlMe]
t=3 t:3
(54)
Since the maximum eigenvalue of (I — P/') is equal to 1,
] T T
—— ) E(g(Iy-P! < E(
N(T _ 2) ; (gt( N t )gt) — T 2) ; €t5t
T
= E(e 2O(log T)—0
t=3
Hence, as T' — oo, it follows that
1 A o2
N(T —2) D BlwiaPlwe) = Blwfi) = 770 (55)
) =

With regards to the proofs that the variances of (N(T — 2))"'S°7 o w]_wy_; and
(N(T —2))~1 ZtT:?) eier tend to zero, see Alvarez and Arellano (2003).

Proof of (45) and (46) See Hayakawa (2006).

Lemma 5. Let k4§ and kj denote the third and fourth order cumulants of vy and
let k3 and ) denote the third and fourth order cumulants of n;. Also, let dy, ds,

l; and lg denote the diagonal elements of Ptd, Pg, Ptl and P! respectively so that,

S
for P& = P4 and P} = P/', dids,lily < (s —2), and for P = P and P! = P2,

dydg, ljls < 1. Then under Assumptions 1, 2, and 3, we have

(1)

kY + 208 (t—2) if PY=pH
var (v Plluy_y) = Bldjdg)wt + 20br(p) < | T2 S
(ky+208)  if Pl=P®

Fort > s,

cov(v]_1Plvs_1, v, Plug 1) =0 (57)
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(ii)
E(vj_y Pfvg_1v)_ Pfwy—s) = K§E(d}Pfw_s) (58)

t—2(%§) if Pi— pi
( 022 2>1/2 ’Lf Pd Pd2

-«

|E(d} Pfwy )| <

(iii)
var(w)_1Plv_1) = o* 02 E(w)_oPlw,_s) + 20k E(d, Plw,_y) + E(djd,) kY + 20t tr(PY)
(60)
Fort > s,

cov(w)_ Pivy_q,wl_ Plvg 1) =0 (61)

(iv)

(k] +208)(t—2) if Pl=P]

(62)
(k] +20y)  if P/ =P?

var (/' Pin) = E(Lil)w] + 20,tr(Pf) <

Fort > s,

(k] + 203 (s —2) if Pl =Pt
cov(nf Pin, il Ply) = B(ljl,)w] + 202 Eltr(PI P < ¢ 4 0 L (63)
(k] +203)  if Pl =P

v)

var(n'Plw,_1) = U%E(wg_lPtlwt,l) (64)
Fort>s
1 pl 1 pl il
|cov(n Piw—1,m Pyws—1)| < N T (65)
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Proof of Lemma 5

proof of (i) Fort > s,

cov(vi_1Ploi_1,v_ Plvg_y) = E(vi_Plo_1vl 1 Plvs_y) — E(vj_Plvoi_1) E(v}_ Plvog_y)
= E[tr{PE1(v10{_1)}vi_1 Plvs_1] — ogtr(B)tr(PY)
= outr(PE[tr{P{Es 1 (vs10,_1)}] — oytr(P)tr(PY)
=0

where F;(.) denotes an expectation conditional on 7n; and {'Ui,t—j}?il' For t = s, see

Alvarez and Arellano (2003).

proof of (ii) With regards to the proof of (58), see Alvarez and Arellano (2003).
To prove (59), we consider the case of P! = P. From the Cauchy-Schwarz in-

equality,
(di P wi—9)® < (P dy) (wi_o P wy—2) < (dydy) (wy_o P wy ) < (t — 2)wi_yw;2(66)
Hence,

E(d,PMw,_y)? < (t — 2)E(w} )= (t—2)N (0—2) (67)
'y Wi—2)" = Wy—oWt—2 1— o2

Because E(d, P w;_5)? = var(dPMw;_y) + [E(d, P w;_5)]?, it follows that

2
B ) < (- 2N (12) (69)

The case of P! = P2 is proven in a similar way.

proof of (iii) By using w;_1 = cw;_9 + vy_1, we get

/ d / d 2 ! d / d / d / d
cov(wy_1 Pfvp_1,we_1 Pivs—1) = o E(wi_o P o101 Pyws—2) + cov(vp_1 P vp—1,Vs_1 Py vs—1)

+aB(wi_oPfve_1v) 1 Plos_y + wi_oPlve_yvi_y Plve_y)
In the case of t = s, from (56) and (58),

var(wj_Plvi_1) = o?0lE(w,_oPlw;_ o) + 2aE (v, Plvi_ 1) Plw;_o) +var(vi_Plv;_1)

= a?02E(w]_oPlw;_s) + 2arky B(d,Plw;_5) + E(d}d,)kS + 20 tr(PEPY)

For t > s, by using (57), the result is readily obtained.
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proof of (iv) The proofs are analogous to (i).

proof of (v) Since |cov(n'Plws_1,1n' Plw,_1)| < \/var(n' Plws_1)v/var(nPlw,_1),

we have
|cov(n'Ptlwt_1,77'P£w5_1)| < \/var( ’let_l)\/var( 'Plwg_1) (69)
= o2/ B(wj_y Plwr1)\/E(w,_Plw, ) (70)
< \/E W) Wi \/E W} Wws—1) (71)

- () &

We shall use the decomposition as follows,

Proof of (14) and (18)

Ay | PiAv 1 b od
N(T—-2) ~ N(T-2 ; Aye-1 i Ave

_ A LA _40) 4 4@

where
1 T 1 T
on_ - 2 _ - / d
A NT =9 tE > w)_ Plu,_y A NT—9) t§:3 wi_ Py (73)
1 T 1 T
(C) 4 _ ___~
A NT =2 tngt 2Pt vt A D) tggwt 2Pt Vi1 (74)

Note that only A®) has nonzero mean which is given by o2 Zths tr(P3)/N(T —
2). If P4 = P limy p oo E(AM) = 62¢/2 and if P! = P, limy .o, E(AM) =0,
To prove that these are the probability limits, we show that the variances of A,
A® | AG)and A® tend to zero. From (60) and (61), we have

T
1
var(AV) = mzwr w1 Pvg1)
t=3
T2 QZZCOU (w)_yPlvs_1,w!,_Plv,_1)
s t>s

= NT =2 E var(w)_,Plv;_q)

T
t=3

T
= 2 Z [ o2E(w)_ 2P wi—g) + 2a/<a§E(d'P Wi—2)
t=3
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B(djdy)w} + 202t (PY)]

In view of Lemmas 4 and 5, the first, third and fourth terms converge to zero. The

second term would be

T
2 |2a|
N2(T — 2)2 Z”g (diPlw—s)| < Z E(diPfw, 2)‘
t=3 =3
1/2
_ o] Z a2\
- ]\f2 T —2)2 — 1—a?
. (2 z [20] s3] i o
1 —a? N3/2(T —2)? &
Hence, var(A") converges to zero. Next, we consider the variance of A(%).
1 d 2
var(A®) = mgwr(wéqﬂdvﬁ mgécov w)_ Plvg, wl_ Plvy)

0.2

T
= Wv_mg > B(wi_ 1 Plwy)
=3

1

4 T
= iy t?”(Ptd) —
N2(T — 2)2 <1 —a2> tZ;

The second equality is due to the fact that var(w]_,Plv;) = E(w)_, Pl Plws_1) =

E(w,_ PEy(vv)) Plwy_1) = 02E(w}_; Plw,_1) and for t > s cov(w)_, Pivg, w!,_; Plv,) =
E(w}_, PAE,(v;)w!,_P%v,) = 0. The last convergence holds because 7, tr(Pf) =
O(T?) for P = P, and Y7 tr(P?) = O(T) for P = P2, With regards to
var(A®)), from Lemma 4, it follows that

T
1
var(A(g)) = m ;’U{IT(U];_Q.Ptd’Ut) N2 o) ZZCOU (wj_ QPt Vg, W QPdeS)

s t>s

1
= N7 oo > B(w;_oPlwi_s) — 0
=3

var(A®) — 0 is proven in a similar way to var(A®)).

Proof of (15) and (19)

We shall use the decomposition as follows:

Ayl PIAY_ 1 -~
N(T - 2) - N(T - 2) ; Ayt—l‘Pt Ayt—l

(1—a)?BM —2(1 —a)B® + BG)
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where

T T
1 1
B(l):—g I o Plw,_ B(Q):—g 1o Pl 75
N(T —2) £ Wy ol W2 N(T —2) £ Wy ol Vi—1 (75)
1 T
B® = ———=% v Plv,_ 76
N(T —2) et Vi—147% V-1 (76)

For B® and B@, see Lemma 4 and A®) respectively. The expectation of B®)
is given by

T
0.2

N5 > tr(P (77)

t=3

E(B®) =

If P/ = P limy oo E(B®) = 02¢/2 and if P = P2, limy_.o, E(B®) = 0.

The variance of B®) is shown to converge to zero as follows,

T
1
var(B(S)) = m ; var(v{‘—lptdvt—l)
2
+m > D cov(vi yPivey, vl 4 Plvey)

s t>s
1 4 / d
= m Z ’U(ZT(Util_Pt Ut_l)
t=3

T
1 v 4 d

Proof of (16) and (20)

We decompose as follows:

/ Pl

Yy u 1 / !
- = — § P
N(T —2) N(T —2) & Y1ttt

where
1 T 1 I
¢ N(T—Q);77 1 N(T—2);n £t
1 T 1 d
3) _ ropl 0(4) _ I pl
C N(T _ 2) ; wt 1 tn N(T _ 2) ; wt*l tvt
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If P} = P, limy oo E(CWY) = ¢02/2 and if P! = PP, limy_o E(CV) =0
Using Lemmas 4 and 5, the variances of cW, c@ cB and CW are shown to
tend to zero as follows:

1
var(C(l)) = N(T—_221}ar n'Pln) + 222001} n' Pln, ' Ply)

s t>s
T

= E(ljl)K] + 204tr(P)
2T - 22;{ eJwi + 20 ]

N L [ B + 208 (e (PP

s t>s
T
< QZK4+2U —2) + NT _22225—2 (k] +207) =0

t=3 s t>s

T

var(C?) = 1 Zvar(v’Pln) ZZCOU (viPln, v’ Ply)
N(T - 2)* & et N?T 2)2 £~ & P Tsts
= S S

0.2

T

_ n 1 pl

= mZE(%PtW)
t=3

0.20.2 T
— __vm tr(P 0
Nz 2 -

T
1
lvar(C®)| < 3 5 Zvar(n’ptlwt_l) NAT 22 ZZ lcov(n' Prwy_1, 1/ Plwg_1)|
N (T_2) =3 s t>s
o2 T 5
i [
= ¥ (TU 5 ZE(wéﬂngtil) —N2(T 5 222\00@ 0 Plw,_y,m' Pws_1)|
t=3 s t>s
0.2 T
< . n E / Pl B
— 0
(€)= by S (P g 3 S eout P P
N2(T — 2)2 — t=171 N2(T — 2)2 L t—1 yWs—1
T

J2

_ v / [
= W oap & P bl 0

Proof of (17) and (21)

We decompose as follows:
/ [ T
Yy 1Py 1 / !
= = — E Py
N(T —2) N(T —g) & mritde
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1 \? 2
_ ( ) P 4 p@ 4 ( >D<3>
l—-« l—«
where
1 T 1 T
D(l) - - /Pl D(Q) S S / [ _
N(T —2) ; e N(T —2) ;U’“tht ! (78)
1 T
@ - - / !
D N(T _ 2) Z wtflptn (79)

t=3

Notice that DM = C(1) and D®) = CB®). With regards to D@, see Lemma 4.

Proof of Theorems 1, 2, 3, 4 Theorems 1, 2,

by using Lemmas 1 and 2.
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Table 1: Medians, Interquartile Ranges, and Median Absolute Errors of the First Differ-
encing and Level GMM Estimators (N = 50)

0',2]/012) =0.2 0',2]/012) =1 0727/0'5 =10
T Gd1 Qg2 Ay Qg2 Gq1 Qo ap Q2 Gd1 Qg Ay Qg2
a=02
10  median | 0.068 0.165 0.223 0.207 | 0.051 0.140 0.318 0.254 | 0.032 -0.032 0.698 0.510
iqr 0.102 0.104 0.086 0.104 0.115 0.119 0.123 0.118 0.124 0.241 0.153 0.181
mae 0.132 0.058 0.046 0.053 0.149 0.073 0.119 0.070 0.168 0.233 0.498 0.310
25 median | -0.079 0.164 0.260 0.213 | -0.095 0.135 0.431 0.253 | -0.101 -0.050 0.839 0.521
iqr 0.053 0.063 0.054 0.065 0.054 0.072 0.086 0.064 0.050 0.137 0.062 0.115
mae 0.279 0.041 0.060 0.033 | 0.295 0.066 0.231 0.055 | 0.301 0.250 0.639 0.321
50 median | -0.235 0.164 0.308 0.211 | -0.242 0.132 0.551 0.255 | -0.246 -0.061 0.908 0.526
iqr 0.030 0.042 0.040 0.042 | 0.029 0.044 0.066 0.044 | 0.030 0.103 0.026  0.092
mae 0.435 0.037 0.108 0.023 | 0.442 0.068 0.351 0.055 | 0.446 0.261 0.708 0.326
a=0.5
10  median 0.234 0.412 0.537 0.518 0.197 0.329 0.647 0.588 0.173 -0.024 0.897 0.838
iqr 0.134 0.149 0.089 0.115 0.146 0.199 0.109 0.127 0.152 0.355 0.075 0.111
mae 0.266 0.095 0.056 0.058 | 0.303 0.173 0.147 0.094 | 0.327 0.524  0.397 0.338
25  median 0.043 0.412 0.576  0.522 0.022 0.319 0.738 0.594 0.012 -0.023 0.950 0.841
iqr 0.064 0.078 0.052 0.071 0.065 0.106 0.060 0.072 | 0.064 0.201 0.024  0.065
mae 0.457 0.089 0.076 0.038 | 0.478 0.181 0.238 0.094 | 0.488 0.523 0.450 0.341
50 median | -0.114 0.418 0.621 0.522 | -0.127 0.317 0.810 0.590 | -0.129 -0.025 0.971 0.843
iqr 0.031 0.049 0.037 0.045 | 0.033 0.082 0.042 0.052 | 0.033 0.158 0.010 0.050
mae 0.614 0.082 0.121 0.028 0.627 0.183 0.310 0.090 0.629 0.525 0.471 0.343
a=028
10 median | 0.203 0.492 0856 0.843 | 0.112 0191 00933 00916 | 0.088 -0.043 0.990 0.987
iqr 0.196 0.265 0.066 0.116 | 0.208 0.423 0.054 0.083 | 0.210 0.449 0.023 0.036
mae 0.597 0.308 0.059 0.061 0.688 0.609 0.133 0.117 0.712 0.843 0.190 0.187
25  median | 0.042 0.480 0.880 0.843 | 0.020 0.209 0.954 0.919 | 0.015 -0.040 0.994 0.989
iqr 0.070 0.163 0.033 0.064 0.076 0.214 0.020 0.052 0.072 0.251 0.007 0.019
mae 0.758 0.320 0.080 0.047 0.780 0.591 0.154 0.119 0.785 0.840 0.194 0.189
50 median | -0.043 0.474 0.905 0.846 | -0.051 0.192 0.970 0.919 | -0.051 -0.038 0.996 0.987
iqr 0.037 0.107 0.019 0.044 0.036 0.150 0.010 0.035 0.034 0.178 0.002 0.013
mae 0.843 0.326 0.105 0.046 | 0.851 0.608 0.170 0.119 | 0.851 0.838 0.196  0.187

Note: 1000 replications; ”iqr” is the interquartile range; "mae” denotes the median absolute error.
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Table 2: Medians, Interquartile Ranges, and Median Absolute Errors of the First Differ-
encing and Level GMM Estimators (N = 100)

0',2]/012) =0.2 0',2]/012) =1 0727/0'5 =10
T Gd1 Qg2 Ay Qg2 Gq1 Qo ap Q2 Gd1 Qg Ay Qg2
a=02
10  median | 0.129 0.184 0.212 0.203 | 0.116 0.166 0.264 0.225 | 0.105 0.030 0.574  0.406
iqr 0.079 0.078 0.065 0.076 0.086 0.082 0.091 0.083 0.088 0.186 0.156  0.136
mae 0.072 0.039 0.033 0.039 0.085 0.048 0.068 0.045 0.096 0.170 0.374  0.206
25 median 0.034 0.181 0.232  0.207 0.022 0.164 0.335 0.225 0.021 0.036 0.736  0.408
iqr 0.040 0.041 0.036 0.042 0.040 0.047 0.060 0.044 0.043 0.104 0.084 0.084
mae 0.166 0.025 0.032 0.021 0.178 0.037 0.135 0.029 | 0.179 0.164  0.536 0.208
50 median | -0.081 0.181 0.260 0.207 | -0.087 0.164 0.427 0.228 | -0.091 0.031 0.837 0.411
iqr 0.026 0.030 0.026 0.030 | 0.026 0.034 0.059 0.031 0.025 0.072 0.045 0.061
mae 0.281 0.021 0.060 0.016 | 0.287 0.036 0.227 0.028 | 0.291 0.169 0.637 0.211
a=0.5
10  median 0.349 0.453 0.519 0.511 0.310 0.402 0.587 0.550 0.295 0.136 0.837 0.754
iqr 0.094 0.093 0.066 0.082 0.112 0.137 0.090 0.087 0.112 0.325 0.092 0.111
mae 0.151 0.060 0.036 0.041 0.190 0.102 0.088 0.058 | 0.205 0.364 0.337 0.254
25  median 0.198 0.456 0.542 0.512 0.178 0.397 0.657 0.552 0.171 0.103 0.910 0.765
iqr 0.053 0.053 0.034 0.047 | 0.052 0.075 0.055 0.053 | 0.048 0.170 0.038  0.069
mae 0.302 0.045 0.042 0.025 | 0.322 0.103 0.157 0.052 | 0.329 0.397 0.410 0.265
50 median [ 0.049 0.454 0.572 0.510 | 0.039 0.395 0.730 0.552 | 0.035 0.094 0.946 0.764
iqr 0.030 0.036 0.026 0.034 | 0.031 0.051 0.041 0.035 | 0.030 0.126 0.017 0.048
mae 0.451 0.046 0.072 0.018 0.461 0.105 0.230 0.052 0.465 0.406 0.446  0.264
a=028
10  median | 0.364 0.623 0.833 0.829 | 0.258 0.372 0.901 0.884 | 0.215 0.001 0.983 0.978
iqr 0.161 0.174 0.056 0.084 | 0.177 0.323 0.055 0.078 | 0.190 0.434  0.027 0.036
mae 0.436 0.177 0.039 0.048 0.542 0.428 0.101  0.085 0.585 0.799 0.183 0.178
25 median | 0.177  0.607 0.853 0.827 | 0.145 0.351 0.930 0.889 | 0.135 0.007  0.989 0.978
iqr 0.075 0.107 0.028 0.050 0.071 0.192 0.024 0.044 0.069 0.246 0.010 0.022
mae 0.623 0.193 0.053 0.033 0.655 0.449 0.130 0.089 0.665 0.793 0.189 0.178
50 median 0.057 0.603 0.874 0.827 0.046 0.356  0.950 0.889 0.044 -0.005 0.993 0.978
iqr 0.035 0.078 0.019 0.032 0.036 0.125 0.013 0.032 0.037 0.165 0.004 0.014
mae 0.743 0.197 0.074 0.028 | 0.754 0.444 0.150 0.089 | 0.756 0.805 0.193 0.178

Note: 1000 replications; ”iqr” is the interquartile range; "mae” denotes the median absolute error.

26



Table 3: Medians, Interquartile Ranges, and Median Absolute Errors of the System GMM
Estimators (N = 50)

0727/0'5:0.2 0',2]/012):1 0727/0'5 =10

T Qall Qmin G Qali Gmin G Qall Qmin Gpp

a=0.2
10 median | 0.157 0.186 0.124 | 0.213 0.211  0.141 | 0.564 0.457 0.310
iqr 0.081 0.103 0.101 | 0.105 0.107 0.106 | 0.173 0.168 0.154

mae 0.052 0.051 0.078 | 0.052 0.053 0.069 | 0.364 0.257 0.115

25 median | 0.102 0.188 0.020 | 0.224 0.206 0.032 | 0.698 0.467 0.197

iqr 0.052 0.061  0.055 | 0.076 0.058 0.053 | 0.094 0.108 0.093
mae 0.098 0.031  0.180 | 0.041 0.029 0.168 | 0.498 0.267 0.047

50 median | 0.037 0.185 -0.111 [ 0.240 0.209 -0.094 | 0.776  0.472 0.061
iqr 0.037 0.041  0.031 | 0.071 0.045 0.034 | 0.053 0.088 0.074
mae 0.163 0.024 0.311 | 0.045 0.022 0.294 | 0.576 0.272 0.139

a=0.5
10 median | 0.453  0.488 0.389 0.552  0.531 0.434 | 0.853 0.809 0.709
iqr 0.092 0.110 0.121 0.123  0.116 0.128 | 0.092 0.102 0.136

mae 0.054 0.055 0.112 | 0.072 0.065 0.077 | 0.353 0.309 0.209

25 median | 0.415 0480 0.241 | 0.589 0.539 0.286 | 0.906 0.813 0.589
iqr 0.055 0.066  0.060 | 0.078 0.069  0.067 [ 0.037 0.065 0.099
mae 0.085 0.035 0.259 | 0.089 0.045 0.214 | 0.406 0.313 0.093
50 median | 0.374 0.480 0.087 [ 0.624 0.535 0.129 | 0.930 0.815 0.445
iqr 0.045 0.046 0.036 | 0.064 0.047 0.043 | 0.022 0.052 0.094
mae 0.126  0.028 0.413 | 0.124 0.037 0.371 | 0.430 0.315 0.061

a=0.8
10  median | 0.793 0.799 0.677 | 0.902 0.891 0.809 | 0.985 0.983 0.966
iqr 0.080 0.105 0.117 | 0.059 0.083 0.108 | 0.024 0.036 0.040

mae 0.039 0.052 0.123 | 0.102 0.092 0.055 | 0.185 0.183 0.166

25 median | 0.798  0.801 0.503 | 0.917 0.891 0.670 | 0.989 0.985 0.936
iqr 0.049 0.064 0.075 | 0.031 0.051 0.087 | 0.007 0.019 0.033
mae 0.024 0.032 0.297 | 0.117 0.091 0.130 | 0.189 0.185 0.136

50 median | 0.796 0.798 0.332 | 0.929 0.892 0.518 | 0.992 0.983 0.884
iqr 0.037 0.042 0.048 | 0.018 0.036 0.075 | 0.003 0.014 0.040
mae 0.018 0.021 0.468 | 0.129 0.092 0.282 | 0.192 0.183 0.084

Note: 1000 replications; ”iqr” is the interquartile range; "mae” denotes the median absolute error.
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Table 4: Medians, Interquartile Ranges, and Median Absolute Errors of the System GMM
Estimators (N = 100)

0727/0'5 =02 0',2]/012) =1 0727/012) =10

T Qall Gmin G Qant Gmin Gy Qall Qmin Gpp

a=0.2
10 median | 0.175 0.193 0.161 | 0.208 0.202 0.165 | 0.457 0.373 0.274
iqr 0.062 0.074 0.074 | 0.074 0.072 0.081 | 0.154 0.123 0.109

mae 0.034 0.037 0.045 | 0.037 0.035 0.047 | 0.257 0.173 0.081

25 median | 0.146 0.194 0.099 | 0.214 0.202 0.104 | 0.596 0.374 0.200
iqr 0.033 0.042 0.039 | 0.050 0.042 0.041 | 0.100 0.075 0.062

mae 0.054 0.022 0.101 | 0.025 0.021 0.096 | 0.396 0.174 0.031

50 median | 0.103 0.192 0.014 | 0.226 0.204 0.020 [ 0.695 0.376 0.112
iqr 0.024 0.030 0.027 | 0.046 0.033 0.028 | 0.068 0.056 0.042
mae 0.097 0.016 0.186 [ 0.030 0.016 0.180 | 0.495 0.176 0.088

a=05
10  median | 0.475 0.487 0.435 | 0.530 0.520 0.460 | 0.793 0.735 0.649
iqr 0.064 0.079 0.086 | 0.084 0.087 0.091 | 0.102 0.103 0.115

mae 0.037 0.042 0.067 [ 0.048 0.045 0.053 | 0.293 0.235 0.150

25 median | 0.452 0.489 0.347 | 0.562 0.521 0.367 [ 0.865 0.745 0.569
iqr 0.039 0.049 0.049 [ 0.061 0.048 0.049 | 0.051 0.066 0.083
mae 0.048 0.026 0.153 | 0.062 0.029 0.133 | 0.365 0.245 0.072
50 median | 0.420 0.489 0.229 | 0.589 0.524 0.256 | 0.904 0.743 0.458
iqr 0.031 0.031 0.029 [ 0.050 0.031 0.029 | 0.027 0.047 0.059
mae 0.080 0.018 0.271 [ 0.089 0.025 0.244 | 0.404 0.243 0.046

a=0.8
10  median | 0.796 0.798 0.722 | 0.877 0.866 0.802 | 0.977 0.974 0.956
iqr 0.064 0.086 0.096 | 0.058 0.075 0.097 | 0.027 0.036 0.041

mae 0.030 0.043 0.079 | 0.078 0.068 0.048 | 0.177 0.174 0.156

25 ~median | 0.799 0.799 0.599 | 0.899 0.866 0.700 | 0.985 0.974 0.925
iqr 0.036 0.051 0.055 [ 0.032 0.044 0.061 | 0.011 0.022 0.033
mae 0.017 0.025 0.201 | 0.099 0.066 0.100 | 0.185 0.174 0.125
50 median | 0.799 0.802 0.456 | 0915 0.870 0.575 | 0.989 0.974 0.881

iqr 0.028 0.035 0.037 [ 0.021 0.030 0.052 | 0.005 0.014 0.034
mae 0.014 0.017 0.344 | 0.115 0.070 0.225 | 0.189 0.174 0.081

Note: 1000 replications; ”iqr” is the interquartile range; "mae” denotes the median absolute error.
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Table 5: The Asymptotic Bias of the GMM Estimators

k=0.2 k=1 k=10
a c Qq1 a1 Qg Qpp Gd1 ap Qqll Gphy Qg1 Ay Qg Qpp
0.2
0.1 0.130 0.212 0.179 0.156 0.130 0.256  0.207  0.156 0.130 0.543  0.426 0.156
0.2 0.070 0.223  0.159 0.115 0.070 0.304 0.213 0.115 0.070 0.680 0.541 0.115
0.25 0.042 0.229  0.150 0.097 0.042 0.326  0.215 0.097 0.042 0.722  0.580 0.097
0.5 -0.073 0.256  0.108 0.013 | -0.073 0.418 0.227 0.013 -0.073 0.832 0.690 0.013
1 -0.229 0.304 0.041 -0.116 | -0.229 0.543 0.242 -0.116 | -0.229 0.906 0.774 -0.116
0.5
0.1 0.370 0.515 0.483 0.430 0.370 0.565  0.526 0.430 0.370 0.800 0.756 0.430
0.2 0.269 0.528 0.468 0.370 0.269 0.615 0.546 0.370 0.269 0.875 0.829 0.370
0.25 0.227 0.535 0.460 0.342 0.227 0.636  0.555 0.342 0.227 0.895 0.850 0.342
0.5 0.071 0.565 0.429 0.227 0.071 0.714 0.586  0.227 0.071 0.941 0.899 0.227
1 -0.100 0.615 0.383 0.071 -0.100  0.800 0.620 0.071 -0.100  0.969 0.929 0.071
0.8
0.1 0.490 0.817 0.800 0.686 0.490 0.862 0.848 0.686 0.490 0.964 0.959 0.686
0.2 0.326 0.831  0.800 0.595 0.326 0.895 0.873 0.595 0.326 0.980 0.975 0.595
0.25 0.271 0.837 0.800 0.557 0.271 0.906 0.881 0.557 0.271 0.984 0.979 0.557
0.5 0.108 0.862  0.800 0.409 0.108 0.938 0.907 0.409 0.108 0.991 0.987 0.409
1 -0.018 0.895 0.800 0.238 | -0.018 0.964 0.926 0.238 -0.018 0.996 0.991 0.238
Note: ¢ = 0.1 : (T,N) = (10,100), ¢ = 0.2 : (T,N) = (10,50), ¢ = 0.25 : (T,N) = (25,100), ¢ = 0.5 : (T,N) =

(25,50), (50,100), c=1: (T,N) = (50, 50), where ¢c=T/N.
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