Asymptotic Efficient Estimation of the Change Point
in Time Series Regression Models

Takayuki Shiohama
Hitotsubashi University

March 19, 2004

Abstract

This paper discusses the problem of estimating unknown change point in the
trend function of a time series regression model. The error process considered here
is a Gaussian stationary process with spectral density. The asymptotic properties of
quasi maximum likelihood (QMLE) and quasi Bayes (QBE) estimators are studied.
Consistency, limiting distributions and convergence of higher order moments of the
estimators are obtained. It is also shown that the QBE is asymptotically efficient,
and that the QMLE is not so general.

Keywords: Time series regression, change point,quasi maximum likelihood estima-
tor, quasi Bayes estimator, asymptotic efficiency, Whittle likelihood.

1 Introduction

Detecting change points in the stochastic structure of a time series has become an im-
portant area of research in the last two decades. Especially in economics, the problem
of testing and estimating unknown changes in econometric models is attracting grow-
ing interest, because changes in taste, technical progress, policies and regulations cause
parameter instability over a period of time. The purpose of this paper is to study the
parameter change problem in time series regression models with shift in the polynomial
trend functions. The main concern is the asymptotics of the change point estimators,
namely quasi maximum likelihood (QMLE) and quasi Bayes (QBE) estimators.

For dependent observations, a number of authors investigated the consistency prop-



erty and derived the asymptotic distribution for the estimated change point. We refer the
monograph of Csorgé and Horvath (1997) for informative in-depth reviews. Bai (1994)
studied the least squares estimation for a mean shift in linear processes. Also Bai (1997)
extends his results to the estimation of a change point in multiple regression models with
dependent and heteroskedastic errors. Kokoszka and Leipus (1998) showed the consis-
tency and the rates of convergence of CUSUM type estimators, under weak assumptions
on the dependence structure. The issue of multiple structural changes, we refer the recent
works of Bai and Perron (1998) and Lavielle and Moulines (2000).

There is little literature on asymptotic optimality of change point estimators. For in-
dependent and identically distributed observations, Rotiv (1990) developed an asymptot-
ically efficient estimator using nonparametric setups. For diffusion processes, Kutoyants
(1994) showed that the change point estimators MLE and BE have different limit laws,
and BE is asymptotically optimal. Dachian and Kutoyants (2003) also developed similar
results for cusp estimations of the ergodic diffusion process. For the theory underlying
serially correlated observations, Shiohama et. al. (2003) and Shiohama (2003) studied
asymptotically efficient estimations for time series regression setups with circular ARMA
residuals and stable trend.

Our study considers the important problem of estimating change point for the case
with trending regressions, which is not stated in the papers of Shiohama et. al. (2003)
and Shiohama (2003). We also dropped the assumptions on circular ARMA residual spec-
tra. These extensions are important for practical applications, where the presence of a
polynomial time trend is very common in economic time series.

This paper is organized as follows. In Section 2 we describe time series regression
models with change point and state the asymptotic representation of log-likelihood ra-
tio processes between contiguous hypotheses. Section 3 is devoted to the asymptotics

of QMLE and QBE. Section 4 contains the details of the simulation study. Finally, in



Section 5, we give the proofs for the theorems and lemmas given in Sections 2 and 3.

2 The model and settings

Let us consider the problem of change point estimation for time series regression models

y = {ﬂ'lzt—l—ut t=1,...,[mn]
. =

, (2.1)
Bozi+u;, t=[mm]+1...,n

where 7 € (0,1) is an unknown change point, z; is ¢ x 1 vector of regressors and u; is a
Gaussian stationary process with mean zero and the spectral density f()). We write the

spectral representation of {u,} as

ut:/ eMdZu()\).

ks

We consider the time-trending regressor that is
zp = (1,¢,... 4771,
Define
D, = diag{n, z”: ... ,zn: 2a=y
1 1
and note that as n — oo
D, ~ diag{n,n"/3,... ,n*7"/(2¢ —1)}.

Let {Y;} be a discrete stochastic process defined later satisfying the following conditions:
Assumptions A.1. n~/2 [Ty, —» VIW(r), where V? = E(Y) + 2302, E(V1Y3) is
the long-run variance of Y;, and W (r) is a standard Brownian motion defined on C0, 1].

The symbol — denotes weak convergence in distribution.

In this article we consider the case that the magnitude of shift tends to zero with the

3



sample size n, but sufficiently slowly. Specifically, we suppose the following assumptions
on the magnitude of shift §,, = (81, ... ,0,,)" which is assumed to be known.

Assumptions A.2.
8, =8,-8,—-0, c¢,:=(8Q,6,)" — 0,
where Q,, = lim,, ., % Yo 2z~ [ni+i=2 /i + 5 — 2); =1, and

nq_1/25qn — 0.

For fixed § = 4, the asymptotic distribution of change point is studied by Shiohama
et. al. (2003) and Shiohama (2003), where they assume the circular conditions on {u;},
and bounded regressors. The obtained limiting distribution depends on the underlying
distribution of u; and 4 in an intricate way. Thus in practice it might be more important
to investigate the asymptotic distributions of change point for small changes. Under

Assumption A.2 the model (2.1) is rewritten as

_ Bz + t=1,....[mn]
S 7 B e R R
=: (8, 7) + us. (2:2)

We are interested in the estimation of 3 and 7. Motivated by the results of proposition

1 of Bai (1997), we define the local sequences
) — 7 4 (ncn)_lp and [3(”) =08+ D}/zb (2.3)

where ¢, is in Assumption A.1, p € R and b € R?. For the later convenience we put
0, il <1
Sl(jv a, At) = EE‘:[‘i]]_l_l At7 .] 2 1
- E?:[a—l—j]—l—l Atv ] <L

For model (2.2) the exact Gaussian Gaussian likelihood is given by

1 1

L.(B,71)= 2r) PSP exp —5(% —1,)'S (Y, — )] (2.4)



where ¥, is the n X n covariance matrix of w, = (u1,... ,un), ¥, = (y1,...,yn)" and
w, = (i(B,7),...,un(B,7)). Using this likelihood with the circular assumption on
{us}, Shiohama et.al. (2003) and Shiohama (2003) investigated the asymptotic properties
of MLE and BE. In this paper, we use the Whittle likelihood instead of (2.4), which is
defined by

log LV (8, 7 :——/ {logf (Jf(w)’ )}d)\

where

n 2

> (i — (B, 7)) exp(—it))

t=1

[n()\|677—) = %

is the periodogram. The Whittle likelihood is useful because it directly involves f()),
in contrast to the exact Gaussian likelihood (2.4). Also, as it was already mentioned
by various authors, an explicit derivation of maximum likelihood estimator is most often
practically cumbersome and complex problem. However by using the Whittle method,
we can cope with these problems. In order to justify the use of the Whittle likelihood to
the general results of asymptotic estimation theory of Ibragimov and Has'minski (1981),
we refer the asymptotic results on Toeplitz matrices by Dzhaparidze (1986), where they
approximate Y.~ by {1/(47?) f SO exp(iA(r — s))dA}y o=1,... .n. The same approxi-
mation for long range dependence was derived by Dahlhaus (1989) .

The log-likelihood ratio process under (2.3) is represented as




where

Z ug exp(it )

dn(}) 27Tf

and
1 n
———— < Si(pe, T, 8z exp(—is))) — b'D}/zzs exp(—is)\)}
2m f(A) { ;

The asymptotic representation of 7,(b, p) is given in the next theorem

Theorem 2.1 Suppose that Assumptions A.1 and A.2 hold. Then for all (3,7) € © X

T C R x [0,1], the log-likelihood ratio has the asymptotic representation

1
log Z,(b,p) = VW (p) + b'A,, — 5 [pIVZ + 6'Vb] + 0,(1)

where {W(p); p € R} is a two sided standard Wiener processes, i.e.,

_IWilp) 20
Wie = {Wz(—p) p <0,

with {Wi(t);t € [0,00)} and {Ws(t);t € [0,00)} being independent standard Wiener
processes and

n
!
= E Zsi/s
s=1

with

1 " -1 s
Y, = ﬁ/_w FN) ez, (N).

Here A, is a Gaussian random vector with mean 0 and variance

V(2= 1)(25 — 1)
27 f(0)(i 4+ — 1)

=1,...,9

a
= (27 f(N)™" and

and Ys is a Gaussian random variable with the spectral density fy ()

= fy(0).



Lemma 2.1 Suppose that Assumptions A.1 and A.2 hold. Then for some p > 2 and for

any compact sets @ and T', we have

sup  EZ)7(b, p) < exp{—g(b,p)}
B, TEOXT

where
o(b,p) = Clp| + b'EKD
with some positive definite matriz K and C > 0.

Lemma 2.2 Suppose that Assumptions A.1 and A.2 hold. Then for any compact sets ©

and T, there exists some integer k such that for any integer p > 1

-1
q Iat
sup [Z ‘bgz) _ bgl) + ‘,0(2) _ ,0(1)‘ ]
BreOxT b |+ |<H, [ oD | +]p® |<H Li=1
2

< B[ 200 p0) = 220, o) < B+ Y

3 Asymptotic estimation theory

This section discusses the estimation of unknown parameters (3, 7). For this, we introduce

a class of loss functions W = {w(y),y € R} which satisfies the following properties:

(1) The function w(y) is nonnegative on R with w(0) = 0, and continuous at y = 0 but

is not identically 0.
(2) The function w(y) is symmetric, i.e., w(y) = w(—y).
(3) The sets {y : w(y) < ¢} are convex for all ¢ > 0.

The QMLE (BQML, Tomr) and QBE (for quadratic loss function) (BQB, Top) are defined

by the usual relations

(BQML”A—QML) = arg SupLZV(ﬁ,T) (31)
B, TEOXT
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and

- T a(B,7) L) (B, T)
Bamstom = [ (Bor) g S e

Let us introduce random fields

d(B,7) (3.2)

1
ZW(p) = exp {VW(/J‘) - §|,0|V2}
and
@B ) L.,
Z9(b) = exp bAn—ﬁbe

where W(p), A,V and V are defined in Theorem 2.1. Then the asymptotic representa-

tion of log-likelihood ratio process is expressed by
Z(b,p) = exp {20 (p) + 2 (b) } .
Let & € R?, be a Gaussian random vector
21g} = NO.V)
and ¢ € R be

¢ =arg supZ(p).
pER
So, the random vector (&, () is defined by
(§,¢) = arg supZ(b, p). (3.3)

b,p€OXT

Define the block diagonal matrix <7,

“[ 2]

0 nc,

Theorem 3.1 The QMLFE (BQMLa%QML) is uniformly on (8,7) € © x T,

(]) phm(BQMLv 7A—Q]WL) = (67 7—);’

n—0o0



(2) L{(Baur Foun)} —» Z{(&. O}

(3) for any continuous loss function w € W,
lim B w{(Bor Forri)}] = Elw{(€. O

We next state the asymptotics of the quasi Bayesian estimator (BQBv%QB)' Recalling
Lemmas 2.1 and 2.2, it is seen that Theorem 1.10.2 of Ibragimov and Has'minskii (1981)

can be applied.

Theorem 3.2 The ()BE (BQB,%QB) is uniformly on (B,7) € @ x T,

(1) phm(BQBv%QB) = (577—);

n—0oo

(2) L1 Ban:Tap)} — L&)}, where

= vZ M (v)dv
[ ZW(v)dv’

o0

I

(3) for any continuous loss function w € W,
lim B {5 Boss om)}] = Elf(€ O

Remark. According to the Theorem 1.9.1 of Ibragimov and Has’minskii (1981), for any

estimator (3,,,7,) the inequality

lim  sup  Fg lw{a,(8,,m)} > Elw{(g, 5)}]7

n=+0 3 re@xT

holds. Hence the quasi Bayesian estimator is asymptotically efficient with respect to the

quadratic loss function. However, the QMLE is not so general.



Table 1. Percentage points of the asymptotic distribution of Z(() and f(f)

1.0% 2.5% 5.0% 95.0% 97.5% 99.0% var
Z(C) -13.92 -10.20 -6.96 7.46 10.00 14.20 20.20
Z(f) -10.04 -7.96 -5.99 6.01 7.69 11.05 13.85

4 Simulations

In this section we present the results of simulation study intended to assess the asymptotic
and finite sample performance of the change point estimators described in Section 3.
Percentage points of the asymptotic distribution of Z({) and f(f) are obtained by
simulation method. We generate 5,000 random variables {¢} and {¢}. Table 1 presents
the results and estimates of densities are plotted in Figure 1. We can see that the critical
values of QMLE are larger in absolute values than those of QBE. The density plots in

Figure 1 clearly illustrates the difference of the distributions of Z(() and Z({). The
density for f(f) have thinner tails than Z(().

Next we examine the finite sample performance of the QMLE and QBE. We

generate the following time series regression models with single change point

_ Bizi +uy, t=1,...,[mn],
vt Bhzi +u;, t=[rn]+1,... n,

where u; is AR(1) process such that u; = 0.8u;_y+¢¢, with &, ~ @tdN(0,1). Put z, = (1,1,
B, = (0,1) and B, = (n/2 — dn/2,d). Sample size n and slope d are chosen to be
n = 30,60,120 and d = 0,0.5,0.75. Change point 7 is set to be 0.5. In this experiment,
we consider the finite sample properties of change-point estimators, hence we assume
that all the parameters except change point are known for simplicity. Bias, standard
deviations, and mean squared error (MSE) of 7gar, and 7gp were computed using 1,000

replications. Table 2 summarizes the simulation results for each n and d. From this table,
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Figure 1. Density plots of Z(¢) and Z({).

we observe the following. The MSE of QBE have better performance than that of QMLE
in all experiments. This agrees with the theoretical results given in the previous section.
When the sample size n becomes large, MSE and s.d. become smaller. This verifies the
consistency of both estimators. For the smaller value of |1 — d|, MSE and s.d. become
large. As for the relative efficiency, the greatest value is observed when n = 30 and
d = 0.75. However, we cannot conclude that the relative efficiency depends on sample

size or magnitude of shift.
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Table 2. Sample mean, s.d., and MSE of 73,7, and 75 when 7 = 0.5.

MLE BE
n b Mean s.d. MSE Mean  s.d. MSE rel. effi.
30 0 0.4843 0.1402 0.0204 0.4843 0.1109 0.0125 1.629
0.5 0.4892 0.2181 0.0476 0.4842 0.1423 0.0204 2.326
0.75 0.5002 0.2506 0.0627 0.4973 0.1477 0.0218 2.877
60 0 0.4948 0.0528 0.0028 0.4937 0.0416 0.0018 1.556
0.5 0.4946 0.1551 0.0241 0.4934 0.1211 0.0147 1.636
0.75 0.4812 0.2414 0.0586 0.4886 0.1626 0.0265 2.206
120 0 0.4954 0.0212 0.0005 0.4956 0.0157 0.0003 1.768
0.5 0.4962 0.0546 0.0030 0.4959 0.0392 0.0015 1.929
0.75 0.5068 0.1423 0.0203 0.5023 0.1087 0.0118 1.717
5 Proofs

In this section we give the proof of theorems and lemmas in Sections 2 and 3. Without

loss of generality we assume p > 0.

Proof of Theorem 2.1 We have from (2.5),

log Z,(b, p)
1 s
4T J_.

Dy + Dy + Ds.

12

{4040 + & VAN } - A ] .

(5.1)



The first term D, can be evaluated as

1 ks

Dy = —— d, (M) A(N)dA
1 =y (A)A(X)

n Tn‘l'cn p

= 87‘(‘2/ F Z 8! zsusexp(i(t — s)\)dA
t=1 s=[rn]+1

—I——/ F(A Zb' D'z sugexp(i(t — s)N)dA

t=1 s=1

= D11 + D12. (52)

Here we write the spectral density f(A) in the form

) = 5= 30 BiN exp(=il)

[=—00
where R;’s satisfy > 72 |l|?|Rs(1)] < oo for any given p € Z. Then, from Theorem 3.8.3

of Brillinger (1981) we may write

o0

% I'(]) exp(—ulX) (5.3)

[=—0

) =

where T'(1)’s satisfy for any given p € Z
S PN < oo,
l=—00

Then Dy becomes

n Tn+cn r]

Z Z o zut/ exp(i(t — s — [)A)dA.

t=1 s=[rn]+1

o0

11
Dy =——=-
eI
It is easy to see

ft—s—=101=0

otherwise.

S exp(i(t — s — DHA)dX = { (1)’

i

(5.4)
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Using this, we have

1 %) Tn-l-cn 0]
D11 = 87‘[‘2 F Z 5 ZsUgy]
[=—0c0 s=[rn]+1
1 Tn+cn r]
. / 1P 25/\
= gz 2 Twa, Y, = / dZ.,())
I=— s=[rn]+1
Tn+cn r]
— Z / f -1 zs/\dZ ( )
s= TTL —|—1
1 [rnten ' p]
s=[rn]+1

where Y, := .= [T f(A)"'e"*dZ,(X). We have

2m
[rnt+en ' o]
lim £, Y zE(YY,)28,
t,s=[rn]+1
q . .
1 .
_ Z 5m5jn (Z + 7 >(Tn)z+1—1—r(c;1p)rvz
7,7=1 r
= pV? +o(1).

Hence (5.5) is equivalent to the random sequence —(0711/2 E[Sm[j;"_l_lp

5)/2. This converges
weakly to a Brownian motion process VIWi(p)/2, by the invariance principle of Assump-
tion A.1 (see, e.g., Billingsley (1968), the scaling factor is ci/? instead of n~1/%) Next, we
turn to evaluate Dqy in (5.2). By using (5.3)

— 11 "D -1/2 "
Dy = S70n ZZb PR g exp(i(t — s — [)A)dA.

[=—0 t=1 s=1
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Using (5.4), this will be

1 (o] el B
D = Z F(l)b’ZDn1/2z5u5+l

[=—0

_ ! b’Z/ exp(i(s + DA)dZ,(\) D"/?2

87‘[‘2 <
— —b’ZD z, / exp(isA) f(N) " dZ,(N)
=: —b’An
2
where A, =3 "_, D%V, and

A, N(0,V), (5.6)

with V' = [\/20 — 1/25 — 1/27 f(0)(¢ + 7 — 1)]; j=1... 4- Similar arguments for evaluating

D11 and D12 yleld

1 1
The last term in (5.1) becomes
Dy = — [ |A(N))? dA
ST a7 J_.
1 [ - - - -
= {Al(A)Al(A) + A1(A) As(A) + As(M)AL(A) + A2(A)Ax(X) ] dA

=: D31 + D3y + Dsz + Day.
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We have

[tntcn p]

87'['2/ f Z 6/ le eXp(—ZSl)\)
s1=[rn]+1
[Tn—l—cn o]
X Z 2, 8y exp(isgd) | dA
say=[Tn]+1
Tn—l—cn o]
1 1
_8?5 ) Y Sizawazl,d.
l=—00 sp=[rn]+1
1 2
PV (5.8)

where we use Assumption A.1 to get the last equation. As for Day,

D34

As for D3y, we have

8#2/ J(A (ZbD 1/2z51 exp(—zsl)\)>

81 1
X (Z Z;2D;1/2bexp(i52)\)> d\
82 1
! / / —1/2
8’2 = )b 5231 D z52+lZ52Dn b
1 !
—-b'Vb. (5.9)
2

W/ 1o

Tn—l—cn o] n
X e (zzgugwbe—m) »
s=[rn]+1 t=1

Tn—l—cn o n

——Ft—s Z Z&’ZZD 1/2g,

s=[rn]+1 t=1
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which is uniformly negligible by the Assumption A.2. The asymptotic representation of

D33 is obtained similarly that of Dy, which completes the proof of theorem. O

The likelihood ratio Z,(b, p) converges in probability
log Z, (b, p) — log Z(b, p),

and this convergence is uniform in (3,7) € K3 x Kr. It is easily proved the convergence
of the vectors {Z,,(b1,p1),..., Z,(bi, p1)} to the vector {Z(by,p1),...,Z(by, pi)}.
We omit the proofs for Lemmas 2.2 and 2.3 because these are similar to those in

Shiohama et.al.(2003), and Shiohama (2003).

Proof for Theorem 3.1. The proof follows from Theorem 2.1 and Lemmas 2.1 and 2.2

of this paper and Theorem 1.10.1 of Ibragimov and Has’minskii (1981).

Proof for Theorem 2.1. The properties of the likelihood ratio 7, (b, p) established in
Theorem 2.1, and Lemmas 2.1 and 2.2 allow us to refer to Theorem 1.10.2 of Ibragimov

and Has'minslii (1981).
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