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ABSTRACT

In general, Wald tests for the Granger non-causality in vector autoregressive(VAR)

process are known to have non-standard asymptotic properties for cointegrated systems.

However, that may have standard asymptotic properties depending on the rank of the sub-

matrix of cointegration. In this paper, we propose a procedure for conducting Granger

non-causality tests that are based on discrimination of these asymptotic properties. This

paper also investigate the finite sample performance of our testing procedure, and com-

pare the testing procedure with conventional causality tests in levels VAR’s.



1 INTRODUCTION

The Granger non-causality test provides a particular summary of the forecasting relation

between two subsets of the variables. In vector autoregressive (VAR) process, it is based

on the least squares prediction. The Wald test for the Granger non-causality is known

to follow usual manner in stationary systems.

However, such a test is typically more complicated in cointegrated systems. See, for

example, Sims, Stock, and Watson (1990), Park and Phillips (1989), Toda and Phillips

(1993). Among their conclusions are that the usual Wald test statistic for Granger

non-causality in levels VAR’s regression (hereafter, the Std-VAR approach) may have

a non-standard asymptotic distribution and possibly depends on nuisance parameters.

The test based upon the non-standard distribution is very difficult, if not impossible,

to use in practice. In terms of Johansen’s (1988) vector error correction (VEC) models

format, Toda and Phillips (1994) proposed sequential testing procedures for three special

cases, that is, causalities from one variable to a set of variables, from a set of variables to

one variable, and from one variable to one variable, respectively. However, their method

seems difficult to be extended to a test for a causality between sets of variables. They

have not dealt with the testing procedure in levels VAR’s format. The present paper is

concerned with a testing procedure for such a general case in levels VAR’s format.

There have been proposed a few testing procedures that give an asymptotically stan-

dard distribution. See, for example, the fully modified VAR (FM-VAR) approach by

Phillips (1995) and the lag augmented VAR (LA-VAR) approach by Toda and Yamamoto

(1995). The FM-VAR approach removes the asymptotic bias of the OLS estimator and

the asymptotic distribution of the Wald statistic is shown to be bounded from above by

a chi-square distribution. The LA-VAR approach is the OLS estimation of a VAR model

with an artificially augmented lag, and the Wald statistic based upon it is known to be

always asymptotically chi-square distributed.

However, they have respective drawbacks. In appropriate small sample experiments,

Yamada and Toda (1998) showed that the test based upon the FM-VAR approach results

in severe size distortion of the test, and thus it appears very difficult to use it in practice

with reasonable reliability, and we will not be concerned with it in the paper. They

also showed that the one based upon the LA-VAR approach exhibits a relatively weak

power of the test because of its inefficiency due to an artificially augmented lag in the
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regression, while its empirical size of the test is acceptable. We will be concerned with

the improvement of the power of the LA-VAR approach in the paper.

The present paper proposes sequential testing procedures for the Granger non-causality

in levels VAR’s regression. It is a suitable combination of the LA-VAR approach and the

Std-VAR approach. Theorem 1 of Toda and Phillips (1993) gives a certain rank condi-

tion on a sub-matrix of a cointegrating matrix for the Wald statistic in the levels VAR’s

to be asymptotically chi-square distributed. If the condition is satisfied, we should use

the Std-VAR approach rather than the LA-VAR approach, since the former is obviously

asymptotically more efficient. Dolado and Lutkepohl (1996) showed in small sample ex-

periments with a simple 2-variate VAR model that the empirical power of the test of the

Std-VAR approach can be significantly greater than that of the LA-VAR approach in

some cases, when the rank condition is satisfied. On the other hand, if the rank condi-

tion is not satisfied, we should use the LA-VAR approach, since the Std-VAR approach

cannot be used in this case because its Wald statistic has a non-standard asymptotic dis-

tribution and cannot be properly tested. Obviously, the above testing procedure should

be more powerful than the test solely based upon the LA-VAR approach, since it adopts

the Std-VAR approach whenever it is applicable.

We note that, when the rank condition is not satisfied, it corresponds to a situation

where the relevant matrix in the Wald test statistic is degenerate. The LA-VAR approach

is an easy way to circumvent the degeneracy. Needless to say, a generalized inverse (GI)

procedure is a usual practice for inverting a degenerate matrix. Thus, when the rank

condition is not satisfied, the GI-VAR approach can be used instead of the LA-VAR

approach. In order to use the GI-VAR procedure in practice we need to know the exact

rank of a degenerate matrix. When it is applicable, the GI-VAR approach may be more

powerful than the LA-VAR approach because it uses the rank information fully, while

the LA-VAR approach only needs to know whether the relevant matrix is degenerate or

not.

In the above procedures a test for a rank of a submatrix of a cointegrating matrix plays

a key role. Here, we adopt a newly proposed test for it by Kurozumi (2003). Kurozumi’s

testing procedure is convenient in the sense its test statistic is also asymptotically chi-

square distributed. In a companion paper, Yamamoto and Kurozumi (2003), Kurozumi’s

testig procedure also plays a key role in detecting the rank of a possibly degenerate matrix

in testing for the long-run Granger non-causality. We may note that, while the Wald test
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in the final stage in the sequential procedure is based upon levels VAR’s format, we also

need to estimate a VEC model in order to obtain the cointegrating matrix of the system

concerned.

Further, we propose small sample modifications in test statistics of the three ap-

proaches in order to reduce their empirical size distortions. While the empirical size of

the Wald test based upon the LA-VAR approach is generally acceptable as remarked

above, the size distortions of the test based upon the Std-VAR approach and the GI-

VAR approach can be sizable in some cases in finite samples. Kurozumi and Yamamoto

(2000) proposed the bias correction method in order to reduce the size distortion in the

LA-VAR approach. In this paper we propose further modifications in the estimated vari-

ance covariance matrix of the estimator in addition to the bias correction method. We

may note that these modifications are designed to affect only small sample properties of

test statistics, but not their asymptotic properties.

The remainder of the paper is organized as follows. Section 2 details a new sequential

procedure for the Granger non-causality test in cointegrated VAR systems. Section 3

explains the small sample modifications in proposed test statistics that reduce empirical

size distortions. Section 4 provides some Monte Carlo evidence about the finite sample

behavior of our testing procedures relative to conventional testing procedures. Section 5

contains an empirical illustration of testing causality among long-term interest rates of

five countries. Section 6 gives some concluding remarks.

A summary word on notation. We denote the rank of a matrix D by rank(D). We

use vec(D) to stack the rows of D into a column vector.
p−→, and

d−→ signify convergence

in probability, convergence in distribution, respectively. Ik denotes the identity matrix

of rank k.

2 SEQUENTIAL GRANGER NON-CAUSALITY TEST

Consider m-vector process {x = [xi]} generated by vector autoregressive (VAR) model

of order p,

A(L)xt = µ + ΘDt + εt, (1)

where xt = [xit], µ is the constant vector, A(L) = Im − A1L − · · · − ApL
p, L is the lag

operator, Θ is the m × g coefficient matrix, and {εt} is a Gaussian white noise process
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with mean zero and nonsingular covariance matrix Σεε. The deterministic terms Dt can

contain a linear time, seasonal dummies, intervention dummies, or other regressors that

we consider fixed and non-stochastic. Following Johansen (1988,1991), we assume the

following:

Assumption : System (1) satisfies

(i) |A(z)| = 0 has its all roots outside the unit circle or equal to 1.

(ii) Π = αβ ′, where Π = −A(1), α and β are m×r matrices of rank r, 0 < r < m, and

rank{Π} = r. Without loss of generality, it will be assumed that β is orthonormal.

(iii) rank{α′
⊥Γβ⊥} = m − r, where α⊥ and β⊥ are m × (m − r) matrices such that

α′
⊥α = 0, β ′

⊥β = 0, and Γ = −(∂A(z)/∂z)z=1 − Π .

Under the above assumption, each component of {xt} is I(1), and components of {xt}
are cointegrated with r cointegrating vectors β. Reparameterizing (1), we get Johansen’s

(1991) vector error correction (VEC) form of the process,

∆xt = µ + αβ ′xt−1 +

p−1∑
j=1

Γj∆xt−j + ΘDt + εt, (2)

where Γj = −∑p
i=j+1 Ai for j = 1, · · · , p − 1.

Without loss of generality, we consider the case where the last p2 (p2 ≥ 1) variables

R∗
Rx do not cause the first p1 (p1 ≥ 1) variables RLx, where R∗

R and RL are the choice

matrices such that R∗
R = [0, Ip2], and RL = [Ip1 , 0]. Let A = [A1, A2, · · · , Ap] in (1). The

null hypothesis HG
0 that R∗

Rx do not Granger cause RLx is given by

RLAiR
∗′
R = 0 (i = 1, 2, · · · , p)

or equivalently

Rvec(A) = 0, (3)

where R = RL ⊗ RR and RR = Ip ⊗ R∗
R.

The least squares estimator of A in (1) is given by

Â = Y ′X(X ′X)−1M , (4)
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where X ′ = [x∗
1, x

∗
2, · · · , x∗

T ], x∗
t = [x′

t−1, x
′
t−2, · · · , x′

t−p, 1, D
′
t]
′, Y ′ = [x1, x2, · · · , xT ], M

is the (mp + g + 1) × mp choice matrix such that M = [Imp, 0]′. We have the following

result for Â.

Theorem 1 : Let Assumption holds and let Â be the least squares estimator defined in

(4). Then, we have

√
Tvec(Â − A)

d−→N(0, Σ), (5)

where Σ = Σεε ⊗ QΣ−1
ξξ Q′ = Σεε ⊗ K ′−1GξΣ

−1
ξξ G′

ξK
−1, Σξξ = E(ξtξ

′
t),

ξt = [(β ′xt−1)
′, ∆x′

t−1, · · · , ∆x′
t−p+1]

′,

K−1 =




Im

Im −Im 0
·

· ·
· ·

0 · ·
Im −Im




, and Gξ =

[
β 0
0 I(p−1)m

]
.

Proof : See Theorem 2.3 of Phillips (1998).

This theorem implies that, if RΣR′ is of full rank, a conventional Wald test statistic, W0,

for HG
0 in levels VAR’s format, here denoted as the Std-VAR approach, has a chi-square

distribution with degrees of freedom equal to the number of restrictions as T grows:

W0 = T{Rvec(Â)}′(RΣ̂R′)−1{Rvec(Â)} d−→χ2
pp1p2

. (6)

However, RΣR′ can be degenerate, as is well known. When RΣR′ is degenerate, the Wald

statistic has an asymptotically non-standard distribution, and cannot be easily tested.

See, for example, Sims, Stock, and Watson (1990) and Toda and Phillips (1993). Thus,

the Std-VAR approach has not been used in practice in possibly cointegrated systems.

For the rank of RΣR′, we have the following.

Proposition 1 : The rank of RΣR′ is given by

rank(RΣR′) = p1{rank(R∗
Rβ) + (p − 1)p2} (7)

Proof : See Appendix.

Remark 1: When p = 1 and rank(R∗
Rβ) = 0, we have that rank(RΣR′) = 0. In this
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case, we also have

RLARR = RLImR∗′
R + RLαβ ′R∗′

R

= RLImR∗′
R + 0.

The second equality holds because of the fact that rank(R∗
Rβ) = 0 means that R∗

Rβ = 0.

Therefore, if p = 1, rank(R∗
Rβ) = 0 and RLR∗′

R = 0, R∗
Rxt does not Granger cause RLxt.

When RLR∗′
R �= 0, R∗

Rxt Granger cause RLxt.

From the above proposition, we notice that RΣR′ is of full rank, if and only if rank(RΣR′) =

pp1p2. The latter condition is an alternative expression of the rank condition, rank(R∗
Rβ) =

p2, in Theorem 1 of Toda and Phillips (1993). See also a similar result in Yamamoto and

Kurozumi (2003, Proposition 3 )

When RΣR′ is degenerate, we propose to use the GI-VAR approach or the LA-VAR

approach. The Wald statistics of these approaches are denoted as WG0 and WL0, re-

spectively, and their asymptotic distributions are given as follows:

WG0 = T{Rvec(Â)}′(RΣ̂R′)−{Rvec(Â)} d−→χ2
s, (8)

where (RΣR′)− is the generalized inverse of RΣR′. See, for example, Rao and Mitra

(1971, Th. 9.2.2).

WL0 = T{Rvec(
ˆ̂
A)}′(R ˆ̂

ΣR′)−1{Rvec(
ˆ̂
A)} d−→χ2

pp1p2
, (9)

where “ˆ̂” indicates LA-VAR estimates. The LA-VAR estimates are obtained by fitting

a levels VAR model with an artificially augmented lag. It is known that WL0 gives an

asymptotically chi-square distribution in possibly cointegrated systems. See Toda and

Yamamoto (1995) for detail.

The testing procedure proposed in this paper crucially depends upon how we detect

the rank of RΣR′, or more specifically that of R∗
Rβ. Here, we resort to a newly proposed

testing procedure by Kurozumi (2003). He has developed a testing procedures for

Hs
0 : rank(R∗

Rβ) = f v.s. Hs
1 : rank(R∗

Rβ) > f, (10)

where 0 ≤ f < min(p2, r). Then, we have

Theorem 2: Suppose that there is no trend but d �= 0 in the model (2). Let µ̂1 ≥ µ̂2 ≥
· · · ≥ µ̂p2 be the ordered characteristic roots of∣∣∣β̂1Ψ̂β̂ ′

1 − µ̂Φ̂
∣∣∣ = 0 , (11)
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where β̂1 = R∗
Rβ̂, β̂⊥,1 = R∗

Rβ̂⊥. Ψ̂ = α̂′Σ̂−1
εε α̂,

¯̂
β⊥ = β̂⊥(β̂ ′

⊥β̂⊥)−1, S+
11 = T−1

∑T
t=1 R1tR

′
1t,

R1t being the regression residual of x+
t−1 on ∆xt−1, · · · , ∆xt−p+1, x+

t−1 = [x′
t−1, 1]′, “ ˆ ”

indicates the sample estime of the corresponding parameter, L and ΥT are (m− r + 1)×
(m − r) and (m − r) × (m − r + 1) matrices defined by

L =

[
Im−r

0

]
, ΥT =

[
T−1/2 ¯̂

β 0
0 1

]
, and

Φ̂ = β̂1(β̂
′β̂)−1β̂ ′

1 + β̂⊥,1(β̂
′
⊥β̂⊥)−1L′(Υ′

T S+
11ΥT )−1L(β̂ ′

⊥β̂⊥)−1β̂⊥,1 ,

Then, under Hs
0 , we have

L = T 2

p2∑
i=f+1

µ̂i
d−→χ(p2−f)(r−f). (12)

Proof: See Theorem 3 in Kurozumi (2003).

The above theorem specifically concerns with the case where the constant term µ in

(2) is such that µ = αρ0 where ρ0 is the r×1 vector, and the model (2) can be specifically

rewritten as

∆xt = αβ+′x+
t−1 +

p−1∑
j=1

Γj∆xt−j + ΘDt + εt , (13)

where β+ = [β ′, ρ0]
′. This specification of µ corresponds to an empirical application

discussed in section 5. For different specifications of µ, the test statistics should be

slightly modified. See Kurozumi (2003) for detail.

The rank of R∗
Rβ is detected sequentially using the above procedure. For example, to

decide the rank of R∗
Rβ, we firstly test the null of f = 0. If the null hypothesis is accepted,

the rank of R∗
Rβ is found to be zero. Otherwise, we proceed to test the hypothesis of

f = 1. We sequentially continue the process until the null hypothesis is accepted. When

the null of f = min(p2, r) − 1 is rejected, we consider that R∗
Rβ is of full rank.

In sum, the sequential testing procedure proposed in this paper consists of the follow-

ing three steps:

Step 1 : Determine the cointegration rank r by the Johansen procedure (1988, 1991).

Step 2 : Given the cointegration rank r, determine the rank of RΣR′ by testing Hs
0 by

the Kurozumi procedure (2003).
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Step 3 : If RΣR′ is found to be of full rank, test HG
0 with W0 (Std-VAR approach).

Otherwise, test HG
0 with WG0 (GI-VAR approach) or with WL0 (LA-VAR

approach).

The above combination of W0 and WL0 circumvents difficulty of W0 when RΣR′ is

degenerate, and inefficiency of WL0 when RΣR′ is of full rank. A similar effect is expected

for the combination of W0 and WG0.

It may be noted that, while the hypothesis of the Granger non-causality is tested in

terms of levels VAR’s format in the final step, we need to estimate a VEC model in the

first step in order to obtain the cointegraing vectors β of the process.

3 SMALL SAMPLE MODIFICATIONS OF TEST

STATISTICS

It is well known that the Wald type test based upon time series regressions , say W0 in

(6), usually has large size distortion in finite samples. That is, the empirical size can

be significantly greater than the nominal size. In order to reduce the size distortion,

we propose to apply a few modifications to the test statistics developed in the previous

section. We first take up Kurozumi and Yamamoto’s method (2000), which eliminates the

quasi-asymptotic bias of the least squares estimator up to Op(T
−1) using the jackknife

principle. While their method was developed for the LA-VAR approach, it is readily

applicable to the Std-VAR approach, and reproduce it as the first modification in the

paper.

Theorem 3 : Suppose a sample size T is an even integer. Let the bias corrected estimator

for A be

Âm = 2Â − 1

2
(Â1 + Â2), (14)

where Â1 and Â2 are least squares estimators based on sample of the 1st period (t =

1, · · · , T/2) and the 2nd period (t = T/2 + 1, · · · , T ), respectively. Then,

(i) Âm has no quasi-asymptotic bias irrespective of the order of integration of {xt}, and

(ii) The asymptotic distribution of Âm is normal irrespective of the order of integration

of {xt}.
Proof : See Kurozumi and Yamamoto (2000).
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Furthermore, following Kurozumi and Yamamoto (2000), it can be shown that, when

RΣR′ is of full rank, the modified Wald statistic, here denoted as Wa, constructed from

the bias corrected estimator Âm, has an asymptotic chi-square distribution with degrees

of freedom equal to the number of restrictions.

Wa = T{Rvec(Âm)}′(RΣ̂aR
′)−1{Rvec(Âm)} d−→χ2

pp1p2
, (15)

where

Σ̂a =4Σ̂εε ⊗ M ′(X ′X)−1M +
1

4
{Σ̂εε,1 ⊗ M ′(X ′

1X1)
−1M + Σ̂εε,2 ⊗ M ′(X ′

2X2)
−1M}

− 2(Σ̂εε,1 + Σ̂εε,2) ⊗ M ′(X ′X)−1M,

Σ̂εε =
1

T

T∑
t=1

êtê
′
t, Σ̂εε,1 =

2

T

T/2∑
t=1

ê1tê
′
1t, Σ̂εε,2 =

2

T

T/2∑
t=1

ê2tê
′
2t,

X1 and X2 are regressor matrices for the whole period, the 1st period and the 2nd period,

respectively, such that X ′
1 = [x∗

1, x
∗
2, · · · , x∗

T/2], X ′
2 = [x∗

T/2+1, x
∗
T/2+2, · · · , x∗

T ], and êt, ê1t

and ê2t are residuals from regressions in each period.

The above statistic Wa has been known to reduce the size distortion to some degrees,

but there still remains a room for improvement, as can be seen in the experiments in the

next section. Here, we propose two additional modifications. The basic idea is to slightly

inflate the estimate of the variance-covariance matrix Σ, and it in turn slightly reduces the

value of Wald statistic. Because the formula we use for the variance-covariance matrix is

based upon the asymptotic theory and it presumably underestimates the true (unknown)

one in finite samples. The second modified Wald statistic, denoted as Wb, is Wa with Σ̂a

being replaced by Σ̂b where

Σ̂b = 4Σ̃εε ⊗ M ′(X ′X)−1M +
1

4
{Σ̃εε,1 ⊗ M ′(X ′

1X1)
−1M + Σ̃εε,2 ⊗ M ′(X ′

2X2)
−1M}

−2(Σ̃εε,1 + Σ̃εε,2) ⊗ M ′(X ′X)−1M, (16)

where

Σ̃εε =
1

T

T∑
t=1

ẽtẽ
′
t, Σ̃εε,1 =

2

T

T/2∑
t=1

ẽ1tẽ
′
1t, Σ̃εε,2 =

2

T

T/2∑
t=1

ẽ2tẽ
′
2t,

and ẽt, ẽ1t and ẽ2t are residuals of regressions in each period uniformly evaluated with

Âm instead of Â, Â1, and Â2, respectively.
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Since the formulae Σ̂a and Σ̂b in the above two modifications are a little complicated,

we proprose the third one that is simpler, but still keeps a spirit of slightly inflating Σ̂.

It is denoted as Wc, and is Wa with Σ̂a being now replaced by Σ̂c where

Σ̂c = Σ̃εε ⊗ M ′(X ′X)−1M + vec(Âm − Â){vec(Âm − Â)}′. (17)

It should be noted that the modified statistics, Wa, Wb, and Wc have the same asymptotic

distribution as W0. In other words, the modifications are of order Op(T
−1) and they are

effective only in finite samples.

In the experiments in the next section, we apply these three modifications to WL0 in

the LA-VAR procedure and to WG0 in the GI-VAR procedure, in addition to W0 in the

Std-VAR procedure, and evaluate effectiveness of these modifications.

4 THE EXPERIMENT AND THE RESULTS

In this section, we employ Monte Carlo technique to evaluate our testing procedures and

compare them with conventional testing procedures.

The Monte Carlo Design

In this section, we consider the following simple VEC form with m = 4, p = 2, and r = 2,

∆xt = αβ ′xt−1 + Γ1∆xt−1 + εt, (18)

where {εt} is i.i.d. N(0, I4).

We are concerned with the test for non-causality from x3 and x4 to x1. That is, we

test the hypothesis HG
0 in (3) with RL = [1, 0, 0, 0] and R∗

R = [0, I2]. The following

two data gaenerating processes (GDPs) are employed:

Case 1:

α =




0 0
0.3 −0.3
−0.5 0.1
−0.5 0.5


 , β =




0.4 −0.8
−0.5 0

1 1
0.5 0


 , Γ1 =




0.3 −0.5 0 δ
0.5 −0.5 −0.1 0.1
−0.1 0.1 −0.2 0.1
−0.3 0.3 −0.1 0.2




Case 2:

α =




0 0
0.3 −0.3
−0.5 0.1
−0.5 0.5


 , β =




0.4 −0.8
−0.5 0

1 1
0.5 0.5


 , Γ1 =




0.3 −0.5 0 δ
0.5 −0.5 −0.1 0.1
−0.1 −0.1 −0.2 0.1
−0.3 0.3 −0.1 0.2



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The important point in designing the DGPs is the rank of R∗
Rβ. In Case 1, rank(R∗

Rβ) =

p2 , i.e., rank(R∗
Rβ) = 2, whereas in Case 2, rank(R∗

Rβ) < p2 , i.e., rank(R∗
Rβ) = 1.

The presence of causation is controlled through the parameter δ in Γ1. We set δ = 0 to

examine empirical size and δ = 0.1, and 0.2 to evaluate empirical power.

Throughout the experiments, 5000 samples of size T + 500 were generated with the

last T observations used for estimation and testing purposes. For each DGP, three sample

sizes were considered: T = 100, 200 and 400. All simulations were carried out using the

matrix programming language GAUSS.

For each sample, we first estimated a VAR(2) model by the least squares. The cointe-

grating rank was selected by the trace test in Johansen (1988) at the significance level of

1%. The entries of Table 0 of Osterwald-Lenum (1992) was used as the critical value. The

rank of a sub-matrix of cointegration was detected by the testing procedure in Kurozumi

(2003) at the significance level of 1%. We mau note that the test statistic for the model

(18) is slightly different from that for the model (14), and is given in Kurozumi (2003,

Th. 1). The Granger non-causality test in the final step of our procedures was set to 5%

significance level. The tabulated results of the experiment are presented in Tables from

1s to 2p. Tables 1s and 1p show the results for Case 1, while Tables 2s and 2p for Case

2.

Notation for Tables from 1s to 2p

Now, we explain the notation in Tables 1s to 2p. The column “r” indicates a possible

cointegration rank to be selected by the trace test. The column “%” next to it shows

an empirical distribution of the selected cointegration rank. Note that the row for r = 0

is omitted from the table, since there were virtually no occurrence. The column “s”

indicates the rank of RΣR′ detected by the Kurozumi (2003) procedure. “full” means

that RΣR′ is of full rank, i.e., RΣR′ = pp1p2, and “deg” means that RΣR′ is degenerate,

i.e., rank(RΣR′) < pp1p2. The column “%” next to s shows an empirical distribution of

rank(RΣR′) for a given r. When r = 4, the system is purely stationary and the Wald test

for the Granger non-causality follow usual manner, and then there is no need to test Hs
0 .

Because of this, there should be no entries in column “s” and “%” next to it when r = 4.

The headings “Sequential procedures” and “Exclusive Std-VAR and LA-VAR” stand

for our testing procedures and conventional testing procedures that employ exclusively

the Wald statistics based on Std-VAR approach and LA-VAR approach, respectively.
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The columns Wk, WLk, and WGk (k = 0, a, b, and c) show the results for testing the

hypothesis HG
0 . W , WL, and WG stand for the Wald test statisics computed from the

Std-VAR, the LA-VAR, and the GI-VAR approaches, respectively. The subscripts 0,

a, b and c stand for the conventional and three modifications proposed in the previous

section, respectively. Recall that we use Wk’s when RΣR′ is of full rank, and WLk’s and

WGk’s when it is degenerate. The columns CLk (k = 0, a, b, and c) show weighted sums

of the corresponding columns Wk’s and WLk’s. The columns CGk (k = 0, a, b, and c) are

similar weighted sums Wk’s and WGk’s. The columns CLk’s and CGk’s represent the

performance of the proposed procedures for testing the long-run Granger non-causality

in this paper. Finally, the row “total” shows over-all performance in each sample size,

that stands for the weighted avarage of rejection percentages of r = 1, 2, 3, fo 4 for each

test statistic.

The Monte Carlo Results: Case 1

Table 1s shows the empirical size for Case 1. In this case, W0 is a theotetically appro-

priate statistic, since RΣR′ is of full rank in the GDP. The empirical sizes for “W0 in

Exclusive Std-VAR” for T=100, 200 and 400 are 10.6%, 7.0% and 5.9%, respectively.

“W0 in Exclusive Std-VAR” suffers from size distortion in small samples, although it

approximates the correct size as the sample size increases. The “total” empirical sizes

for CL0 and CG0 do not differ substantially from those of “W0 in Exclusive Std-VAR.”

This is because WL0 and WG0 were not adopted into CL0 and CG0, respectivly, except

for the case where r=1 and T= 100. It is a consquence of the result that Kurozumi’s test

has sufficiently high power to detect the correct rank of RΣR′ in this case.

Concernig the small sample modifications, it appears that these modifications are

quite effective in reducing the size distortion. The modifications “b” and “c” seem to work

well, while the modification “a” still leaves a littele room for improvement in reducing

size distortion. Although larrge size distortion due to incorrect selection of r and s, say

r =3, is selected, may be inevitable, the “total” empirical size appears to perform well,

since conributions of those incorrect selection of r and/or s are relatively small.

Table 1p contains the tabulated size corrected power for Case 1. The results of

CLk’s, CGk’s, and “Wk’s in Exclusive Std-VAR” do not differ substantially each other as

in Table 1s. Further, the rejection rates of the causality test with no modifications, with

subscript “0”, are not very much different from those with modifications, with subscript

12



“a, b, and c”. On the other hannd, the exclusive use of the LA-VAR approach, “WLk’s in

Exclusive LA-VAR,” shows relatively low power as expected, because of its inefficiency.

Consequently, CLk’s and CGk’s substantially domnate “WLk’s in Exclusive LA-VAR”.

In sum, there are not much difference between two sequential procedures, CLk’s and

CGk’s. This is because the theoreticalyy appropriate statistic, Wk’s in this case, is

correctly selected most of times. Thus, CLk’s and CGk’s show similar perfoemance as

“Wk’s in the Exclusive Std-VAR” and they are substatially powerful than “WLk’s in the

Exclusive LA-VAR”. It is one of the desired properties of the sequential procedures. In

terms of size property, the modifications “b” and “c” are effective in reducing the original

size distortion.

The Monte Carlo Results: Case 2

Table 2s contains the tabulated empirical size for Case 2. In this case, WL0 and WG0 are

appropriate statistics, since RΣR′ is degenerate in the GDP. In particular, WL0 is the

basic one, since unlike WG0, it does not require preliminary tests for the cointegaration

rank and for the rank of a sub-matrix of the cointegaration matrix. The empirical sizes

for “WL0 in Exclusive LA-VAR” for T=100, 200 and 400 are 9.1%, 7.5% and 5.7%,

respectively. “WL0 in Exclusive LA-VAR” suffers from size distortion in small samples,

although it also approximates the correct size as the sample size increases. The “total”

empirical sizes for sequential procedures CL0 and CG0 are slightly higher than those of

“WL0 in Exclusive LA-VAR.” This is because W0, an inappropriate statistic in this case,

has substantially higher rejection rates than the nominal size even for larger samples.

and it is adopted in the sequential procedures more frequently than expected. Namely,

Kurozumi procedure appears to be liberal in this case, rejecting Hs
0 : rank(R∗

Rβ) = 1

a little too often, especially when T=100. It requires a sample size of at least 200 to

achieve a relatively desired frequencies that the true s is selected.

In this case the modifications “a” and “b” appears to be quite effective in reducing

original size distortions. But, the modification “c”, seems to overcorrect when sample

size is small, i.e., T=100. Further, it may be noted that, if the incorrect r and/or s are

selected, the effect of the modifications can be unstable for some cases.

Table 2p contains the tabulated size corrected power for Case 2. The power inceases

smoothly as δ or T increases. Generally, the power is slightly higher for the conventional

statistics than the correnponding modified ones. We may notice a difference in power
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when we compare CLk’s with CGk’s. For any T , CGk uniformly dominates the corre-

sponding CLk (k = 0, a, b, and c). It sould be the result of the fact that the GI-VAR

approach uses the rank information fully, while the LA-VAR approach only uses the

information on whether RΣR′ is degenerate or not.

In sum, the appropriate statistics in this case are WLk’s and WGk’s, and the size

performance of sequential testing procedure CGk’s and CGk’s are substantially better

than the inappropriate statistics,“W ’s in Exclusive Std-VAR”. It is another of the desired

properties of the sequential procedures. CGk’s are more preferable than CLk’s, since

the former are generally more powereful than the latter, while they show similar size

performances. Among modifications in CGk’s, “b” seems to be the best in terms of size

performance, while “c” appears to overcorrect the original size ditortion.

Recommended Procedure

Throughout above experiments, we have seen that CLb and CGb exhibit reasonable

size, although we also observed that they can be a little conservative, say, when T =

100 in Case 2. The modifications “a” and “c” are inferior to “b”, since they tended to

undercorrect or overcorrect the original siz distortion, respectively. In terms of empirical

power, CGb appeared to be more powerful than CLb as shown in Case 2. In conclusion,

we recommend the use of the procedure CGb in practice.

Effects of Missspesification

For each sample, we also examined cases of estimating a VAR(1) model for underfitting

and estimating VAR(3) and VAR(4) models for overfitting in order to examine the effects

of misspecifications of the lag length of a VAR model on our procedures. These results

are not presented here due to limited space 3, but its summary is briefly discussed below.

In the underfitting case, Wk’s and WGk’s are computed from a VAR(1) estimation.

Hence, “W0 in Eclusive Std-VAR” and CG0 suffer severe size distortion in both Cases

1 and 2. The modifications cannot correct these size distortions. On the other hand,

WL0 is computed on a VAR(2). Clearly, the tests based on the LA-VAR approach do

not suffer size distortion much, especially for Case 1, since it is an accidentally correct

method for Case 1.

The overfitting case causes inefficiency. Although some size distortions and losses

of power arise from the inefficiency, the results are not very different from those of the

3These results will be provided by the author upon request

14



exactfitting case. CGb performs best in both Case 1 and 2. These results indicate that

it is safe to fit a longer model than a shoter one.

5 EMPIRICAL APPLICATIONS

In this section, we examin the Granger non-causality among long-term interest rates

among several contries.

We consider a system of the US dollar (USD), the Great Britain pound (GBP), the

Deutschmark (DEM), and the Japanese yen (JPY) long-term interest rates. Daily time

series of 10-year benchmark interest rates for each country are covered from February 2,

1999 to July 31, 2003 with the sample size T = 10334.

Figure 1 Long-Term Interest Rates

99:2 99:7 99:12 00:5 00:10 01:3 01:9 02:2 02:7 03:1 03:6
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USD GBP 
DEM JPY 

Main estimation and test results are given in Table 3. In Tables 3, superscripts a,

b, and c indicate that statistics are statistically significant at 1%, 5% and 10% level,

respectively.

Whether a time series contains a unit root is assessed using the Zivot and Andrews

(1992) test. They carry out tests of the unit root hypothesis against the alternative

hypothesis of trend stationarity with a structual change in the trend. We use the following

4Data come from the web page of NIKKEI MONEY; http://nk-money.topica.ne.jp/databank.html
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regression to test for a unit root.

yt = η + θt + γDT ∗
t (λ) + ρyt−1 +

k∑
j=1

cj∆yt−j + εt, (19)

where DT ∗
t (λ) = t− λT if t > Tλ, 0 otherwise and λ is break fraction. We estimate (19)

by OLS and calculate t statistic for testing ρ = 1 for each possible break date TB = [Tλ].

Table 3, panel (A) presents the minimum t statistic which shows that this test suggest

a unit root in each series. The critical values for the test are from Table 3 in Zivot and

Andrews (1992). For each break date TB, k was determined using the BIC criteria. The

VEC model (2) is fitted by Johansen’s (1991) maximum likelihood method. The optimal

lag length is chosen by sequential reduction using the BIC criterion (Panel (B)). A time

trend is found to be insignificant by Johansen (1991) likelihood ratio statistic (Pnanel

(C)). Given this information, the VEC model (13) is employed. Test for cointegration

is carried out using Johansen (1991) tests. Panel (D) presents the cointegration results,

where “Eig” denotes the ordered eigen values, “trace” the trace test statistic, and “l-

max” the maximum eigen value test statistic. We conclude that the cointegration rank

is one at 5% significance level. The critical values for the tests are drawn from Table 1∗

in Osterwald-Lenum (1992). Panels (E) and (F) display the standardized loading vector

α and the standardized cointegrating vector β, respectively where the last element in β

is an estimate of a constant term in the cointegrating vector.

Here, we test the Granger non-causality by CGb, namely we employ Wb when Kurozumi

procedure shows that the relevant variance matrix is of full rank and employ WGb when

Kurozumi procedure shows that it is degenerate. Because CGb was shown to exhibit

relatively stable size and be more powerful than other tests based on the LA-VAR ap-

proach, i.e. CLb in the previous section. In this model, USD and DEM are excluded

from the cointegrating vector. This means the sub-matrix of cointegration corresponding

to USD and DEM are degenerate, i.e. rank(R∗
Rβ) = 0. Test statistics for the Granger

non-causality are calculated from the OLS estimates of a levels VAR model (1). Panel

(G) gives the results of the test and Figure 1 depicts the Granger causality which is

statistically significant at 5% significance level. We consider a block causality, that is, a

causal relation from a set of variables to a set of variables, in addition to a single variable

causality, that is, a causal relation from one variable to one variable. We test the Granger

causality betweet a group of USD and DEM which are excluded from the cointegrating

relation and a group of GBP and JPY which are included to the cointegrating relation.

16



There is a bidirectinal block causality. We may note that, since the cointegration rank

is one, the relevant variance matrix is automatically degenarate and WGb must be used

, when testing a block causality. This result is comformable with those of the single

variable causality setting.

6 CONCLUDING REMARKS

In this paper, we proposed two operational procedures to test the hypothsis of the Granger

non-causality in cointegrated systems. One based on the GI-VAR approach and the other

on the LA-VAR approach. They circumvent the problem of possible degeneracy of the

variance-covariance matrix associated with the usual Wald type test statistic. In oder to

detect degeneracy or the rank of the matrix, the testing procedure by Kurozumi (2003)

plays an important role. Further, we proposed two modifications in order to reduce the

size distortion of the test, in addition to the one proposed in Kurozumi and Yamamoto

(2000).

The finite sample experiments suggested that the test procedure based on GI-VAR

approach, denoted here CGk’s are preferable because they were shown to be more power-

ful than CLk’s in finite samples, while they exibited similar size performances. In terms

of the modifications proposed in the paper, the one denoted as “b” appeared to perform

well. In sum, we recommend CGb for testing the Granger non-causality in cointegrated

systems.

In empirical applications, we examined the causal relations among long-term interest

rates of three and of five countries. We encountered the situation that the degeneracy

happens and the proposed procedure appears to be useful.

We believe that the proposed procedure is practical. Here, the meaning of the term

”practical” is twofold. Firstly, the testing procedure consists of test statistics whose

asymptotic distributions are all chi-square, except the well known test for the cointegra-

tion rank by Johansen (1988, 1991). Thus, we do not need an exotic table of critical

values or we do not have to simulate critical values by ourselves. Secondly, the small

sample modifications of the test statistics give them reasonable empirical sizes in finite

samples, which is essential for a testing procedure to be practical.

17



References

Dolado, J. J. and H. Lutkepohl (1996): “Making Wald Tests Work for Cointegrated

VAR Systems,” Econometric Reviews, 15, 369-386.

Johansen, S. (1988): “Statistical Analysis of Cointegration Vectors,” Journal of Eco-

nomic Dynamics and Control, 12, 231-254.

Johansen, S. (1991): “Estimation and Hypothesis Testing of Cointegration Vectors in

Gaussian Vector Autoregressive Models,” Econometrica, 59, 1551-1580.

Kurozumi, E. (2003): “The Rank of a Sub-Matrix of Cointegration,” Discussion Paper

2002-15, Department of Economics, Hitotsubashi University.

Kurozumi, E. and T. Yamamoto (2000): “Modified Lag Augmented Vector Autoregres-

sions.,” Econometric Reviews, 19, 207-231.

Osterwald-Lenum, M. (1992): “A Note with Quantiles of the Asymptotic Distribution

of the Maximum Likelihood Cointegration Rank Test Statistics,” Oxford Bulletin

of Economics and Statistics, 54, 461-472.

Park, J. Y. and P. C. B. Phillips (1989): “Statistical Inference in Regressions with

Integrated Processes, Part 2,” Econometric Theory, 5, 95-131.

Phillips, P. C. B. (1995): “Fully Modified Least Squares and Vector Autoregression,”

Econometrica, 63, 1023-1078.

Phillips, P. C. B. (1998): “Impulse Response and Forecast Error Variance Asymptotics

in Nonstationary VARs,” Journal of Econometrics, 83, 21-56.

Rao, C. R. and T. Mitra (1971): Generalized Inverse of Matrices and its Applications,

John Wiley and Sons, New York.

Sims, C. A., J. H. Stock, and M. W. Watson (1990): “Inference in Linear Time Series

Models with Some Unit Roots,” Econometrica, 58, 113-144.

Toda, H. Y. and P. C. B. Phillips (1993): “Vector Autoregression and Causality,” Econo-

metrica, 59, 229-255.

18



Toda, H. Y. and P. C. B. Phillips (1994): “Vector Autoregression and Causality: A

Theoretical Overview and Simulation Study,” Econometric Reviews, 13, 259-285.

Toda, H. Y. and T. Yamamoto (1995): “Statistical Inference in Vector Autoregressions

with Possibly Integrated Processes,” Journal of Econometrics, 66, 225-250.

Yamada, H. and H. Y. Toda (1998): “Inference in Possibly Integrated Vector Autore-

gressive Models: Finite Sample Evidence,” Journal of Econometrics, 86, 55-95.

Yamamoto, T. and E. Kurozumi (2003): “Tests for Long-Run Granger Non-Causality

in Cointegrated Systems,” Unpublished manuscript, Hitotsubashi University.

Zivot, Eric. and Donald W. K. Andrews (1992): “Futher Evidence on the Great Crash,

the Oil-Price Shock, and the Unit-Root Hypothesis,” Journal of Business and Eco-

nomic Statistics, 10, 251-270.

19



Appendix Proof of Proposition 1

The rank of RΣR′ can be expressed explicitly as follows:

rank(RΣR′) = rank(RLΣεεR
′
L) × rank(RRΣXXR′

R)

= p1 × rank{RR(K ′−1GξΣ
−1
ξξ G′

ξK
−1)R′

R}
= p1 × rank(RRK ′−1Gξ).

Because Σ−1
ξξ is of full rank, the third equality holds. In order to investigate the rank of

RRK ′−1Gξ, let us write it explicitly as

RRK ′−1Gξ =




R∗
Rβ R∗

R 0 . . . 0
0 −R∗

R R∗
R 0

... −R∗
R

. . .
...

. . . R∗
R

0 0 −R∗
R




=

[
G∗

11 G∗
12

G∗
21 G∗

22

]
(say).

Then, it is turned out that

rank(RRK ′−1Gξ) = rank(G∗
11) + rank(G∗

22)

= rank(R∗
Rβ) + (p − 1)p2.

Hence, we have

rank(RΣR′) = p1 × (rank(R∗
Rβ) + (p − 1)p2).

This completes the proof of Proposition 1.
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Table 1s (Empirical size in Case 1, p = 2)

T r % s %

Sequential procedures
W0 Wa Wb Wc WL0 WLa WLb WLc WG0 WGa WGb WGc CL0 CLa CLb CLc CG0 CGa CGb CGc

1 7.0 full 0.0 . . . . . . . . . . . . 11.2 6.0 5.7 5.2 10.3 5.4 5.7 5.7
deg 100.0 . . . . 11.2 6.0 5.7 5.2 10.3 5.4 5.7 5.7

2 91.1 full 100.0 10.2 6.6 5.4 4.7 . . . . . . . . 10.2 6.6 5.4 4.7 10.2 6.6 5.4 4.7
100 deg 0.0 . . . . . . . . . . . .

3 1.8 full 100.0 21.3 9.0 11.2 11.2 . . . . . . . . 21.3 9.0 11.2 11.2 21.3 9.0 11.2 11.2
deg 0.0 . . . . . . . . . . . .

4 0.1 0.0 0.0 0.0 0.0 . . . . . . . . 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
total 10.4 6.6 5.5 4.8 11.1 6.0 5.7 5.1 10.3 5.4 5.7 5.7 10.4 6.6 5.5 4.8 10.4 6.5 5.5 4.9

1 0.0 full . . . . . . . . . . . . . . . . . . . . .
deg . . . . . . . . . . . . .

2 98.7 full 100.0 7.0 5.7 5.5 4.4 . . . . . . . . 7.0 5.7 5.5 4.4 7.0 5.7 5.5 4.4
200 deg 0.0 . . . . . . . . . . . .

3 1.2 full 100.0 6.8 1.7 5.1 3.4 . . . . . . . . 6.8 1.7 5.1 3.4 6.8 1.7 5.1 3.4
deg 0.0 . . . . . . . . . . . .

4 0.1 0.0 0.0 0.0 0.0 . . . . . . . . 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
total 7.0 5.6 5.5 4.4 . . . . . . . . 7.0 5.6 5.5 4.4 7.0 5.6 5.5 4.4

1 0.0 full . . . . . . . . . . . . . . . . . . . . .
deg . . . . . . . . . . . . .

2 98.6 full 100.0 5.9 5.5 5.5 4.8 . . . . . . . . 5.9 5.5 5.5 4.8 5.9 5.5 5.5 4.8
400 deg 0.0 . . . . . . . . . . . .

3 1.4 full 100.0 10.3 10.3 10.3 10.3 . . . . . . . . 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3
deg 0.0 . . . . . . . . . . . .

4 0.0 0.0 0.0 0.0 0.0 . . . . . . . . 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
total 5.9 5.5 5.7 4.9 . . . . . . . . 5.9 5.5 5.5 4.9 5.9 5.5 5.5 4.9

Exclusive Std-VAR Exclusive LA-VAR
W0 Wa Wb Wc WL0 WLa WLb WLc

100 . 10.6 6.7 5.7 4.8 9.8 4.0 4.2 3.5
200 . 7.0 5.6 5.5 4.4 7.0 3.8 4.8 4.1
400 . 5.9 5.5 5.5 4.9 6.0 4.4 5.3 4.9
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Table 1p (Empirical power in Case 1, p = 2)

δ T r % s %

Sequential procedures
W0 Wa Wb Wc WL0 WLa WLb WLc WG0 WGa WGb WGc CL0 CLa CLb CLc CG0 CGa CGb CGc

1 10.4 full 0.0 . . . . . . . . . . . . 6.7 5.0 6.3 6.7 8.4 8.8 7.1 7.6
deg 100.0 . . . . 6.7 5.0 6.3 6.7 8.4 8.8 7.1 7.6

2 88.2 full 100.0 11.3 10.4 10.0 10.4 . . . . . . . . 11.3 10.4 10.0 10.4 11.3 10.4 10.0 10.4
100 deg 0.0 . . . . . . . . . . . .

3 1.3 full 100.0 1.6 10.9 3.1 3.1 . . . . . . . . 1.6 10.9 3.1 3.1 1.6 10.9 3.1 3.1
deg 0.0 . . . . . . . . . . . .

4 0.1 20.0 20.0 20.0 20.0 . . . . . . . . 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0
total 11.1 10.4 9.9 10.3 6.7 5.0 6.3 6.7 8.4 8.8 7.1 7.6 10.7 9.9 9.5 9.9 10.8 10.3 9.6 10.0

1 0.0 full . . . . . . . . . . . . . . . . . . . . .
deg . . . . . . . . . . . . .

2 98.8 full 100.0 22.5 21.3 21.4 22.0 . . . . . . . . 22.5 21.3 21.4 22.0 22.5 21.3 21.4 22.0
0.1 200 deg 0.0 . . . . . . . . . . . .

3 1.1 full 100.0 30.4 33.9 30.4 30.4 . . . . . . . . 30.4 33.9 30.4 30.4 30.4 33.9 30.4 30.4
deg 0.0 . . . . . . . . . . . .

4 0.1 60.0 40.0 40.0 40.0 . . . . . . . . 60.0 40.0 40.0 40.0 60.0 40.0 40.0 40.0
total 22.6 21.5 21.6 22.1 . . . . . . . . 22.6 21.5 21.6 22.1 22.6 21.5 21.6 22.1

1 0.0 full . . . . . . . . . . . . . . . . . . . . .
deg . . . . . . . . . . . . .

2 98.6 full 100.0 48.8 47.4 47.7 47.8 . . . . . . . . 48.8 47.4 47.7 47.8 48.8 47.4 47.7 47.8
400 deg 0.0 . . . . . . . . . . . .

3 1.3 full 100.0 44.6 46.2 40.0 38.5 . . . . . . . . 44.6 46.2 40.0 38.5 44.6 46.2 40.0 38.5
deg 0.0 . . . . . . . . . . . .

4 0.1 100.0 100.0 100.0 100.0 . . . . . . . . 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
total 48.8 47.4 47.6 47.7 . . . . . . . . 48.8 47.4 47.6 47.7 48.8 47.4 47.6 47.7

Exclusive Std-VAR Exclusive LA-VAR
W0 Wa Wb Wc WL0 WLa WLb WLc

100 . 11.0 10.1 9.7 10.1 8.5 7.7 7.9 8.9
0.1 200 . 22.8 21.4 21.6 22.4 17.0 15.0 15.2 16.1

400 . 48.7 47.3 47.1 47.8 30.0 28.3 27.9 28.4
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Table 1p - contd. (Empirical power in Case 1, p = 2)

δ T r % s %

Sequential procedures
W0 Wa Wb Wc WL0 WLa WLb WLc WG0 WGa WGb WGc CL0 CLa CLb CLc CG0 CGa CGb CGc

1 14.7 full 0.0 . . . . . . . . . . . . 24.3 13.7 19.7 22.0 34.2 30.5 25.8 29.5
deg 100.0 . . . . 24.3 13.7 19.7 22.0 34.2 30.5 25.8 29.5

2 83.9 full 100.0 39.2 33.6 33.2 32.9 . . . . . . . . 39.2 33.6 33.2 32.8 39.2 33.6 33.2 32.8
100 deg 0.0 . . . . . . . . . . . .

3 1.3 full 100.0 26.9 40.3 25.4 17.9 . . . . . . . . 26.9 40.3 25.4 17.9 26.9 40.3 25.4 17.9
deg 0.0 . . . . . . . . . . . .

4 0.1 50.0 33.3 66.7 83.3 . . . . . . . . 50.0 33.3 66.7 83.3 50.0 33.3 66.7 83.3
total 39.0 33.7 33.1 32.7 24.3 13.6 19.6 22.0 34.1 30.4 25.8 29.5 36.8 30.8 31.2 31.1 38.3 33.2 32.1 32.2

1 0.0 full . . . . . . . . . . . . . . . . . . . . .
deg . . . . . . . . . . . . .

2 98.9 full 100.0 78.9 75.1 76.1 76.8 . . . . . . . . 78.9 75.1 76.1 76.8 78.9 75.1 76.1 76.8
0.2 200 deg 0.0 . . . . . . . . . . . .

3 1.0 full 100.0 76.5 78.4 74.5 72.5 . . . . . . . . 76.5 78.4 74.5 72.5 76.5 78.4 74.5 72.5
deg 0.0 . . . . . . . . . . . .

4 0.1 83.3 83.3 83.3 83.3 . . . . . . . . 83.3 83.3 83.3 83.3 83.3 83.3 83.3 83.3
total 78.9 75.1 76.1 76.8 . . . . . . . . 78.9 75.1 76.1 76.8 78.9 75.1 76.1 76.8

1 0.0 full . . . . . . . . . . . . . . . . . . . . .
deg . . . . . . . . . . . . .

2 98.8 full 100.0 98.9 98.5 98.5 98.7 . . . . . . . . 98.9 98.5 98.5 98.7 98.9 98.5 98.5 98.7
400 deg 0.0 . . . . . . . . . . . .

3 1.1 full 100.0 98.2 96.4 96.4 94.6 . . . . . . . . 98.2 96.4 96.4 94.6 98.2 96.4 96.4 94.6
deg 0.0 . . . . . . . . . . . .

4 0.1 100.0 100.0 100.0 100.0 . . . . . . . . 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
total 98.9 98.5 98.5 98.6 . . . . . . . . 98.9 98.5 98.5 98.6 98.9 98.5 98.5 98.6

Exclusive Std-VAR Exclusive LA-VAR
W0 Wa Wb Wc WL0 WLa WLb WLc

100 . 38.9 32.9 32.2 32.3 26.4 21.4 21.5 23.7
0.2 200 . 79.0 75.3 76.2 77.1 58.9 51.5 51.5 53.5

400 . 98.8 98.5 98.5 98.6 90.2 87.7 86.5 87.2
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Table 2s (Empirical size in Case 2, p = 2)

T r % s %

Sequential procedures
W0 Wa Wb Wc WL0 WLa WLb WLc WG0 WGa WGb WGc CL0 CLa CLb CLc CG0 CGa CGb CGc

1 0.7 full 0.0 . . . . . . . . . . . . 8.1 8.1 5.4 5.4 13.5 5.4 2.7 5.4
deg 100.0 . . . . 8.1 8.1 5.4 5.4 13.5 5.4 2.7 5.4

2 96.8 full 5.1 20.5 15.7 8.0 6.0 . . . . . . . . 9.8 4.0 3.5 2.8 9.4 6.6 3.8 3.3
100 deg 94.9 . . . . 9.2 3.3 3.2 2.6 8.8 6.1 3.6 3.1

3 2.3 full 85.2 35.7 23.5 11.2 8.2 . . . . . . . . 31.3 20.0 10.4 7.0 33.0 20.9 10.4 7.8
deg 14.8 . . . . 5.9 0.0 5.9 0.0 17.6 5.9 5.9 5.9

4 0.2 40.0 30.0 10.0 0.0 . . . . . . . . 40.0 30.0 10.0 0.0 40.0 30.0 10.0 0.0
total 25.2 18.2 9.0 6.4 9.2 3.4 3.3 2.6 8.9 6.1 3.6 3.2 10.3 4.4 3.7 2.9 10.1 7.0 3.9 3.4

1 0.0 full . . . . . . . . . . . . . . . . . . . . .
deg . . . . . . . . . . . . .

2 98.0 full 2.5 14.8 23.0 16.4 9.8 . . . . . . . . 7.5 4.8 4.7 4.2 7.4 6.2 5.7 4.5
200 deg 97.5 . . . . 7.4 4.3 4.4 4.1 7.2 5.8 5.4 4.4

3 1.9 full 84.9 31.6 31.6 21.5 16.5 . . . . . . . . 28.0 28.0 19.4 15.1 28.0 26.9 18.3 14.0
deg 15.1 . . . . 7.1 7.1 7.1 7.1 7.1 0.0 0.0 0.0

4 0.1 50.0 0.0 16.7 0.0 . . . . . . . . 50.0 0.0 16.7 0.0 50.0 0.0 16.7 0.0
total 22.2 25.6 18.4 12.1 7.4 4.3 4.4 4.1 7.2 5.7 5.4 4.4 8.0 5.2 5.0 4.4 7.8 6.6 5.9 4.7

1 0.0 full . . . . . . . . . . . . . . . . . . . . .
deg . . . . . . . . . . . . .

2 98.6 full 1.8 16.1 14.9 13.8 10.3 . . . . . . . . 5.9 4.2 4.7 4.4 5.6 5.3 5.4 4.4
400 deg 98.2 . . . . 5.7 4.0 4.5 4.3 5.4 5.2 5.3 4.3

3 1.3 full 84.6 38.2 20.0 14.5 21.8 . . . . . . . . 35.4 20.0 15.4 21.5 35.4 20.0 15.4 21.5
deg 15.4 . . . . 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0

4 0.1 25.0 25.0 0.0 0.0 . . . . . . . . 25.0 25.0 0.0 0.0 25.0 25.0 0.0 0.0
total 24.7 17.1 13.7 14.4 5.7 4.0 4.6 4.3 5.4 5.2 5.3 4.3 6.3 4.4 4.8 4.6 6.0 5.5 5.6 4.6

Exclusive Std-VAR Exclusive LA-VAR
W0 Wa Wb Wc WL0 WLa WLb WLc

100 . 18.1 12.6 5.1 5.4 9.1 3.4 3.3 2.6
200 . 14.1 12.2 8.4 6.5 7.5 4.4 4.5 4.1
400 . 12.2 11.1 9.8 7.0 5.7 4.0 4.5 4.3
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Table 2p (Empirical power in Case 2, p = 2)

δ T r % s %

Sequential procedures
W0 Wa Wb Wc WL0 WLa WLb WLc WG0 WGa WGb WGc CL0 CLa CLb CLc CG0 CGa CGb CGc

1 0.9 full 0.0 . . . . . . . . . . . . 4.3 4.3 2.2 4.3 0.0 2.2 13.0 6.5
deg 100.0 . . . . 4.3 4.3 2.2 4.3 0.0 2.2 13.0 6.5

2 96.7 full 4.9 8.5 3.0 5.5 9.8 . . . . . . . . 10.1 8.7 8.6 10.0 11.2 8.8 11.0 10.7
100 deg 95.1 . . . . 10.2 9.0 8.8 10.0 11.3 9.1 11.3 10.7

3 2.3 full 77.8 7.7 15.4 14.3 13.2 . . . . . . . . 6.8 12.0 11.1 10.3 6.0 12.0 12.0 10.3
deg 22.2 . . . . 3.8 0.0 0.0 0.0 0.0 0.0 3.8 0.0

4 0.1 0.0 0.0 0.0 0.0 . . . . . . . . 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
total 8.2 6.4 7.9 10.7 10.1 8.9 8.7 9.9 11.1 8.9 11.3 10.6 10.0 8.8 8.6 9.9 10.9 8.8 11.1 10.6

1 0.0 full . . . . . . . . . . . . . . . . . . . . .
deg . . . . . . . . . . . . .

2 98.4 full 2.7 17.2 12.7 14.2 11.2 . . . . . . . . 15.9 13.6 13.8 14.4 17.8 15.8 16.6 17.9
0.1 200 deg 97.3 . . . . 15.9 13.6 13.8 14.5 17.9 15.9 16.7 18.0

3 1.5 full 83.6 9.8 11.5 8.2 6.6 . . . . . . . . 11.0 12.3 9.6 8.2 13.7 13.7 11.0 9.6
deg 16.4 . . . . 16.7 16.7 16.7 16.7 33.3 25.0 25.0 25.0

4 0.1 20.0 20.0 20.0 20.0 . . . . . . . . 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0
total 15.0 12.5 12.5 10.0 15.9 13.6 13.8 14.5 17.9 15.9 16.7 18.1 15.8 13.6 13.7 14.3 17.8 15.8 16.6 17.7

1 0.0 full . . . . . . . . . . . . . . . . . . . . .
deg . . . . . . . . . . . . .

2 98.6 full 1.5 21.3 20.0 18.7 18.7 . . . . . . . . 33.9 31.4 30.8 31.9 39.6 36.4 35.9 37.8
400 deg 98.5 . . . . 34.1 31.6 31.0 32.1 39.9 36.6 36.1 38.1

3 1.3 full 87.7 12.3 19.3 15.8 12.3 . . . . . . . . 13.8 20.0 15.4 12.3 15.4 21.5 16.9 13.8
deg 12.3 . . . . 25.0 25.0 12.5 12.5 37.5 37.5 25.0 25.0

4 0.1 40.0 40.0 40.0 40.0 . . . . . . . . 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0
total 18.2 20.4 18.2 16.8 34.1 31.5 31.0 32.0 39.9 36.6 36.1 38.0 33.7 31.2 30.6 31.6 39.3 36.2 35.6 37.5

Exclusive Std-VAR Exclusive LA-VAR
W0 Wa Wb Wc WL0 WLa WLb WLc

100 . 9.4 7.3 9.7 9.5 10.1 8.8 8.6 9.8
0.1 200 . 14.8 11.0 14.4 14.5 15.7 13.4 13.9 14.6

400 . 30.0 25.2 28.0 31.6 33.9 31.3 30.9 32.1
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Table 2p - contd. (Empirical power in Case 2, p = 2)

δ T r % s %

Sequential procedures
W0 Wa Wb Wc WL0 WLa WLb WLc WG0 WGa WGb WGc CL0 CLa CLb CLc CG0 CGa CGb CGc

1 1.3 full 0.0 . . . . . . . . . . . . 21.9 15.6 7.8 10.9 23.4 25.0 43.8 26.6
deg 100.0 . . . . 21.9 15.6 7.8 10.9 23.4 25.0 43.8 26.6

2 96.9 full 4.9 29.4 10.5 20.2 25.6 . . . . . . . . 28.6 22.2 22.1 25.4 33.5 25.4 30.0 30.3
100 deg 95.1 . . . . 28.5 22.8 22.2 25.4 33.7 26.2 30.5 30.5

3 1.7 full 81.9 23.5 25.0 25.0 27.9 . . . . . . . . 21.7 21.7 20.5 22.9 20.5 20.5 21.7 24.1
deg 18.1 . . . . 13.3 6.7 0.0 0.0 6.7 0.0 6.7 6.7

4 0.1 28.6 14.3 0.0 14.3 . . . . . . . . 28.6 14.3 0.0 14.3 28.6 14.3 0.0 14.3
total 28.1 13.7 20.8 25.9 28.4 22.6 22.0 25.1 33.5 26.1 30.6 30.4 28.4 22.1 21.9 25.2 33.1 25.3 30.0 30.1

1 0.0 full . . . . . . . . . . . . . . . . . . . . .
deg . . . . . . . . . . . . .

2 98.5 full 2.1 50.0 35.6 39.4 42.3 . . . . . . . . 58.2 49.0 49.7 52.4 64.1 57.6 58.5 62.1
0.2 200 deg 97.9 . . . . 58.4 49.3 49.9 52.6 64.4 58.1 59.0 62.5

3 1.4 full 78.6 56.4 40.0 41.8 34.5 . . . . . . . . 48.6 34.3 35.7 30.0 61.4 47.1 48.6 42.9
deg 21.4 . . . . 20.0 13.3 13.3 13.3 80.0 73.3 73.3 73.3

4 0.1 85.7 85.7 71.4 85.7 . . . . . . . . 85.7 85.7 71.4 85.7 85.7 85.7 71.4 85.7
total 53.6 39.2 41.6 41.6 58.2 49.2 49.8 52.5 64.4 58.2 59.0 62.6 58.1 48.8 49.5 52.1 64.1 57.5 58.4 61.9

1 0.0 full . . . . . . . . . . . . . . . . . . . . .
deg . . . . . . . . . . . . .

2 98.7 full 1.8 81.8 79.5 78.4 79.5 . . . . . . . . 91.3 88.8 88.3 88.6 94.8 93.5 93.1 93.8
400 deg 98.2 . . . . 91.5 89.0 88.5 88.8 95.0 93.8 93.4 94.0

3 1.2 full 79.0 75.5 79.6 69.4 65.3 . . . . . . . . 79.0 80.6 71.0 69.4 79.0 82.3 74.2 71.0
deg 21.0 . . . . 92.3 84.6 76.9 84.6 92.3 92.3 92.3 92.3

4 0.1 83.3 83.3 83.3 83.3 . . . . . . . . 83.3 83.3 83.3 83.3 83.3 83.3 83.3 83.3
total 79.7 79.7 75.5 74.8 91.5 89.0 88.5 88.8 95.0 93.8 93.4 94.0 91.2 88.7 88.1 88.4 94.6 93.4 92.9 93.5

Exclusive Std-VAR Exclusive LA-VAR
W0 Wa Wb Wc WL0 WLa WLb WLc

100 . 27.8 18.7 26.3 27.5 28.6 22.7 22.1 25.5
0.2 200 . 56.3 43.6 52.9 54.5 58.3 48.9 49.8 52.3

400 . 90.6 86.4 88.4 90.4 91.4 88.9 88.4 88.7
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Table 3 The Granger Causality Between Long-Term Interest Rates

(A) Test for Non-Stationarity of Interest Rates
Z-A test

USD -3.294
GBP -3.772
DEM -3.493
JPY -3.493

(B) Estimated lag length of VAR 2

(C) Test statistics for α′
⊥µ = 0 0.844

(D) Test for the number of cointegrating vctors
Eig. 0.032 0.019 0.010 0.003
H0 r = 0 r ≤ 1 r ≤ 2 r ≤ 3

trace 67.562 33.622 14.250 3.610
lmax 33.940 19.372 10.640 3.610

(E) Standardized adjustment coefficients α′

0.051 0.031 0.042 -0.059

(F) Standardized cointegrating vectors β ′

0.844 -0.122 0.013 -0.194 0.485

(G) Test statistics for long-run Grangernon-causality
to: from: USD DEM GBP JPY

USD . 0.319 4.398 2.130
DEM 49.706a . 9.318a 1.060
GBP 16.362a 0.020 . 1.425
JPY 2.461 0.606 0.648 .

from: USD DEM to GPB JPY 19.974a

from: GBP JPY to USD DEM 15.342b
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