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Abstract

This paper examines analytically and experimentally why the system GMM

estimator in dynamic panel data models is less biased than the first differencing

or the level estimators even though the former uses more instruments. We find

that the bias of the system GMM estimator is a weighted sum of the biases in

opposite directions of the first differencing and the level estimator. We also find

that an important condition for the system GMM estimator to have small bias is

that the variances of the individual effects and the disturbances are almost of the

same magnitude. If the variance of individual effects is much larger than that of

disturbances, then all GMM estimators are heavily biased. To reduce such biases,

we propose bias-corrected GMM estimators. On the other hand, if the variance of

individual effects is smaller than that of disturbances, the system estimator has a

more severe downward bias than the level estimator.



1 Introduction

A major topic in recent theoretical analyses of panel data models is the estimation

of dynamic panel data models.1 Since the work of Arellano and Bond (1991), the

generalized method of moments (GMM) technique has been widely used in the es-

timation of dynamic panel data models. However, subsequent examinations of the

finite sample performance of the GMM estimator have shown that it is substantially

biased. One source of the bias, first discovered by Nelson and Startz (1990a, b),

is weak instruments. Staiger and Stock (1997) have shown that the instrumental

variables estimator would be inconsistent under weak instrument asymptotics.2 We

call this the ”weak instruments problem”. The other source of bias is the relative

number of instruments to sample size. Especially in linear simultaneous equation

models, Kunitomo (1980), Morimune (1983) and Bekker (1994) have shown that the

2SLS estimator is inconsistent as the number of the instruments tends to infinity.

And Hahn and Hausman (2002) have shown that the finite sample bias of 2SLS

estimator is monotonically increasing in the number of instruments. One important

finding of the papers listed above is that the magnitude of the bias is proportional

to the relative size of the number of instruments to the sample size. We label this

the ”many instruments problem”. What is important with regards to using many

instruments is the trade-off between the efficiency and the bias of the estimator.

Although using many instruments is desirable to improve the efficiency of the es-

timator in terms of conventional first order asymptotic theory, it is problematic in

terms of bias. This trade-off in GMM estimation was first highlighted by Tauchen

(1986) for the case of time series data, and Donald and Newey(2001) proposed a

method to determine the number of instruments that minimizes the mean squared

error of the estimator. 3

These considerations are still binding in the estimation of dynamic panel data

1For an overview of recent developments in this field, see Baltagi (2001), Hsiao (2003), Arellano (2003)

and Blundell, Bond and Windmeijer (2000).
2See Stock, Wright and Yogo (2002) for an excellent survey.
3Ziliak (1997) has shown by simulation that the trade-off between the efficiency and the bias of the

estimator is still binding in static panel data models with predetermined variables, while Okui (2004)

proposed a procedure for the optimal choice of instruments in dynamic panel data models.
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models. 4 It is well known that in the first differencing models the bias is sizable

when the parameter concerning the lagged dependent variable is close to unity

(Alonso-Borrego and Arellano 1999). Blundell and Bond (1998) have shown that

this is due to weak instruments, and to overcome the ”weak instruments problem”

they proposed the system GMM estimator. They first showed that the level GMM

estimators by Arellano and Bover (1995) are free from weak instruments when the

parameter concerning the lagged variable is close to unity and then combined the

moment conditions which are used in the first differencing and the level GMM

estimators to improve the efficiency of the estimator. The system GMM estimator

is becoming widely used in empirical analyses. Empirical applications include the

estimation of production functions (Blundell and Bond 2000) and empirical growth

models (Bond, Hoeffler and Temple 2001), among others.

However, since the system GMM estimator uses more instruments than the first

differencing and the level estimators, even in the fixed N and T case, the number of

instruments relative to the sample size of the system GMM estimator is larger than

that of the first differencing and the level estimators. For example, when T=4, the

first differencing and the level estimators utilize 3 and 2 instruments respectively,

while the system estimator uses 5; thus, the number of instruments relative to the

sample size is largest, and the ”many instruments problem” is most serious for

the system GMM estimator. Therefore, one might suspect that the system GMM

estimator is more biased than the first differencing and the level estimators, although

it is more efficient.

However some simulation results, such as those presented in Table 5 in Blundell

and Bond (1998) or in Figure 1 in this paper, 5 do not pose such a problem; rather

the system GMM estimator is less biased than the first differencing and the level

4A number of papers have suggesting ways to reduce the bias of the estimator in dynamic panel data

models. Kiviet (1995) and Hahn and Kuersteiner (2002) propose bias-corrected within-groups estimators,

while Hahn, Hausman and Kuersteiner (2001) propose a long-differenced estimator to strengthen the

instruments.
5In the figures through the paper, the horizontal axis represents the autoregressive parameter α (which

is defined in Section 2) from 0.1 to 0.9, while the vertical axis represents the size of the bias relative to

the true α multiplied by 100. ”-th” denotes theoretical values and ”-sml” denotes simulation values based

on 10,000 replications. The simulation design is explained in Section 4.
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GMM estimators even in moderate sample sizes of cross-section data. The purpose

of this paper is to show theoretically why the system GMM estimator, despite

using more instruments, is less biased than the first differencing and level GMM

estimators.

We find that the bias of the system GMM estimator is composed of a weighted

sum of the biases of the first differencing and the level estimators with opposite

direction, and this is the primary reason why the system estimator is less biased.

Also, we find that the size of the variances of the individual effects relative to the

disturbances is an important factor determining the magnitude of the biases. If

the variances of the individual effects and disturbances are equal, as considered in

Blundell and Bond (1998), the bias of the system estimator is very small. However

in other cases with unequal variances of the individual effects and disturbances, the

bias of the system estimator is fairly large. Hence, we can say that the simulation

results reported by Blundell and Bond (1998) are special cases in which the bias

becomes small.

The remainder of the paper is organized as follows. In Section 2, we define the

model and the estimators used in this paper. For simplicity, we consider inefficient

one-step GMM estimators with T = 4. Section 3 provides the main results concern-

ing the small sample bias of the GMM estimators. Based on the results of Section

3, we compare the estimators numerically in Section 4. We find that all the GMM

estimators are heavily biased when the variance of the individual effects is larger

than that of the disturbances. Section 5 suggests bias-corrected GMM estimators

to reduce such bias. Finally, Section 6 concludes.

2 The model and estimators

We consider an AR(1) panel data model given by

yit = αyi,t−1 + ηi + vit i = 1, ...,N ; t = 2, 3, 4 (1)

where α is the parameter of interest with |α| < 1 and vit has mean zero given

ηi, yi1, ..., yi,t−1. Let uit = ηi + vit. We impose the following assumptions:

Assumption 1. {vit} (t = 2, 3, 4; i = 1, ...,N) are i.i.d across time and individuals
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and independent of ηi and yi1 with E(vit) = 0, var(vit) = σ2
v and finite moments up

to third order.

Assumption 2. ηi are i.i.d across individuals with E(ηi) = 0, var(ηi) = σ2
η, and

finite third order moments

Assumption 3. The initial observations satisfy

yi1 =
ηi

1− α + wi1 for i = 1, ...,N (2)

where wi1 is wi1 =
∑∞

j=0 α
jvi,1−j and independent of ηi.

These assumptions are the same as Alvarez and Arellano’s (2003) except that

we assume finite third order moments.

Linear GMM estimators

Given these assumptions, we consider three types of GMM estimators. These in-

clude the first differencing GMM estimator, the level GMM estimator and the sys-

tem GMM estimator, abbreviated as GMM(DIF), GMM(LEV) and GMM(SYS)

estimators, respectively.

First differencing GMM estimator

Arellano and Bond (1991) proposed a first differencing GMM estimator which is

based on the 3 moment conditions:

E[Z ′
d,i∆ui] = 0 (3)

where

Zd,i =

 yi1 0 0

0 yi1 yi2

 ∆ui =

 ∆ui3

∆ui4

 (4)

and ∆uit = uit − ui,t−1. We consider a one-step GMM estimator based on mo-

ment condition (3) with weighting matrix Z ′
dZd, where Z ′

d is (Z
′
d,1, · · · , Z ′

d,N ). Let

∆y′i = (∆yi3,∆yi4)
′, ∆y′i,−1 = (∆yi2,∆yi3)

′, where ∆y and ∆y−1 are stacked across

individuals. Then the one-step GMM estimator for α is

α̂dif =
(
∆y′−1Zd(Z ′

dZd)−1Z ′
d∆y−1

)−1∆y′−1Zd(Z ′
dZd)−1Z ′

d∆y (5)
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Level GMM estimator

Arellano and Bover (1995) proposed a level GMM estimator that is based on the

moment conditions: 6

E(Z
′
l,iui) = 0 (6)

where

Zl,i =

 ∆yi2 0

0 ∆yi3

 ui =

 ui3

ui4

 (7)

We consider a one-step GMM estimators based on moment conditions (6) with

weighting matrix Z ′
lZl, where Z

′
l = (Z

′
l,1, · · · , Z

′
l,N ). Let y

′
i = (yi3, yi4)′, y′i,−1 =

(yi2, yi3)′, where y and y−1 are stacked across individuals. Then the one-step GMM

estimator for α is

α̂lev =
(
y′−1Zl(Z ′

lZl)−1Z
′
ly−1

)−1
y′−1Zl(Z ′

lZl)−1Z
′
ly (8)

We label (8) the GMM(LEV) estimator.

System GMM estimator

In order to avoid weak instruments and improve the efficiency of the estimator,

Blundell and Bond (1998) proposed a system GMM estimator in which the mo-

ment conditions of the GMM(DIF) and GMM(LEV) are used jointly. The moment

conditions used in constructing the system GMM estimator are given by

E(Z ′
s,ipi) = 0 (9)

where

Zs,i =

 Zd,i 0

0 Zl,i

 pi =

 ∆ui

ui

 (10)

Let q′i = (∆y
′
i y

′
i)
′, q′i,−1 = (∆y

′
i,−1 y

′
i,−1)

′ where q, q−1 are stacked across indi-

viduals. Then the one-step GMM estimators for α based on moment condition (9)

are

α̂sys =
(
q′−1Zs(Z ′

sZs)−1Z ′
sq−1

)−1
q′−1Zs(Z ′

sZs)−1Z ′
sq (11)

6Although ∆yi2 is also available as an instrument for t = 4, we do not use it because it becomes

redundant in the system estimation. See Blundell and Bond (1998).
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where Z ′
s = (Z ′

s,1, · · · , Z ′
s,N ). We label (11) the GMM(SYS) estimator. Note that

α̂sys can be expressed as

α̂sys = γ̂α̂dif + (1− γ̂)α̂lev (12)

where

γ̂ =
∆y′−1Zd(Z ′

dZd)−1Z ′
d∆y−1

∆y′−1Zd(Z ′
dZd)−1Z ′

d∆y−1 + y′−1Zl(Z ′
lZl)−1Z ′

ly−1
(13)

3 Small sample biases of GMM estimators

In this section, we provide analytical forms of the biases of the GMM(DIF), GMM(LEV)

and GMM(SYS) estimators. All proofs are given in the Appendix.

First we define πd and πl as

πd = E(Z ′
d,iZd,i)−1E(Z ′

d,i∆yi,−1)

=
[

−σ2
v

(1+α)(C+D)
σ2

v(1−α)C
(1+α)F

σ2
v(α−1)

(α+1)F [C + (α+ 1)D]
]′

=
[
πd,1 πd,2 πd,3

]′
πl = E(Z ′

l,iZl,i)−1E(Z ′
l,iyi,−1)

=
[

1
2

1
2

]′
=

[
πl,1 πl,2

]′
where

C =
(

1
1− α

)2

σ2
η D =

1
1− α2

σ2
v

F =
[

1
1 + α

σ2
v

][
2
(

1
1− α

)2

σ2
η +

(
1

1− α
)
σ2

v

]
Also, we define φd, φl and γ as

φd = E(∆y′i,−1Zd,i)E(Z ′
d,iZd,i)−1E(Z ′

d,i∆yi,−1) = π′dE(Z
′
d,iZd,i)πd

= (π2
d,1 + π

2
d,2 + π

2
d,3)(C +D) + 2πd,2πd,3(C + αD)

φl = E(y′i,−1Zl,i)E(Z ′
l,iZl,i)−1E(Z ′

l,iyi,−1) = π′lE(Z
′
l,iZl,i)πl

=
σ2

v

1 + α
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γ =
φd

φd + φl

Next, we provide the formulas for the small sample biases of α̂dif , α̂lev and α̂sys.

The notations are explained in the appendix.

Theorem 1. The second order bias of α̂dif is given by

N · Bias(α̂dif ) = Bdif
1 +Bdif

2 +Bdif
3 +Bdif

4

= −σ
2
v

φd

[
1 +

2(C +D)2

F
− 2(C + αD)2

F

]
+
2σ2

v

φ2
d

[{
π2

d,1 + π
2
d,2 + π

2
d,3 + (α− 2)πd,1πd,2

}
(C +D)

−πd,1πd,3 {(2− α)C − α(2α− 3)D} + 2πd,2πd,3(C + αD)]

−2σ
2
v

φ2
d

[
πd,1π

2
d,3(C + αD) + πd,1πd,2πd,3(C +D)

]
Theorem 2. The second order bias of α̂lev is given by

N · Bias(α̂lev) = Blev
1 +Blev

2 +Blev
3 +Blev

4

=
2σ2

η

φl(1− α) −
σ2

v

φ2
l

(
2α − 1
2(1 + α)

σ2
v − 1

1− ασ
2
η

)
+

α− 1
4φ2

l (α+ 1)
σ4

v

Theorem 3. The second order bias of α̂sys is given by

N · Bias(α̂sys) = γ(Bdif
1 +Bdif

2 ) + (1− γ)(Blev
1 +Blev

2 )

+γ2(Bdif
3 +Bdif

4 ) + (1− γ)2(Blev
3 +Blev

4 )

− 2
(φd + φl)2

Ψ3 +
1

(φd + φl)2
Ψ4 (14)

where

Ψ3 =
1
2
πd,1 [Q11 +Q13] +

1
2
πd,2 [Q21 +Q23] +

1
2
πd,3 [Q31 +Q33]

Ψ4 =
1
2
πd,1 [P11 + P12] +

1
2
πd,2 [P21 + P22] +

1
2
πd,3 [P31 + P32]

Remark 1 Although we do not give explicit formulas, the small sample biases of

all the GMM estimators are characterized by N , α and σ2
η/σ

2
v . Therefore, we can

calculate the theoretical values of the biases, which will be done in the next section.
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Remark 2 We find that the bias of the system GMM estimator is composed of

two elements. The first is the weighted sum of the biases of the first differencing and

the level estimators (the first two rows of eq(14)). The second element of the bias

results from using the first differencing and the level estimators jointly (the last row

in eq(14)). Therefore, if the biases of the first differencing and the level estimators

are in opposite directions, they will cancel each other out and the system estimator

will have small bias. In the next section we will show that this is indeed the case.

Remark 3 Even if the biases of the first differencing and the level estimators are

in opposite directions, the bias of the system estimator will not be small in absolute

value if γ takes near zero or one, or the magnitude of one bias is much larger than

the other. Hence, it is also necessary to consider γ and the magnitude of the biases.

Remark 4 Although we consider the case of T = 4 in this paper, from the proof

of Theorem 3 we find that what is stated in Remark 2 still holds when T > 4 and

this case is left for future research.

4 Numerical analysis

Since the biases of all estimators are characterized by N , α and σ2
η/σ

2
v , as noted

in the previous section, we calculate the theoretical values of the biases for the

cases σ2
η/σ

2
v = 0.25,1, 4 with α = 0.1, ..., 0.9. Here, we consider the case N =

50. Before we begin to analyze the direction and magnitude of the biases, we

confirm how well the second order biases explain the actual biases by comparing

theoretical values with simulation values. Figures 2, 3, and 4 describe the theoretical

and simulation values of the biases of GMM(DIF), GMM(LEV) and GMM(SYS)

estimators.7 Looking at these figures, we find that although the theoretical and

simulation values are close when α ≤ 0.5, the difference increases in the region

of α > 0.5. These results are similar to those obtained by Hahn, Hausman and

Kuersteiner (2001). Although they state that the bad performance of the second

order bias approach when α is close to one is due to weak instruments, the results

7vit, ηi and wi1 are independently generated by vit ∼ iidN (0, 1), ηi ∼ iidN (0, σ2
η) and wi1 ∼

iidN (0, 1/(1− α2)) where σ2
η = 0.25, 1, 4.

8



shown above indicate that the second order bias does not explain the actual bias

well even if the instruments are not weak, like GMM(LEV) estimator. Therefore,

we can say that the second order bias approach used in this paper works well when

α ≤ 0.5 and in the following we focus on the case with α ≤ 0.5.
The first concern is the direction of the biases of the GMM(DIF) and GMM(LEV)

estimators. Looking at the figures, we find that the GMM(DIF) estimator has a

downward bias, while the GMM(LEV) estimator has an upward bias, and both

biases cancel each other out in the GMM(SYS) estimator. The second concern is

the value of γ and the magnitude of the biases. Even though they work in opposite

directions and thus at least partly cancel each other out, the bias of the GMM(SYS)

estimator will not be small in absolute value if γ takes near zero or one, or if the

bias of either estimator is much larger than the other in absolute value. Therefore,

we need to think about γ and the magnitude of the biases. Table 4 shows the

values of γ for α = 0.1, ..., 0.9. We find that γ moves between about 0.25 and 0.5

in the region of α ≤ 0.5. We also find that although the bias of the GMM(DIF)

estimator is about -20 − -30% in the region of α ≤ 0.5, the bias of the GMM(LEV)
estimator decreases from about 26% to 5% as α increases. Hence, the difference of

the magnitude of the biases of the two estimators in absolute value gets larger as

α increases. However, Table 5 shows that 1 − γ, the weight on the GMM(LEV)
estimator, increases as α increases, that is, the weight γ is adjusting the difference

of the magnitude of the biases to be almost the same in absolute value. The column

labeled ”weighted sum” in Table 4 reports the theoretical values of the first element

of the bias of the system estimator. In the region of α ≤ 0.5, it takes negative stable
values around -0.4. The theoretical values of the second element in the bias of the

GMM(SYS) estimator are given in the column labeled ”correlation” in Table 4. We

find that the second element of the bias of the system estimator takes positive values

and gets smaller as α grows. Hence, we find that in this case, too, the two elements

of the bias of the GMM(SYS) estimator partly cancel each other out, and this is the

reason why the small sample bias is almost zero around α = 0.3 or 0.4. Thus, we

find that there are two reasons why the GMM(SYS) estimator is less biased. The

first is that the biases of the GMM(DIF) and the GMM(LEV) estimators are in

opposite directions, and the second is that the weight γ is adjusting the difference

9



of the magnitude of both biases.

The above results pertain to the case when σ2
η/σ

2
v = 1. Now we turn to the case

when σ2
η/σ

2
v = 4. The theoretical and simulation values of the biases are given in

Table 2 and plotted in Figures 5 to 8. The approximation of the small sample bias is

a little worse than that of σ2
η/σ

2
v = 1. However, we find that there are sizable biases

for any value of α for all estimators. Although Hahn, Hausman and Kuersteiner

(2001) state that the GMM(SYS) estimator is heavily biased if the initial conditions

fail, the result shown here suggests that even if the initial conditions are satisfied,

the GMM(SYS) estimator becomes heavily biased. Therefore, using the GMM(SYS)

estimator in this case is problematic and a reduction of the bias is required, which

is considered in the next section.

Next, we consider the case σ2
η/σ

2
v = 0.25 (Table 3 and Figures 9 to 12). Look-

ing at the figures, we see that the GMM(DIF) and the GMM(LEV) estimator

have smaller biases than in the case where σ2
η/σ

2
v = 1. However, the bias of the

GMM(SYS) estimator is downward for any α, and for many regions of α, the

GMM(LEV) estimators display the smallest bias among the estimators. This result

indicates that the fact that the GMM(SYS) estimator is a weighted sum of the

GMM(DIF) and the GMM(LEV) estimator becomes a disadvantage, in contrast

with the case of σ2
η/σ

2
v = 1, where the biases cancelled each other out.

5 Bias-corrected GMM estimators

In the previous section, we found that the small sample biases of the GMM estima-

tors crucially depend on the ratio σ2
η/σ

2
v . When σ2

η and σ2
v are almost equal, then

the GMM(SYS) estimator is the least biased among the GMM estimators. How-

ever, if σ2
η is large relative to σ2

v , the biases of all three GMM estimators are sizable

and bias-reduced estimators are required. In this section, we provide bias-corrected

GMM estimators and confirm their usefulness via simulation. The method used

here to correct for biases is to simply subtract the second order bias from the esti-

mators.8 Since the second order bias is effective to predict small sample biases in

the region of α ≤ 0.5 as shown in the previous section, we limit our investigation as

8Also see Newey and Smith (2004).

10



in the previous section to the case where α ≤ 0.5.

Theorem 4. The bias corrected GMM estimators for α̂dif ,α̂lev and α̂sys are given

by

̂̂αdif
= α̂dif −Bias(α̂dif ) (15)̂̂αlev
= α̂lev −Bias(α̂lev) (16)̂̂αsys
= α̂sys −Bias(α̂sys) (17)

where

Bias(α̂dif ) =
Bdif

1 +Bdif
2 +Bdif

3 +Bdif
4

N

Bias(α̂lev) =
Blev

1 +Blev
2 +Blev

3 +Blev
4

N

Bias(α̂sys) =
Bsys

1 +Bsys
2 +Bsys

3 +Bsys
4

N

Since the bias formulas contain expectations and unobservable disturbances, we

replace expectations by their sample mean and disturbances by residuals.

Monte Carlo Study

The data generating process is the same as that of Section 4. Table 6 shows the

results of the simulation. Overall, the bias correction works well. However, as

α gets larger, the bias-corrected estimators become more dispersed. Especially in

the case of α̂dif and α̂lev, although the biases are somewhat reduced, the standard

deviations are extremely large. Therefore, bias correction for α̂dif and α̂lev may

be problematic. Although the standard deviation of the bias corrected GMM(SYS)

estimator gets larger as α grows, the degree of dispersion is much smaller than in

the case of the bias-corrected GMM(DIF) and GMM(LEV) estimators. Hence, the

bias-corrected GMM(SYS) estimator performs best among the bias-corrected GMM

estimators considered here.

6 Conclusion

In this paper, we considered the small sample bias properties of GMM estimators in

dynamic panel data models. We provided theoretical evidence why the system GMM
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estimator has smaller bias. We found that the bias of the system GMM estimator

is a weighted sum of the biases in opposite directions of the first differencing and

the level GMM estimators. In addition, we found that the role of the weight is

also important since it adjusts the difference of the magnitudes of the biases. The

numerical analysis showed that the fact that σ2
η and σ

2
v are of almost the same

value is an important reason why the system estimator has small bias. In the case

when σ2
η/σ

2
v = 4, the biases of all the GMM estimator are sizable. To reduce these

biases, we proposed bias-corrected GMM estimators. Among the bias-corrected

GMM estimators, the bias-corrected GMM(SYS) estimator performs well in terms

of the magnitude of the bias, although its standard deviation increases. In the case

when σ2
η/σ

2
v = 0.25, we found that the bias of the GMM(LEV) estimator is smaller

than that of the GMM(SYS) estimator for a wide region of α and the GMM(SYS)

estimator is not best in terms of the magnitude of bias.
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A Theoretical proofs

To prove Theorems 1, 2 and 3, we consider the general one-step GMM estimator

based on the moment condition E[g(zi, θ0) = E[gi(θ0)] = 0. An inefficient one-step

GMM estimator is defined as

θ̂ = argmin
θ
ĝ(θ)′Ŵ−1ĝ(θ) (18)

where ĝ(θ) = N−1
∑N

i=1 gi(θ), Ŵ = N−1
∑N

i=1Wi →p W and Wi = W (zi) are

symmetric and positive definite matrices which do not depend on parameter θ.

Generally, an estimator of θ, θ̂, based on a sample of size N allows for an

expansion of the form:

√
N(θ̂ − θ) = θ(1) + 1√

N
θ(2) +Op

(
1
N

)
(19)

where both θ(1) and θ(2) are Op(1). Typically, θ(1) has a zero mean and converges

in distribution to a normal distribution. By taking an expectation and ignoring

the Op(1/N) term, we obtain the approximate mean of
√
N(θ̂ − θ), 1√

N
E(θ(2)).

Therefore, we can regard 1
NE(θ

(2)) as the second order bias of θ̂. In the following,

we derive N−1E[θ(2)] for a one-step GMM estimator.

Lemma 1. The second order bias for the one-step GMM estimator is given by

N · Bias(θ̂) =
E(G′W−1WiW

−1gi)
G′W−1G

− trace(W
−1E(giG′

i))
G′W−1G

+2
G′W−1E(giG′

i)W
−1G

(G′W−1G)2
− E(G

′W−1giG
′W−1WiW

−1G)
(G′W−1G)2

+
G′W−1ΩW−1Gθ

(G′W−1G)2
− 3
2
(G′W−1ΩW−1G)(G′W−1Gθ)

(G′W−1G)3

= B1 +B2 +B3 +B4 +B5 +B6

where

Gi =
∂gi(θ0)
∂θ

G = E (Gi) Gθ = E
(
∂2gi(θ0)
∂θ2

)
Ω = E[gi(θ0)gi(θ0)′].

Proof. The one-step GMM estimator is a special case of Theorem 1 in Hahn,

Hausman and Kuersteiner (2001). All that is required is replacing the weighting

matrix ψi(c)ψi(c)′ with Wi.

Furthermore, because the moment conditions considered in this paper are linear

in the parameter, Gθ = 0 holds, and hence the last two terms, B5 and B6, equal
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zero. In the following, we derive B1, B2, B3, B4 each for GMM(DIF), GMM(LEV)

and GMM(SYS), and to distinguish these estimators, we use the superscripts ”dif”,

”lev” and ”sys” for B1, ...,B4.

Proof of Theorem 1

Since Gi = −Z ′
d,i∆yi,−1, G = E[Gi], W = E[Z ′

d,iZd,i], Wi = Z ′
d,iZd,i and gi =

Z ′
d,i∆ui, B

dif
1 can be expressed as

Bdif
1 = −

E
[
E(∆y′i,−1Zd,i)E(Z ′

d,iZd,i)−1Z ′
diZdiE(Z ′

diZdi)−1Z ′
di∆ui

]
E(∆y′i,−1Zdi)E(Z ′

diZdi)−1E(Z ′
di∆yi,−1)

= − 1
φd

[
πd1(C +D)−1E(y3

i1∆ui3)

+
πd2

F

{
(C +D)E(y3

i,1∆ui4 + yi1y2
i2∆ui4)

−(C + αD)E(y2
i1yi2∆ui4 + y2

i1yi2∆ui4)
}

+
πd3

F

{
(C +D)E(y2

i,1yi2∆ui4 + y3
i2∆ui4)

−(C + αD)E(yi1y2
i2∆ui4 + yi1y2

i2∆ui4)
}
] .

Because all the expectations are equal to zero,

Bdif
1 = 0. (20)

Next, Bdif
2 is expressed as

Bdif
2 =

trace
[
E(Z ′

diZdi)−1E(Z ′
di∆ui∆y′i,−1Zdi)

]
E(∆y′i,−1Zdi)E(Z ′

diZdi)−1E(Z ′
di∆yi,−1)

=
1
φd

[
(C +D)−1E(y2

i1∆yi2∆ui3)

+
C +D
F

E(y2
i1∆yi3∆ui4 + y2

i2∆yi3∆ui4)

−2
(
C + αD
F

)
E(yi1yi2∆yi3∆ui4)

]
.

Since

E(y2
i1∆yi2∆ui3) = E(y2

i1∆yi3∆ui4) = E(y2
i2∆yi3∆ui4) = −σ2

v(C +D)

E(yi1yi2∆yi3∆ui4) = −σ2
v(C + αD),

Bdif
2 reduces to

Bdif
2 =

−σ2
v

φd

[
1 +

2(C +D)2

F
− 2(C + αD)2

F

]
. (21)

16



Note that Bdif
3 has the following form:

Bdif
3 = −2E(∆y

′
i,−1Zdi)E(Z ′

diZdi)−1E(Z ′
di∆ui∆y′i,−1Zdi)E(Z ′

diZdi)−1E(Z ′
di∆yi,−1)[

E(∆y′i,−1Zdi)E(Z ′
diZdi)−1E(Z ′

di∆yi,−1)
]2

=
−2
φ2

d

[
π2

d1E(y
2
i1∆yi2∆ui3) + πd1πd2E(y2

i1∆yi3∆ui3) + πd1πd3E(yi1yi2∆yi3∆ui3)

+πd1πd2E(y2
i1∆yi2∆ui4) + π2

d2E(y
2
i1∆yi3∆ui4) + 2πd2πd3E(yi1yi2∆yi3∆ui4)

πd1πd3E(yi1yi2∆yi2∆ui4) + π2
d3E(y

2
i2∆yi3∆ui4)

]
.

Since

E(y2
i1∆yi2∆ui3) = E(y2

i1∆yi3∆ui4) = E(y2
i2∆yi3∆ui4) = −σ2

v(C +D)

E(y2
i1∆yi3∆ui3) = σ2

v(2− α)(C +D)

E(yi1yi2∆yi3∆ui3) = σ2
v [(2− α)C − α(2α− 3)D]

E(yi1yi2∆yi3∆ui4) = −σ2
v(C + αD)

and E(y2
i1∆yi2∆ui4) = E(yi1yi2∆yi2∆ui4) = 0, we get

Bdif
3 =

2σ2
v

φ2
d

[{
π2

d1 + π
2
d2 + π

2
d3 + (α− 2)πd1πd2

}
(C +D)

−πd1πd3 {(2− α)C − α(2α− 3)D} + 2πd2πd3(C + αD)] . (22)

Finally Bdif
4 can be expressed as

Bdif
4 =

E
[
E(∆y′i,−1Zdi)E(Z ′

diZdi)−1Z ′
di∆ui[

E(∆y′i,−1Zdi)E(Z ′
diZdi)−1E(Z ′

di∆yi,−1)
]2

×E(∆y′i,−1Zdi)E(Z ′
diZdi)−1Z ′

iZiE(Z ′
diZdi)−1E(Z ′

di∆yi,−1)
]

[
E(∆y′i,−1Zdi)E(Z ′

diZdi)−1E(Z ′
di∆yi,−1)

]2

=
1
φ2

d

[
πd1(π2

d1 + π
2
d2)E(y

3
i1∆ui3) + πd2(π2

d1 + π
2
d2)E(y

3
i1∆ui4) + π3

d3E(y
3
i2∆ui4)

πd1π
2
d3E(yi1y

2
i2∆ui3) + 2πd1πd2πd3E(y2

i1yi2∆ui3)

3πd2π
2
d3E(yi1y

2
i2∆ui4) + (π2

d1 + πd3 + 3π2
d2πd3)E(y2

i1yi2∆ui4)
]
.

Since

E(y2
i1yi2∆ui3) = −σ2

v(C +D)
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E(yi1y2
i2∆ui3) = −2σ2

v (C + αD)

and the other expectations are zero, we have

Bdif
4 = −−2σ2

v

φ2
d

[
πd1π

2
d3(C + αD) + πd1πd2πd3(C +D)

]
. (23)

By adding the terms from eq.(20) to eq.(23), the proof is completed. �

Proof of Theorem 2

The flow of the proof is the same as Theorem 1: the four elements of the bias are

calcurated in sequence. First Blev
1 has an expression as follows:

Blev
1 = −

E
[
E(y′i,−1Zl,i)E(Z ′

l,iZl,i)−1Z ′
l,iZl,iE(Z ′

l,iZl,i)−1Z ′
l,iui

]
E(y′i,−1Zl,i)E(Z ′

l,iZl,i)−1E(Z ′
l,iyi,−1)

= − 1
φl

[
1
2

(
1 + α
2σ2

v

)
E(∆y3

i2ui3) +
1
2

(
1 + α
2σ2

v

)
E(∆y3

i3ui4)
]

= 0 (24)

The last equality comes from the fact that all the expectations are equal to zero.

Next we consider Blev
2 .

Blev
2 =

trace
[
E(Z ′

l,iZl,i)−1E(Z ′
l,iuiy

′
i,−1Zl,i)

]
E(y′i,−1Zl,i)E(Z ′

l,iZl,i)−1E(Z ′
l,iyi,−1)

=
1
φl

[(
1 + α
2σ2

v

)
E(yi2∆y2

i2ui3) +
(
1 + α
2σ2

v

)
E(yi3∆y2

i3ui4)
]

Since E(yi2∆y2
i2ui3) = E(yi3∆y2

i3ui4) = 2
1−α2σ

2
ησ

2
v , we get

Blev
2 =

2σ2
η

φl(1− α) . (25)

Blev
3 can be expressed as

Blev
3 = −2E(y

′
i,−1Zl,i)E(Z ′

l,iZl,i)−1E(Z ′
l,iuiy

′
i,−1Zl,i)E(Z ′

l,iZl,i)−1E(Z ′
l,iyi,−1)[

E(y′i,−1Zl,i)E(Z ′
l,iZl,i)−1E(Z ′

l,iyi,−1)
]2 .

Because

E(yi2∆y2
i2ui3) = E(yi3∆y2

i3ui4) =
2

1− α2
σ2

ησ
2
v

E(yi3∆yi2∆yi3ui3) =
−1
1 + α

σ2
ησ

2
v +

2α− 1
1 + α

σ4
v
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E(yi3∆yi2∆yi3ui4) = E(yi2∆yi2∆yi3ui4) =
−1
1 + α

σ2
ησ

2
v ,

we have

Blev
3 =

−2
φ2

l

[
πl,1 πl,2

] E(yi2∆y2
i2ui3) E(yi3∆yi2∆yi3ui3)

E(yi2∆yi2∆yi3ui4) E(yi3∆y2
i3ui4)

  πl,1

πl,2


=

−2
φ2

l

[
1
2

1
2

] 2
1−α2σ

2
vσ

2
η

−1
1+ασ

2
vσ

2
η +

2α−1
1+α σ

4
v

−1
1+ασ

2
vσ

2
η

2
1−α2σ

2
vσ

2
η

 1
2

1
2


=

−σ2
v

φ2
l

[
1

1− ασ
2
η +

2α− 1
2(1 + α)

σ2
v

]
(26)

Finally we consider Blev
4 .

Blev
4 =

E
[
E(y′i,−1Zl,i)E(Z ′

l,iZl,i)−1Z ′
l,iui[

E(y′i,−1Zl,i)E(Z ′
l,iZl,i)−1E(Z ′

l,iyi,−1)
]2

× E(y′i,−1Zl,i)E(Z ′
l,iZl,i)−1Z ′

l,iZl,iE(Z ′
l,iZl,i)−1E(Z ′

l,iyi,−1)
]

[
E(y′i,−1Zl,i)E(Z ′

l,iZl,i)−1E(Z ′
l,iyi,−1)

]2

Because E(∆y3
i2ui3) = E(∆y2

i2∆yi3ui4) = E(∆y3
i3ui4) = 0 and

E(∆yi2∆y2
i3ui3) = 2

(
α− 1
α+ 1

)
σ4

v

hold, we get

Blev
4 =

1
8φ2

l

[
E(∆y3

i2ui3) + E(∆yi2∆y2
i3ui3) +E(∆y2

i2∆yi3ui4) + E(∆y3
i3ui4)

]
=

α− 1
4φ2

l (α+ 1)
σ4

v . (27)

By adding terms from eq.(24) to eq.(27), the result is obtained. �

Proof of Theorem 3

The second order bias of α̂sys can be written as

Bias(α̂sys) =
Bsys

1 +Bsys
2 +Bsys

3 +Bsys
4

N

where

Bsys
1 = −

E
[
E(q′i,−1Zs,i)E(Z ′

s,iZs,i)−1Z ′
s,iZs,iE(Z ′

s,iZs,i)−1Z ′
s,ipi

]
E(q′i,−1Zs,i)E(Z ′

s,iZs,i)−1E(Z ′
s,iqi,−1)
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Bsys
2 =

trace
[
E(Z ′

s,iZs,i)−1E(Z ′
s,ipiq

′
i,−1Zs,i)

]
E(q′i,−1Zs,i)E(Z ′

s,iZs,i)−1E(Z ′
s,iqi,−1)

Bsys
3 = −2E(q

′
i,−1Zs,i)E(Z ′

s,iZs,i)−1E(Z ′
s,ipiq

′
i,−1Zs,i)E(Z ′

s,iZs,i)−1E(Z ′
s,iqi,−1)[

E(q′i,−1Zs,i)E(Z ′
s,iZs,i)−1E(Z ′

s,iqi,−1)
]2

Bsys
4 =

E
[
E(q′i,−1Zs,i)E(Z ′

s,iZs,i)−1Z ′
s,ipi[

E(q′i,−1Zs,i)E(Z ′
s,iZs,i)−1E(Z ′

s,iqi,−1)
]2

× E(q′i,−1Zs,i)E(Z ′
s,iZs,i)−1Z ′

s,iZs,iE(Z ′
s,iZs,i)−1E(Z ′

s,iqi,−1)
]

[
E(q′i,−1Zs,i)E(Z ′

s,iZs,i)−1E(Z ′
s,iqi,−1)

]2 .

After some algebra, we have

Bsys
1 +Bsys

2 = γ(Bdif
1 +Bdif

2 ) + (1− γ)(Blev
1 +Blev

2 )

Bsys
3 +Bsys

4 = γ2(Bdif
3 +Bdif

4 ) + (1− γ)2(Blev
3 +Blev

4 )

− 2
(φ2

d + φ
2
l )

2
π′d

[
E(Z ′

di∆uiy
′
i,−1Zl,i) + E(Z ′

di∆yi,−1u
′
iZl,i)

]
πl

+
1

(φ2
d + φ

2
l )

2
π′d

[
E(Z ′

di∆uiπ
′
lZ

′
l,iZl,i) + E(Z ′

diZdiπdu
′
iZl,i)

]
πl.

Hence, we only have to calculate the last two rows in Bsys
3 +Bsys

4 , that is, Ψ3 and

Ψ4. First, Ψ3 can be expressed as

Ψ3 = π′d
[
E(Z ′

di∆uiy
′
i,−1Zl,i) + E(Z ′

di∆yi,−1u
′
iZl,i)

]
πl2

= π′d


E(yi1yi2∆yi2∆ui3) + E(yi1∆y2

i2ui3)

E(yi1yi2∆yi2∆ui4) + E(yi1∆yi2∆yi3ui3)

E(y2
i2∆yi2∆ui4) + E(yi2∆yi2∆yi3ui3)

E(yi1yi3∆yi3∆ui3) + E(yi1∆yi2∆yi3ui4)

E(yi1yi3∆yi3∆ui4) +E(yi1∆y2
i3ui4)

E(yi2yi3∆yi3∆ui4) +E(yi2∆y2
i3ui4)

πl.

Note that

E(yi1yi2∆yi2∆ui3) = E(yi2yi3∆yi3∆ui4) = −
(

1
1− α

)2

σ2
ησ

2
v − 2α− 1

1− α2
σ4

v

E(yi1∆y2
i2ui3) = E(yi1∆y2

i3ui4) = E(yi2∆y2
i3ui4) =

2
1− α2

σ2
ησ

2
v

E(yi1∆yi2∆yi3ui3) =
−1
1 + α

σ2
vσ

2
η −

1
1 + α

σ4
v
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E(yi2∆yi2∆yi3ui3) =
−1
1 + α

σ2
vσ

2
η +

1
1 + α

σ4
v

E(yi1yi3∆yi3∆ui3) =
2− α
(1− α)2σ

2
ησ

2
v − α(2α

2 − 4α+ 1)
1− α2

σ4
v

E(yi1yi3∆yi3∆ui4) = −
(

1
1− α

)2

σ2
ησ

2
v − α(2α− 1)

1− α2
σ4

v

hold. Using these results, we get

Φ3 = π′d


−3α+1

(1−α)2(1+α)σ
2
ησ

2
v − 2α−1

1−α2σ
4
v

−2α2+3α+1
(1−α)2(1+α)σ

2
vσ

2
η − α(2α2−4α+1)

1−α2 σ4
v

−1
1+ασ

2
ησ

2
v − 1

1+ασ
4
v

−3α+1
(1−α)2(1+α)

σ2
vσ

2
η − α(2α−1)

1−α2 σ
4
v

−1
1+ασ

2
ησ

2
v +

1
1+ασ

4
v

−3α+1
(1−α)2(1+α)

σ2
vσ

2
η − 2α−1

1−α2σ
4
v

πl

=
[
πd,1 πd,2 πd,3

]
Q11 Q12

Q21 Q22

Q31 Q32


 πl,1

πl,2

 . �

Next, Ψ4 has the following form:

Ψ4 = π′d
[
E(Z ′

di∆uiπ
′
lZ

′
l,iZl,i) + E(Z ′

diZdiπdu
′
iZl,i)

]
πl

= π′d



πl,1E(yi1∆y2

i2∆ui3) πl,2E(yi1∆y2
i3∆ui3)

πl,1E(yi1∆y2
i2∆ui4) πl,2E(yi1∆y2

i3∆ui4)

πl,1E(yi2∆y2
i2∆ui4) πl,2E(yi2∆y2

i3∆ui4)



+


πd,1E(y2

i1∆yi2ui3)

πd,2E(y2
i1∆yi2ui3) + πd,3E(yi1yi2∆yi2ui3)

πd,2E(yi1yi2∆yi2ui3) + πd,3E(y2
i2∆yi2ui3)

πd,1E(y2
i1∆yi2ui3)

πd,2E(y2
i1∆yi2ui3) + πd3E(yi1yi2∆yi2ui3)

πd,3E(yi1yi2∆yi2ui3) + πd3E(y2
i2∆yi2ui3)


πl.

Because we have the following results:

E(yi1∆y2
i2∆ui3) = E(yi2∆y2

i3∆ui4) =
2

1 + α
σ4

v

E(yi1∆y2
i3∆ui3) =

2α(α− 2)
1 + α

σ4
v

E(yi1∆y2
i3∆ui4) =

2α
1 + α

σ4
v

E(y2
i1∆yi2ui3) = E(y2

i1∆yi2ui4) = E(y2
i2∆yi3ui4) =

−2
1− α2

σ2
vσ

2
η

E(y2
i2∆yi2ui3) =

2α
1− α2

σ2
ησ

2
v
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E(y2
i1∆yi3ui4) =

−2α
1− α2

σ2
vσ

2
η

E(yi1yi2∆yi3ui4) =
−1
1− ασ

2
ησ

2
v ,

we obtain

Ψ4 = π′d
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2
α+1σ

4
v − πd,1

2
1−α2σ

2
vσ

2
η πl,2

2α(α−2)
1+α σ4
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2α
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2
vσ

2
η

−πd,2
2

1−α2σ
2
vσ

2
η πl,2

2α
1+ασ

4
v − πd,2
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1−α2σ

2
vσ

2
η − πd,3

1
1−ασ

2
vσ

2
η

πd,3
2α

1−α2σ
2
ησ

2
v πl,2

2
1+ασ

4
v − πd,2

1
1−ασ

2
vσ

2
η − πd,3

2
1−α2σ

2
vσ

2
η

πl

=
[
πd,1 πd,2 πd,3

]
P11 P12

P21 P22

P31 P32


 πl,1

πl,2

 .
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Figure 1: Bias of α̂ (σ2
η/σ

2
v = 1)
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Figure 2: Bias of α̂dif (σ2
η/σ

2
v = 1)
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Figure 3: Bias of α̂lev (σ2
η/σ

2
v = 1)
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Figure 4: Bias of α̂sys (σ2
η/σ

2
v = 1)
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Figure 5: Bias of α̂ (σ2
η/σ

2
v = 4)
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Figure 6: Bias of α̂dif (σ2
η/σ

2
v = 4)
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Figure 7: Bias of α̂lev (σ2
η/σ

2
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Figure 8: Bias of α̂sys (σ2
η/σ

2
v = 4)
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Figure 9: Bias of α̂ (σ2
η/σ

2
v = 0.25)
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Figure 10: Bias of α̂dif (σ2
η/σ

2
v = 0.25)
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Figure 11: Bias of α̂lev (σ2
η/σ

2
v = 0.25)
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Figure 12: Bias of α̂sys (σ2
η/σ

2
v = 0.25)
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Table 1: Theoretical and simulation values of relative biases (%) when σ2
η/σ

2
v = 1

GMM(DIF) GMM(LEV) GMM(SYS)

α theory simulation theory simulation theory simulation

0.1 -26.48 -27.99 25.85 26.01 5.67 5.44

0.2 -20.02 -19.79 13.20 13.42 2.35 2.26

0.3 -20.11 -20.12 8.88 8.49 0.87 0.71

0.4 -23.04 -23.05 6.65 6.32 -0.37 0.07

0.5 -29.11 -28.00 5.25 5.19 -1.77 -1.25

0.6 -40.75 -38.20 4.27 6.81 -3.53 -0.53

0.7 -65.59 -58.64 3.52 9.29 -5.76 1.47

0.8 -134.23 -76.93 2.92 9.85 -8.43 2.56

0.9 -488.87 -93.41 2.43 10.05 -11.32 5.69

Table 2: Theoretical and simulation values of relative biases (%) when σ2
η/σ

2
v = 4

GMM(DIF) GMM(LEV) GMM(SYS)

α theory simulation theory simulation theory simulation

0.1 -39.65 -40.28 91.85 96.55 64.52 62.48

0.2 -29.43 -31.15 49.20 51.77 37.53 35.50

0.3 -29.29 -28.01 34.88 40.58 28.19 28.37

0.4 -33.46 -34.14 27.65 39.65 22.87 21.20

0.5 -42.40 -44.04 23.25 36.82 18.77 20.72

0.6 -59.85 -59.04 20.27 27.81 14.92 19.88

0.7 -97.65 -71.66 18.09 28.05 10.94 20.34

0.8 -203.64 -86.89 16.42 21.01 6.71 16.87

0.9 -759.58 -101.12 15.09 10.71 2.32 9.57
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Table 3: Theoretical and simulation values of relative biases (%) when σ2
η/σ

2
v = 0.25

GMM(DIF) GMM(LEV) GMM(SYS)

α Theory Simulation Theory Simulation Theory Simulation

0.1 -18.46 -16.09 9.35 8.95 -6.99 -7.20

0.2 -13.53 -13.12 4.20 3.64 -5.39 -5.80

0.3 -13.09 -12.53 2.38 2.81 -5.24 -5.42

0.4 -14.35 -14.53 1.40 1.96 -5.59 -5.60

0.5 -17.22 -16.62 0.75 0.75 -6.31 -6.40

0.6 -22.68 -22.16 0.27 0.24 -7.44 -6.17

0.7 -34.00 -34.42 -0.12 0.43 -9.12 -7.25

0.8 -63.92 -51.74 -0.45 2.42 -11.46 -6.24

0.9 -209.96 -83.32 -0.74 4.62 -14.36 -2.02

Table 4: Composition of the bias of the GMM(SYS) estimator

α Weighted sum Correlation Bias(α̂sys)

0.1 -4.571 10.243 5.672

0.2 -3.665 6.017 2.352

0.3 -3.673 4.543 0.869

0.4 -4.004 3.635 -0.369

0.5 -4.571 2.802 -1.769

0.6 -5.366 1.834 -3.531

0.7 -6.384 0.623 -5.761

0.8 -7.586 -0.844 -8.430

0.9 -8.856 -2.462 -11.318
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Table 5: Theoretical values of γ

σ2
η/σ

2
v = 1 σ2

η/σ
2
v = 4 σ2

η/σ
2
v = 0.25

α γ 1 − γ γ 1 − γ γ 1 − γ

0.1 0.491 0.509 0.378 0.622 0.586 0.414

0.2 0.437 0.563 0.323 0.677 0.545 0.455

0.3 0.378 0.622 0.267 0.733 0.497 0.503

0.4 0.314 0.686 0.211 0.789 0.441 0.559

0.5 0.245 0.755 0.156 0.844 0.374 0.626

0.6 0.176 0.824 0.106 0.894 0.297 0.703

0.7 0.110 0.890 0.063 0.937 0.209 0.791

0.8 0.053 0.947 0.029 0.971 0.117 0.883

0.9 0.014 0.986 0.007 0.993 0.037 0.963
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Table 6: Bias-corrected GMM estimators (σ2
η/σ

2
v = 4)

α α̂dif ˆ̂α
dif

α̂lev ˆ̂α
lev

α̂sys ˆ̂α
sys

0.1 mean 0.0597 0.1008 0.1966 0.0928 0.1597 0.1114

Bias(%) -40.28 0.80 96.55 -7.15 59.69 11.38

SD 0.2637 0.3068 0.2768 0.5016 0.1972 0.2395

RMSE 0.2668 0.3068 0.2932 0.5016 0.2061 0.2398

0.2 mean 0.1377 0.1995 0.3035 0.1854 0.2657 0.2083

Bias(%) -31.15 -0.23 51.77 -7.29 32.87 4.14

SD 0.2973 0.3964 0.2938 0.8575 0.2115 0.2788

RMSE 0.3038 0.3964 0.3115 0.8577 0.2215 0.2790

0.3 mean 0.2167 0.3221 0.4261 0.3031 0.3777 0.3112

Bias(%) -27.77 7.36 42.04 1.03 25.90 3.75

SD 0.3791 0.7314 0.3060 0.9655 0.2171 0.3171

RMSE 0.3881 0.7318 0.3310 0.9655 0.2306 0.3173

0.4 mean 0.2634 0.3910 0.5586 0.3975 0.4840 0.3948

Bias(%) -34.14 -2.26 39.65 -0.64 20.99 -1.30

SD 0.4467 0.9166 0.3228 1.3210 0.2314 0.4037

RMSE 0.4671 0.9166 0.3597 1.3210 0.2462 0.4038

0.5 mean 0.2810 0.4913 0.6941 0.4869 0.5975 0.4827

Bias(%) -43.80 -1.74 38.81 -2.61 19.49 -3.46

SD 0.5487 2.3790 0.3301 2.6236 0.2262 0.5269

RMSE 0.5908 2.3790 0.3829 2.6237 0.2463 0.5272
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