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Abstract

In a recent paper to appear in Journal of Economic Theory [Kotaro Suzumura and
Yongsheng Xu, “Characterizations of Consequentialism and Non-consequentialism”],
an analytical framework was developed, which allowed us to characterize the con-
cept of consequentialism and non-consequentialism. To simplify matters, however,
the treatment in that paper was confined only to the cases where no active interac-
tions exist between consequential considerations and procedural considerations. The
present paper represents a generalization of our previous framework, which can now
accommodate the situations where consequential considerations and procedural con-
siderations actively interact. The analysis covers both the cases of finite and infinite

number of alternatives. Journal of Economic Literature Classification Numbers: D00,
D60, D63, DT71.

Key Words: consequences, opportunities, extended preferences, consequentialism,

non-consequentialism



1 Introduction

In recent years, people have gradually come to realize the importance of non-welfaristic
features of the consequences in forming economic policy recommendations as well as
in performing economic systems analysis. Some salient examples of non-welfaristic
features of the consequences are individual and group rights, procedures through
which consequences are realized, and opportunities from which outcomes are chosen.!

In a recent paper, Suzumura and Xu (2000) developed several analytical frame-
works which can accommodate situations where an individual expresses his extended
preferences of the following type: it is better for him that an alternative x is brought
about from the opportunity set A rather than another alternative y being brought
about from the opportunity set B. An important feature of these frameworks is
the novel concept of extended alternatives in the form of (x, A) with the intended
interpretation of x being realized from the opportunity set A, which is used to eval-
uate alternative economic policies. Within these proposed frameworks, they defined
various concepts of consequentialism and non-consequentialism and gave axiomatic
characterizations of these concepts. The various concepts of consequentialism and
non-consequentialism defined and characterized in Suzumura and Xu (2000) are the
extreme consequentialism, strong consequentialism, extreme non-consequentialism and
strong non-consequentialism.

However, their axiomatizations of consequentialism and non-consequentialism
were concerned only with rather extreme cases where unequivocal priority was given
to consequences (resp. opportunities) not only in the case of extreme consequentialism
(resp. extreme non-consequentialism) but also in the case of strong consequential-
ism (resp. strong non-consequentialism). The purpose of this paper is to pursue a
more general framework so that active interactions between consequential considera-
tions and procedural considerations are allowed to play essential role. In other words,
we would like to develop a framework which allows trade-off between the value of
consequences and the richness of opportunities.

The structure of the paper is as follows. In Section 2, we present the basic
notations and definitions. Section 3 discusses the generalized consequentialism and
non-consequentialism in a simple framework in which the universal set is finite. In
Section 4, we consider the generalized consequentialism and non-consequentialism in

a context in which the universal set is infinte, but opportunity sets are finite, while in



Section 5, we consider the same issue in an economic environment where opportunity
sets are compact subsets of the n-dimensional non-negative real space. Section 6

concludes the paper with some final remarks.

2 Basic Notations and Definitions

Let Z and R denote the set of all positive integers and the set of all real numbers,
respectively. Let X, where 3 < #X, be the set of all mutually exclusive and jointly
exhaustive social states. The elements of X will be denoted by z,y, z,---. K denotes
a collection of subsets of X. The elements in K will be denoted by A, B,C,---, and
they are called opportunity sets. Let X x K be the Cartesian product of X and K.
Elements of X x K will be denoted by (z, A), (y, B), (2,C), -- -, and they are called
extended alternatives. Let Q = {(x, A)|A € K and = € A}. That is, Q contains all
(z, A) such that A is an element of K and z is an element of A. It should be clear
that Q C X x K, and for all (z, A) € Q,z € A holds. For all (z, A) € Q, the intended
interpretation is that the alternative z is chosen from the opportunity set A.

Let > be a reflexive, complete and transitive binary relation over 2, viz., > is
an ordering over €). The asymmetric and symmetric parts of > will be denoted by
> and ~, respectively. For any (x, A), (y, B) € Q, (z,A) > (y, B) is interpreted as
“choosing x from A is at least as good as choosing y from B.” Thus, in the extended
framework, it is possible to give an expression to the intrinsic value of opportunity set
in addition to the instrumental value thereof. Indeed, the decision-maker recognizes
the intrinsic value of the opportunity of choice if there exists an extended alternative
(z, A) € Q such that (z, A) > (z,{z}).

3 A Simple Framework

In this section, we confine our attention to the case where #X < oo, and K is the
set of all non-empty subsets of X. We consider the following three axioms on the

ordering >, which are proposed by Suzumura and Xu (2000).

Independence (IND): For all (z,A),(y,B) € Q,and all 2 € X — AUB, (z,A) =
(v, B) & (x, AU{z}) = (y, BU{z}).



Simple Indifference (SI): For all x € X, and all y,2 € X — {z}, (z,{z,y}) ~
(@, {z, z}).

Simple Monotonicity (SM): For all (z, A), (z,B) € Q, if B C A, then (x, A) =
(y, B).

The following simple implication of (IND), (SI) and (SM) proves useful.

Lemma 3.1. Let = be an ordering over 2 and satisfy (IND), (SI) and (SM). Then, for
all (a, A),(b,B) € Q,andallz € X — A,y € X —B, (a,A) = (b,B) & (a, AU{z}) =
(b, BU {y}).

Proof. We first note that, by Theorem 3.1 of Suzumura and Xu (2000), the following

is true:
Claim 3.2. For all (a, A), (a, A") € Q, if #A = #A', then (a, A) ~ (a, A").

Let (a,A),(b,B) € Qo ¢ Ay ¢ B and (a,A) = (b,B). Because = is an
ordering, we have only to show that (a, A) ~ (b, B) = (a, AU {z}) ~ (b, BU {y})
and (a, A) = (b, B) = (a, AU {z}) > (b, BU{y}).

First, we show that
(*) (a,A) ~ (b, B) = (a, AU {z}) ~ (b, BU{y}).

Since © ¢ A and y ¢ B, it is clear that A # X and B # X. We consider several
cases: (i) A = {a}; (ii) B = {b}; and (iii) #A4 > 1 and #B > 1.

(i) A = {a}. In this case, we distinguish two sub-cases: (i.1) z ¢ B; and (i.2)
x € B. Consider (i.1). Since z ¢ B, it follows from (a,{a}) ~ (b, B) and (IND) that
(a,{a,z}) ~ (b, BU{z}). By Claim 3.2, (b, BU {x}) ~ (b, BU{y}). Transitivity of
> now implies that (a, {a,x}) ~ (b, BU{y}). Now, consider (i.2) in which x € B. To
begin with, consider the sub-case where BU{y} = {a,b}. Giventhatz ¢ Aandy ¢ B,
we have x = b and y = a. Since #X > 3, there exists ¢ € X such that ¢ & {a,b}. It
follows from (a, {a}) ~ (b, {b}) = (b, B) and (IND) that (a, {a,c}) ~ (b,{b,c}). From
Claim 3.2, (a,{a,b}) ~ (a,{a,c}), and (b,{b,c}) ~ (b,{a,b}). Then, transitivity of
> implies (a, {a,b}) ~ (b, {a,b}); that is, (a,{a,z}) ~ (b, BU{y}). Turn now to the
sub-case where B U {y} # {a,b}. If y # a, starting with (a, {a}) ~ (b, B), by (IND),
(a,{a,y}) ~ (b, BU{y}). By Claim 3.2, (a,{a,z}) ~ (a,{a,y}). Transitivity of =
implies that (a, {a,z}) ~ (b, BU{y}). If y = a, given that #X > 3 and BU {y} #
{a,b}, there exists z € B such that z ¢ {a,b}. By Claim 3.2, (b, B) ~ (b, (BU{y}) —



{z}). From (a, {a}) ~ (b, B), transitivity of > implies (a, {a}) ~ (b, (BU{y}) —{z}).
Now, noting that z # a, by (IND), (a, {a, z}) ~ (b, BU {z}) holds. From Claim 3.2,
(a,{a,z}) ~ (a,{a, z}). Transitivity of > now implies (a, {a,z}) ~ (b, BU {y}).

(ii) B = {b}. This case can be dealt similarly as case (i).

(iii) #4 > 1 and #B > 1. Consider A', A" € K such that {a,b} C A" C
A #A" = min(#A, #B) > 1,#A" = max(#A,#B) > 1. Since A # X and B # X,
the existence of such A" and A” is guaranteed. It should be clear that there exists
z € X such that z ¢ A'. If #A > #B, consider (a, A’) and (b, A”). From Claim
3.2, (a, A’) ~ (b, A") follows from the construction of A" and A", the assumption that
(a, A) ~ (b, B), and transitivity of »=. Note that there exists z € X — A'. By (IND),
(a, A" U {z}) ~ (b, A" U {z}). By virtue of Claim 3.2, noting that #(A U {z}) =
#(A'U{z}) and #(BU{y}) = #(A"U{z}), (a, AU{z}) ~ (b, BU{y}) follows easily
from transitivity of »=. If #A < #B, consider (a, A”) and (b, A’). Following a similar
argument as above, we can show that (a, AU{z}) ~ (b, BU{y}). Thus, (*) is proved.

The next order of our business is to show that
(**) (a, A) = (b, B) = (a, AU {z}) = (b, BU{y}).

We distinguish several cases: (a) A = {a}; (b) B = {b}; and (¢) #A4 > 1 and
#B > 1.

(a) A= {a}. (a.1) z ¢ B. In this sub-case, from (a,{a}) = (b, B), by (IND), we
obtain (a, {a,z}) > (b, BU{z}). By Claim 3.2, (b, BU{z}) ~ (b, BU{y}). Transitivity
of »= implies that (a, {a,z}) = (b, BU{y}). (a.2) x € B. If BU {y} = {a,b}, then,
given that x ¢ A and y € B, we have x = b and y = a. Since #X > 3, there exists
¢ € X such that ¢ ¢ {a,b}. It follows from (a,{a}) > (b,{b}) = (b, B) and (IND)
that (a, {a,c}) > (b, {b,c}). From Claim 3.2, (a, {a,b}) ~ (a,{a,c}) and (b, {b,c}) ~
(b, {a,b}). Transitivity of = implies (a, {a,b}) > (b,{a,b}); i.e., (a,{a,z}) > (b, BU
{y}). If BU{y} # {a,b}, we consider (a.2.i) y # a and (a.2.ii) y = a. Suppose that
(a.2.i) y # a. From (a,{a}) = (b, B), by (IND), (a,{a,y}) = (b, BU{y}). By Claim
3.2, (a,{a,z}) ~ (a,{a,y}). Transitivity of > now implies (a, {a,x}) = (b, BU {y}).
Suppose next that (a.2.ii) y = a. Since #X > 3 and B U {y} # {a,b}, there
exists ¢ € B such that ¢ € {a,b}. By Claim 3.2, (b, B) ~ (b, (BU {y}) — {c}). From
(a,{a}) = (b, B), by transitivity of =, (a, {a}) > (b, (BU{y})—{c}). Now, noting that
¢ # a, by (IND), (a,{a,c}) > (b, BU{y}). From Claim 3.2, (a,{a,c}) ~ (a, {a,z}).
Transitivity of > implies (a, {a,z}) > (b, BU {y}).



(b) B = {b}. If ¢ B, it follows from (a, A) > (b, B) and (IND) that (a, AU
{z}) > (b,{b,z}). By Claim 3.2, (b,{b,xz}) ~ (b,{b,y}). Transitivity of = now
implies (a, AU{z}) > (b,{b,y}). If x € B, then x = b. Consider first the case where
y = a. If A= {a}, it follows from (a) that (a, {a,z}) > (b,{b,y}). Suppose A # {a}.
Given that x = b, y = a, x € A, and y € B, and noting that #X > 3, there exists
c € A—{a,b}. From Claim 3.2, (a,(AU{z}) — {c}) ~ (a,A). From transitivity
of » and noting that (a, A) > (b,{b}), (a,(A U {z}) — {c}) > (b,{b}) holds. By
(IND), (a, AU{x}) = (b,{b,c}). From Claim 3.2, (b, {b,y}) ~ (b,{b,c}). Therefore,
(a, AU {z}) > (b,{b,y}) follows easily from transivitity of ». Consider next that
y # a. Ify ¢ A, then, by (IND) and (a, A) > (b,{b}), we obtain (a, A U {y}) >
(b, {b,y}) immediately. By Claim 3.2, (a, AU {y}) ~ (a, AU {z}). Transitivity of =
implies (a, AU {z}) > (b,{b,y}). If y € A, noting that y # a, y ¢ B, and = = b,
we have #((A U {z}) — {y}) = #A. By Claim 3.2, (a, A) ~ (a, (AU {z}) — {y}).
Transitivity of > implies (a, (AU {z}) — {y}) > (b, {b}). By (IND), it then follows
that (a, AU {z}) = (b, {b,y}).

(c) #A > 1 and #B > 1. This case is similar to the case (iii) above, and we may
safely omit it.

Thus, (**) is proved. (*) together with (**) completes the proof of Lemma 3.1.
|

We are now ready to characterize completely the class of all orderings which
satisfy (IND), (SI) and (SM).

Theorem 3.3. - satisfies (IND), (SI) and (SM) if and only if there exist a function
u: X — R and a function f: R x Z — R such that

(3.1) For all 7,y € X, u(x) > u(y) & (z,{z}) = (v, {v});
(3.2) For all (z,A), (y,B) € Q, (z,4) = (y,B) & f(u(xz),#A) > f(uly), #B);

(3.3) f is non-decreasing in each of its arguments and has the following property:
For all integers 7,5,k > 1 and all z,y € X, if i + k,j + k < #X, then

(3.3.1) flu(x),1) = f(u(y),)) & flu(z),i+k) > f(u(y),j+ k)

Proof. We first show that if > satisfies (IND), (SI) and (SM), then there exist a
function f : R x Z — R and a function v : X — R such that (3.1), (3.2) and (3.3)



of Theorem 3.3 hold.? Let = satisfy (IND), (SI) and (SM). Since = is an ordering, X
is finite and so is (2 as well, there exist v : X — R and F': {2 — R such that

(3.4) For all z,y € X, (z,{z}) * (v,{y}) © u(x) > u(y);
(3.5) For all (z,A),(y,B) € Q, (z,A) = (y,B) & F(z,A) > F(y, B).

Clearly, (3.1) of Theorem 3.3 is satisfied. We now show that, for all (x, A), (y, B) € ,
if u(z) = u(y) and #A = #B, then (x,A) ~ (y,B). Let (z, A), (y, B) € Q be such
that u(x) = u(y) and #A4 = #B. From u(z) = u(y), we must have (z,{z}) ~
(y,{y}). Then, if necessary, by the repeated use of Lemma 3.1 and noting that
#A =#B, (z, A) ~ (y, B) can be obtained easily. Now, define ¥ C R x Z as follows:
Y= {(t,1) € R x Z|3(z, A) € Q such that t = u(x) and i = #A}. Next, define
the binary relation >* on X as follows: For all (z, A), (y, B) € Q, (z,A) = (y,B) &
(u(z),#A) >* (u(y),#B). From the above discussion and noting that > satisfies
(SM) and (IND), the binary relation >* defined on ¥ is an ordering and has the
following properties:

(SM'): For all (t,1), (t,7) € &, if j > i then (¢,j) >* (¢,1);

(IND'): For all (s,1i), (t,j) € ¥, and all integer k, if i +k < #X and j+k < #X,
then (s,7) >* (t,5) © (s,i + k) >* (t,7 + k).

Since . is finite and >* is an ordering on ¥, there exists a function f : RxZ — R
such that, for all (s,i),(t,j) € %, (s,i) >* (t,4) iff f(s,i) > f(¢t,j). From the
definition of >* and X, we must have the following: For all (z, A), (y, B) € Q, (z, A) >
(y, B) & (u(z),#A) =" (uly), #B) < f(u(x), #A4) = f(u(y), #B). To prove that
f is non-decreasing in each of its arguments, we first consider the case in which
u(z) > u(y) and #A = #B. Given u(x) > u(y), from the definition of u, we have
(z,{x}) = (y,{y}). Noting that #A = #B, by the repeated use of Lemma 3.1,
if necessary, we must have (x, A) = (y,B). Thus, f is non-decreasing in its first
argument. To show that f is non-decreasing in its second argument, we consider
the case in which u(z) = u(y) and #A > #B. From u(z) = u(y), we must have
(z,{x}) ~ (y,{y}). Then, from the earlier argument, (z, A’) ~ (y, B) where A’ C A
is such that # A4’ = #B. Now, by (SM), (z, A) = (x, A"). Then, (x, A) » (y, B) follows
from the transitivity of »>. Therefore, f is non-decreasing in each of its arguments.
Finally, (3.3.1) follows easily from (IND’).

To check the necessity part of the theorem, suppose v : X - R and f: Rx Z —
R are such that (3.1), (3.2) and (3.3) of Theorem 3.3 are satisfied.
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(SI): For all z € X and all y, 2 € X —{z}, we note that #{z,y} = #{x, z}, there-
fore, f(u(z),#{x,y}) = f(u(x),#{z,2}), which in turn implies that (z,{z,y}) ~
(x,{z, z}) holds.

(SM): For all (z,A),(z,B) € Q such that B C A. Then, f(u(x),#A4) >
f(u(x),#B) follows from the fact that f is non-decreasing in each of its arguments
and #A > #B. Therefore, (z,A) = (x, B).

(IND): For all (z, A), (y, B) € Q, and all z € X—AUB, from (3.3.1), f(u(x), #A)
f(u(y), #B) < flu(z),#A +1) = f(u(y),#B + 1) & [f(u(z),#(A U {z}))
f(u(y), #(B U {z}). Therefore, (z,A) = (y,B) < (v, AU {z}) = (y,B U {z}).
|

>
>

Remark 3.4. Although Theorem 3.3 allows us to treat all the cases where the utility
of consequential states and the value of richness of opportunities actively interact, it
also covers the polar cases of consequentialism and non-consequentialism defined in
Suzumura and Xu (2000). Indeed, they can be obtained as special cases of Theorem

3.3 as follows:
Extreme Consequentialism: For all (z, A) € Q, f(u(x), #A) = u(z).

Strong Consequentialism: For all (z, A), (y,B) € Q, (2, A4) = (y,B) & [u(x) >
u(y) or (u(x) = u(y) and #A > #B)], where u : X — R is such that for all
z,y € X,u(z) 2 u(y) & (z,{z}) = (v, {y}).

Extreme Non-consequentialism: For all (z, A) € Q, f(u(z), #A) = #A.

Strong Non-consequentialism: For all (z, A), (y,B) € Q, (z,A) = (y,B) <
[#A > #B or (#A = #B and u(z) > u(y))], where u : X — R is such that for
all 2,y € X, u(z) > u(y) & (z,{z}) = (y, {v}).

4 Finite Opportunity Sets

Although Theorem 3.3 provides us with a full characterization result for all orderings
satisfying (IND), (SI) and (SM), it hinges on the restrictive assumption to the effect
that X is finite. In this section, we discuss the case in which X contains an infinite
number of alternatives, but K consists of the set of all finite non-empty subsets of X.

Consequently, Q contains all (x, A) such that A is finite and z is an element of A.



In this arena, the necessary and sufficient condition for an ordering over €2 to
satisfy (IND), (SI) and (SM) reads as follows.

Theorem 4.1. - satisfies (IND), (SI) and (SM) if and only if there exists an ordering
=# on X x Z such that

(4.1) For all (z, A), (y, B) € Q, (v,4) = (y, B) & (v, #A) =% (y,#B);

(4.2) For all integers 4,5,k > 1 and all z,y € X, (z,i) =% (y,7) & (2,0 + k) =%
(y,j +k); and (z,i+ k) =% (z,1).

Proof. First, we note that Claim 3.2 holds; that is, for all (a, A), (a, B) € Q, if
#A = #B, then (a, A) ~ (a, B). Next, we show the following:

Claim 4.2. For all z,y € X and all (z, A), (y, A) € Q, (z,{z}) = (y,{y}) & (2, A) =
(y, A).

Let z,y € X and (z,4),(y,A) € Q. If x = y, then Claim 4.2 follows from the
reflexivity of > immediately. Let x # y. Suppose that (z,{z}) ~ (y,{y}). Let
z € X —{z,y}. By (IND), we have (z,{z,z}) ~ (y,{y,2}). From Claim 3.2, we
must have (z,{z, z}) ~ (z,{z,y}) and (y,{y, z}) ~ (v, {x,y}). Then, by transitivity
of =, we obtain (z,{z,y}) ~ (y, {x,y}). Noting that A is finite, by the repeated use
of (IND), we have (z,A) ~ (y, A). Similarly, we can show that if (z,{z}) > (v, {y})
then (z, A) > (y, A). Since = is an ordering, Claim 4.2 is proved.

We now show that, for all (z, A), (y, B) € Q, if (z, {z}) ~ (v, {y}) and #A = #B,
then (xz, A) ~ (y,B). Let C' € K be such that #C = #A = #B and {z,y} C C.
From Claim 4.2, we have (z,C) ~ (y,C). Note that (z,C) ~ (z,A) and (y,C) ~
(y, B) follow from Claim 3.2. By transitivity of >, we have (z, A) ~ (y, B). Define
the binary relation ># on X x Z as follows: For all z,y € X and all positive integers
i,7, (z,1) =% (y,7) & [(z, A) = (y, B) for some A, B € K such that z € A,y € B,i =
#A,j = #B]. From the above discussion, =# is well-defined and is an ordering. A
similar method of proving (3.3) can be invoked to prove that (4.2) holds. B

Remark 4.3. Based on Theorem 4.1, the concepts of extreme consequentialism,
strong consequentialism, extreme non-consequentialism and strong consequentialism

defined in Suzumura and Xu (2000) can be expressed similarly as in the last section.

Remark 4.4. It should be clear that without imposing any other condition on
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the extended preference ordering >, > may not be representable by any numerical
function. In order for > to be numerically representable, further restrictions on
> must be imposed. In the next, we present a small step toward the numerical
representation of the extended preference orderng > over ). Assume therefore that

X = RY for the rest of this section, and define the following property:

Continuity (CON): For all 2' € X(i = 1,2,--- ) and all 7,y € X, if lim; o, 2° =
z, then [(z',{2'}) = (y,{y}) for i = 1,2,--- | = (z,{z}) = (y,{y}), and
[(ya {y}) = (:Eiv {:EZ}> for i = L2, ] = (ya {y}) = (CE, {:E})

Then we may assert the following proposition:

Theorem 4.5. Suppose that X = R". Suppose also that > satisfies (IND), (SI),

(SM) and (CON). Then there exist a continuous function u : X — R and an ordering
=* on R x Z such that

(a) For all (z, A), (y, B) € Q, (v, 4) = (y, B) & (u(x), #A) =* (u(y), #B);
(b) For all 7,y € X, (z,{x}) = (y, {y}) & u(z) = u(y);

(c) For all integers 7,7,k > 1, and all z,y € X, (u(x),i) =* (u(y),j) < (u(z),i +
k) =* (u(y),j + k); and (u(z),i+ k) =* (u(x),1).

Proof. From Theorem 4.1, we know that there exists an ordering >=# on X x Z such
that

(F.1) For all (z, A), (y, B) € Q, (v, 4) = (y, B) & (v, #A) =" (y,#B);

(F.2) For all integers 7,7,k > 1 and all z,y € X, (z,i) =% (y,j) & (2,0 + k) =%
(y,j +k); and (z,4i + k) =% (z,1).

Now, for all x,y € X, define the binary relation R on X as follows: For all z,y € X,
rRy < (z,{z}) = (y,{y}). Since > is an ordering and satisfies (CON), Ron X =R
is an ordering and satisfies the following continuity property: For all z € X, {y €
X|yRz} and {y € X|zRy} are closed. Therefore, there exists a continuous function
u: X — R such that for all z,y € X, 2Ry < u(z) > u(y). From the definition of R,
it is clear that for all z,y € X, (z,{z}) > (v, {y}) & u(x) > u(y). Therefore, (b) of
Theorem 4.5 holds. Given that (b) holds, it is straightforward to check that (a) and
(c) hold as well.

11



5 Economic Environment

Although Theorem 4.5 is somewhat reassuring, it is still very limiting if we are con-
fined to the finite opportunity sets. Assume therefore that X = R, and let K be
the family of all compact subsets of X. For any A C X, let 5(A) be the closure of
A. For technical reasons, we now expand Q to Q* where Q* := QU {(z,0)|z € X}.
Likewise, we also expand the domain of the extended preference > to 2* by defining
(x, A) = (2,0) for all (x,A) € Q. The intended interpretation of this extension is
that (x, ) represents an empty promise of realizing a state x without actually giving
any real opportunity of choosing x, which is never preferred to whatever (z, A) € Q
we may care to specify. Let Q! = {(x, {z})|z € X}.

We consider the following axioms for the ordering > over €.

Denseness (DEN): For all (z, A), (x, B) € Q* such that (z, A) > (z, B), there exists
(z,A") € Q* such that A’ C A, A" # () and (z, A') ~ (z, B).

Archimedean Property (ARP): For all (z, A), (z, B) € Q, if (z, A) > (x,B) >
(z,0), then there exist (z,C4),---,(z,Cp) € Q* for some m € Z such that
(x,Cy) ~ -+~ (2,Cp) ~ (z,B) and (x, BUC, U---UCy) = (z, A).

Composition (COM): For all A,B,C C X and all z,y € X, if AnC = Bn
C =0, (z,(4)),(y,B(B)), (z,8(AUC)), (y, A(BUC)) € Q, then (z, B(A)) =
(y, B(B)) iff (z, (AU C)) = (y, B(BUC)).

Separability (SEP): For all (z, A), (z, B), (y, A), (y, B) € Q*, (z,A) » (z,B) &
(y,A) = (y,B).

Similar versions of Denseness, Archimedean Property and Composition were proposed
by Pattanaik and Xu (2000) in the context of ranking compact opportunity sets in

terms of freedom of choice.

Theorem 5.1. If > is an ordering and satisfies (DEN), (ARP), (COM) and (SEP),
then there exist a function o : K — R and an ordering >* on Q' x R such that

(5.1) o is countably additive; o(f)) = 0; For all A,B € K, if B C A then o(A)
o(B); Forall A,/B € K and all z € X, (2, AU {z}) = (z,BU{z}) < o(A)
o(B);

>
>
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(5.2) For all (a, A), (b, B) € Q*, (a, A) > (b, B) < ((a,{a}),c(A)) >* ((b,{b}),0(B)).

Proof. For all A,B € K and all x € X, define the binary relation >, on K as
follows:
A¥, B& (x,AU{z}) » (z, BU{zx}).

Clearly, =, is an ordering. Let >, and ~, be the asymmetric part and symmetric

part of >, respectively. We now show that >, satisfies the following properties:

P.1. For all A, B € K, if A =, B, then there exists A’ € K such that A’ C A, A" # ()
and A" ~ B.

P.2. Forall A,B € K, if A >, B =, 0, then there exist Cy,---,C,, € K for some
m € Z such that Cy ~; -++ ~; Cpyand BUC, U ---UC,p, =, A.

P.3. For all A,B,C C X, if 5(A),3(B),5(C) € K, and ANC = BNC = (), then
B(A) =2 B(B) < B(AUC) =, B(BUC).

P.4. For all 7,y € X, =,=~,.

To check that >, satisfies P.1, let A, B € K be such that A >, B. From the
definition of >, we must have (x, AU{z}) > (z, BU{z}). Then, from (DEN), there
exists (z, A’) € Q* such that A’ C AU {z}, A" £ 0, and (z, A") ~ (z, BU {z}). Note
that x € A’. Therefore, A’ ~, B. P.2 and P.3 can be checked similarly. Finally, P.4
follows from (SEP) easily.

Because of P.4, we can define »=*=>, for all x € X without ambiguity. Then,
noting that >* satisfies P.1, P.2 and P.3, by Theorem 4.2 of Pattanaik and Xu (2000),
there exists a function o : K — R such that o is countably additive, o()) = 0, and for
alA,Be K,BC A= 0(A)>0(B),andforallA,Be€ K, A>* B< o(A) > o(B);
thus (5.1) holds.

From the definition of >* and the property of o function, clearly, we have the

following:
P.5. For all (z, A), (z, B) € Q*, if 0(A) = o(B), then (z,A) ~ (z, B).
We also note that
P.6. For all z,y € X, (z,{z}) ~ (z,0).
To see that P.6 is true, suppose to the contrary that not[(z,{z}) ~ (z,0)]. By
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assumption that = is an ordering and (z, {z}) = (z,0), we then must have (z, {z}) >
(x,0). Then, by (DEN), there must exist (z, A’) € Q* such that A" # (), A’ C {z}
and (x, A') ~ (x,0), which is a contradiction. Therefore, (x, {z}) ~ (z, ).

Thus, o({z}) = 0 for all z € X. Since o is countably additive, clearly, o ({z,y}) =
0 for all z,y € X. By P.5 and P.6, the following follows easily:

P.7. Forall z,y € X, (z,{z,y}) ~ (z,{z}) ~ (z,0).
With P.7, the following can be shown to be true:
P.8. For all z € X and all (a, A) € Q*, (a, A) ~ (a, AU {z}).

To see that P.8 holds, we consider two cases: x € Aand ¢ € A. If x € A, by
virtue of the reflexivity of =, P.8 holds. If = ¢ A, we consider (a, {a,z}), (a,{a})
and C = A — {a}. From P.7, (a,{a,z}) ~ (a,{a}). Then, by (COM), we obtain
(a,{a,z}UC) = (a, AU{z}) ~ (a,{a} U A) = (a, A) immediately.

To show (5.2), we must show first that, for all (a, A), (b, B) € Q*, if (a,{a}) ~
(b,{b}) and o(A) = o(B), then (a,A) ~ (b,B). Let (a,A),(b,B) € Q* be such
that (a,{a}) ~ (b,{b}) and o(A) = o(B). It should be clear that a € A. Let
C = A—{a,b}. Then, by (COM), from (a, {a}) ~ (b, {b}), we obtain (a, f({a}UC)) ~
(b, B({b}UC)). From P.8, (a, f({a}UC)U{b}) = (a, AU{b}) ~ (a, f({a}UC)), and
(b, B({b}UC)U{a}) = (b, AU{b}) ~ (b, 5({b}UC)). Therefore, by the transitivity of
>, we obtain (a, AU {b}) ~ (b, AU {b}). Note, however, c(AU {b}) = 0(A) = o(B).
From P.5, we then have (a, A) ~ (a, AU {b}) and (b, AU {b}) ~ (b, B). Hence,
(a, A) ~ (b, B) follows from the transitivity of > immediately. Therefore, for all
(x, A), (y, B) € Q*, in order to rank them according to >, all the relevant information
needed are ((x,{z}),0(A)) and ((y,{y}),o(B)). In other words, (z,A) > (y,B) <
((z,{z},0(A)) >* (v, {y}),o(B)) for some ordering >* on Q' x R. W

Remark 5.2. According to Theorem 5.1, we can now define the extreme conse-
quentialism, strong consequentialism, extreme non-consequentialism and strong non-

consequentialism as follows:

Extreme Consequentialism: For all (a,A),(b,B) € Q, (a,A) = (b,B) &

(a,{a}) = (b, {0})

Strong Consequentialism: For all (a, A), (b, B) € Q*, (a, A) = (b, B) & [(a,{a}) >
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(b, {b}), or ((a,{a}) ~ (b, {b}) and o(A4) = o(B))].

Extreme Non-consequentialism: For all (a, A), (b, B) € Q*, (a,A) = (b,B) &
o(A) > o(B).

Strong Non-consequentialism: For all (a, A), (b, B) € Q*, (a,A) = (b,B) &

[0(A) > o(B), or {(9(A) = o(B) and (a,{a}) = (b, {b}) }]-

It should be clear that, without imposing any other condition on the extended
preference ordering > over Q*, the ordering =* over Q! xR figured in Theorem 5.1 may
not be representable by any numerical function. In order for >* to be representable
by a numerical function, we consider the Continuity condition defined in the last

section and obtain the following result.

Theorem 5.3. Suppose = satisfies (DEN), (ARP), (COM), (SEP) and (CON). Then
there exist a function o : K — R, a continuous function u : X — R and an ordering
=* on R x Z such that

(a) o is countably additive; o() = 0; For all A, B € K, if B C A, then 0(A) > o(B);
Forall A,B € K, and all z € X, (z, AU{z}) = (z,BU{z}) & o(A) > o(B).

(b) For all z,y € X, u(x) > u(y) < (z,{z}) = (y, {y});
(c) For all (z, A), (z, B) € QF, (z,A) = (y,B) & (u(z),0(A)) =* (u(y),o(B)).

(d) For all (z,A),(y,B) € Q" and all C € K, if 6(AUC) = 0(A) + o(C) and
o(BUC) =0d(B)+o(C), then (u(x),0(A)) =* (u(y),o(B)) < (u(x),o(A) +
o(C) =* (uly), o(B) + o(C)).

Proof. Given Theorem 5.1, a similar method of proving Theorem 4.5 can be invoked
to prove Theorem 5.3. W

6 Concluding Remarks

In this paper, we have extended our previous framework for analyzing consequences
and opportunities so as to accommodate the situations where consequential consid-

erations and opportunity considerations actively interact. We have covered both the
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cases of finite and infinite number of alternatives, and several representation results
have been derived.

It is hoped that with this general framework, one can examine some classical
problems like Arrow’s impossibility theorem in social choice theory, pure theory of
consumer’s behavior, and competitive equilibrium mechanism in general equilibrium
analysis, and derive some novel and useful insights. However, this avenue of research

must be left for future exploration.
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Endnotes

1. There is an extensive literature addressing non-welfaristic features of consequences.
See, among others, Baharad and Nitzan [1], Bossert, Pattanaik and Xu [2], Dworkin
[3], Gravel [4, 5], Pattanaik and Suzumura [6,7], Pattanaik and Xu [8, 9, 10}, Sen [11,
12, 13, 14, 15, 16], Suzumura [17, 18], and Suzumura and Xu [19, 20].

2. According to (3.1), the function u can be construed as a utility function defined
on the set of social states whereas the function f weighs the value of consequential
states vis-a-vis the value of richness of opportunities which is measured in terms of
the cardinality of opportunity sets. A similar remark applies to the function u in
Theorems 4.5 and 5.3.
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