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1 Introduction

The paper of Azéma-Gundy-Yor [1] was the first to characterize the uniform
integrability of real-valued continuous martingales in terms of the tails of their
supremum and quadratic variation. The existence of the two limits in the paper
was considered by Elworthy-Li-Yor [3] and Galtchouk-Novikov [4] by using the
Tauberian theorem. Takaoka [6] relaxed their assumptions to fully include the
result of Azéma-Gundy-Yor [1] as well.

Theorem A ([6]) Let M = (Mt) t∈[0,∞) be a real-valued continuous local
martingale, with M0 = 0, on a certain filtered probability space satisfying the
usual conditions. Assume M∞

def= lim
t→∞

Mt exists a.s. and E
[
|M∞|

]
< ∞.

Then the two limits

�
def= lim

λ→∞
λ P

[
supt |Mt| > λ

]
and σ

def= lim
λ→∞

λ P
[
〈M〉1/2

∞ > λ
]

exist in IR+ ∪ {∞} and satisfy

� =
√

π

2
σ = sup

U∈T (M)

E
[
|MU |

]
− E

[
|M∞|

]
, (1.1)

where T (M) is the set of all stopping times U such that the stopped process
(Mt∧U )t is of class D. Furthermore, M is a uniformly integrable martingale if
and only if � = σ = 0.

If (M−
t )t is of class D, then (1.1) is also equal to −E

[
M∞

]
. Here x− def=

max{−x, 0}.
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In this article, we further generalize Theorem A to the case of local submartin-
gales. This theorem also refines Theorem 1” of Elworthy-Li-Yor [3]. As a corol-
lary, we show a property on stochastic integration with respect to martingales,
which cannot be derived directly from Theorem A.

The rest of this paper is organized as follows. In Section 2 we state our main
theorem and its corollary. The proof of the main theorem is given in Section 3.
The Appendix is concerned about the final remark of Section 2.

The author would like to thank Professor F. Delbaen for his remarks (see the
final remark of Section 2 and the Appendix).

2 Results

Theorem 1 Let X = (Xt) t∈[0,∞) be a real-valued continuous local submartin-
gale, with X0 = 0, on a certain filtered probability space satisfying the usual
conditions. Assume the following two properties:

• X∞
def= lim

t→∞
Xt exists a.s. and E

[
|X∞|

]
< ∞;

• the process (X−
t )t is of class D.

Then the two limits

�
def= lim

λ→∞
λ P

[
supt Xt > λ

]
and σ

def= lim
λ→∞

λ P
[
〈X〉1/2

∞ > λ
]

exist in IR+ ∪ {∞} and satisfy

� =
√

π

2
σ = sup

U∈T (X)

E[ XU ] − E[ X∞ ], (2.1)

where T (X) is the set of all stopping times U such that the stopped process
(Xt∧U )t is of class D. Furthermore, X is of class D if and only if � = σ = 0.

Remarks. (i) By setting Xt = |Mt|, we can consider Theorem A as a special
case of Theorem 1.

(ii) The expression on the right-hand side of (2.1) is less complicated than
it looks. Indeed, let X = MX + AX be the Doob-Meyer decomposition of the
local submartingale X. Then, as will be shown in the proof, we have that

sup
U∈T (X)

E[ XU ] = E[ AX
∞ ]

and that
sup

U∈T (X)

E[ XU ] − E[ X∞ ] = −E[ MX
∞ ].
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Corollary 2 Let (Mt) t∈[0,∞) be a real-valued uniformly integrable martingale
with continuous paths and (Ht) t∈(0,∞) a predictable, bounded process. Assume
either that

E
[ ( ∫ ∞

0

Hs dMs

)+
]

< ∞ (2.2)

or that
E

[ ( ∫ ∞

0

Hs dMs

)− ]
< ∞. (2.3)

Then the process
∫ ·
0
Hs dMs is again a uniformly integrable martingale.

Proof of the Corollary. Without loss of generality we assume (2.3). We
apply Theorem 1 to the local submartingale

( ∫ ·
0
Hs dMs

)− to see that it is
of class D. Thus the process

( ∫ t

0
Hs dMs

)
t∈[0,∞]

is a supermartingale with its
terminal element and in particular

E

[ ∣∣∣
∫ ∞

0

Hs dMs

∣∣∣
]

< ∞.

We again apply Theorem 1 to the local submartingale
∣∣ ∫ ·

0
Hs dMs

∣∣ to get the
desired result. �

Remark. Delbaen [2] has pointed out that the corollary itself holds even
without the continuity assumption on M. With his permission, the proof is
given in the Appendix of the present paper.

3 Proof of the main theorem

The following proof of Theorem 1 is somewhat simpler than that of the main
theorem of Takaoka [6].

Lemma 3 For every sequence (Tn)∞n=1 in T (X) increasing to ∞ a.s., we have

lim
n→∞

E
[
XTn

]
= sup

n
E

[
XTn

]
= sup

U∈T (X)

E
[
XU

]
= sup

U∈T
E

[
XU

]
,

where T is the set of all stopping times.

Proof. For every stopping time U, observe that U ∧ Tn ∈ T (X) and that
XU = lim

n→∞
XU∧Tn

a.s. Hence, by Fatou’s lemma,

E[ XU ] ≤ lim
n→∞

E
[
XU∧Tn

]
≤ lim

n→∞
E

[
XTn

]
. �

Proof of Theorem 1. We divide the proof into five steps.

3



Step 1. We first show the existence of the limit � and the equality � =
sup

U∈T (X)

E[ XU ] − E[ X∞ ]. For λ > 0, define the stopping time

Tλ
def= inf

{
t : Xt > λ

}
; (inf ∅ def= ∞)

then Tλ ∈ T (X) and

E
[
XTλ

]
= λ P

[
supt Xt > λ

]
+ E

[
X∞ ; supt Xt ≤ λ

]
.

Here the left-hand side increases with λ, and the second term on the right-hand
side converges to E[ X∞ ] (< ∞) as λ → ∞. Therefore the limit of the first term
on the right-hand side also exists. The desired equality also follows from this
together with the above Lemma.

Step 2. For the proof of the equivalence ( X is of class D ) ⇔ (� = 0), we do
the following observation:

� = 0 ⇔ sup
U∈T (X)

E[ XU ] = E[ X∞ ] (by Step 1)

⇔ lim
n→∞

E[ XTn
] = E[ X∞ ] for every sequence Tn in T (X)

increasing to ∞ a.s. (by Lemma 3)
⇔ lim

n→∞
E[ |XTn

| ] = E[ |X∞| ] for every sequence Tn in T (X)

increasing to ∞ a.s. (since X− is of class D)
⇔ lim

n→∞
XTn

= X∞ in L1 for every sequence Tn in T (X)

increasing to ∞ a.s. (since E[ |X∞| ] < ∞ )
⇔ X is of class D.

Step 3. In this step we make some preparations for the proof of the existence
of σ and the equality

√
π
2 σ = supU∈T (X) E[ XU ] − E[ X∞ ]. Consider the

Doob-Meyer decomposition of the local submartingale X :

Xt = Mt + At,

where both the local martingale M and the non-decreasing process A have con-
tinuous paths. Note that 〈X〉 = 〈M〉. We see that

∀U ∈ T (X), E[ XU ] = E[ AU ],

and hence
E[ A∞ ] = sup

U∈T (X)

E[ XU ]. (3.1)

For x > 0, define the stopping time

Sx
def= inf

{
t : Mt < −x

}
. (inf ∅ def= ∞)
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Since (Mt∧Sx
)t is a continuous local martingale bounded below, it is proved in

Elworthy-Li-Yor [3] and Galtchouk-Novikov [4] that

√
π
2 lim

λ→∞
λ P

[
〈M〉1/2

Sx
> λ

]
= −E[ MSx

] (3.2)

Also, observe that

−E
[
MSx

]
= x P

[
inft Mt < −x

]
− E

[
M∞ ; inft Mt ≥ −x

]

= x P
[

supt M−
t > x

]
+ E

[
A∞ ; inft Mt ≥ −x

]
−E

[
X∞ ; inft Mt ≥ −x

]
. (3.3)

Step 4. In this step we consider the case � = ∞, and in Step 5 we will deal with
the case � < ∞. If � = ∞, then it follows from (3.1) that E[ A∞ ] = ∞. We
also see that

the RHS of (3.3) ≥ E
[
A∞ ; inft Mt ≥ −x

]
− E

[
|X∞|

]
,

which tends to ∞ as x → ∞. This together with (3.2) gives
√

π
2 lim inf

λ→∞
λ P

[
〈M〉1/2

∞ > λ
]

≥
√

π
2 lim

x→∞
lim

λ→∞
λ P

[
〈M〉1/2

Sx
> λ

]
= ∞.

Thus the limit σ exists in this case and equals ∞.

Step 5. For this step we assume � < ∞. Then it follows from (3.1) that

E[ A∞ ] < ∞

and hence the process (M−
t )t is of class D. We apply the argument of Steps 1 &

2 to the local submartingale (M−
t )t and see that the first term of the right-hand

side of (3.3) tends to 0 as x → ∞. This together with (3.2) implies that

√
π
2 lim

x→∞
lim

λ→∞
λ P

[
〈M〉1/2

Sx
> λ

]
= E[ A∞ ] − E[ X∞ ]

= sup
U∈T (X)

E[ XU ] − E[ X∞ ].

For the rest of this step, we will prove

lim sup
λ→∞

λ P
[
〈M〉1/2

∞ > λ
]
≤ lim

x→∞
lim

λ→∞
λ P

[
〈M〉1/2

Sx
> λ

]
.

Note that this implies the existence of the limit σ since it is trivial that

lim inf
λ→∞

λ P
[
〈M〉1/2

∞ > λ
]
≥ lim

x→∞
lim

λ→∞
λ P

[
〈M〉1/2

Sx
> λ

]
.
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It suffices to show that, for each fixed 0 < a < 1,

lim sup
λ→∞

λ P
[
〈M〉1/2

∞ > λ
]
≤ 1

a
lim

x→∞
lim

λ→∞
λ P

[
〈M〉1/2

Sx
> λ

]
.

For x > 0, we have

P
[
〈M〉1/2

∞ > λ
]
≤ P

[
〈M〉1/2

Sx
≤ a λ, 〈M〉1/2

∞ > λ
]

+ P
[
〈M〉1/2

Sx
> a λ

]
and hence

lim sup
λ→∞

λ P
[
〈M〉1/2

∞ > λ
]

≤ 1
a

lim
λ→∞

λ P
[
〈M〉1/2

Sx
> λ

]

+ sup
λ

λ P
[
〈M〉1/2

Sx
≤ a λ, 〈M〉1/2

∞ > λ
]
.

Thus it suffices to show

lim
x→∞

sup
λ

λ P
[
〈M〉1/2

Sx
≤ a λ, 〈M〉1/2

∞ > λ
]

= 0.

Fix x > 0 for the moment. For t ≥ 0, define

N
(x)
t

def= MSx + t − MSx
and G(x)

t
def= FSx + t.

Note that
(
N

(x)
t

)
t

is a continuous local martingale w.r.t. the filtration
(
G(x)

t

)
t
.

Also, observe that

sup
λ

λ P
[
〈M〉1/2

Sx
≤ a λ, 〈M〉1/2

∞ > λ
]

≤ sup
λ

λ P
[
〈N (x)〉1/2

∞ >
√

1 − a2 λ
]

= 1√
1−a2 sup

λ
λ P

[
〈N (x)〉1/2

∞ > λ
]

≤ C√
1−a2 sup

λ
λ P

[
supt |N

(x)
t | > λ

]
, (3.4)

where the last inequality follows from the well-known good λ inequality (see e.g.
§IV.4 of Revuz-Yor [5]), with the constant C universal; in particular, C does not
depend on x. Since

∀λ > 0, λ P
[

supt |N
(x)
t | > λ

]
≤ E

[
|N (x)

τλ
|
]
,(

τλ
def= inf

{
t : |N (x)

t | > λ
} )

it follows that

(3.4) ≤ C√
1−a2 sup

U∈T (N(x))

E
[
|N (x)

U |
]

(
where T (N (x)) is defined the same way as T (X)

)
= C√

1−a2 2 sup
U∈T (N(x))

E
[
N

(x) −
U

]

≤ C√
1−a2 2 sup

U∈T
E

[
M−

U : inft Mt < −x
]
,
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where, as in Lemma 3, T denotes the set of all stopping times. The last expres-
sion converges to 0 as x → ∞, since the process (M−

t )t is of class D i.e. the
random variables

{
M−

U

}
U∈T are uniformly integrable. �

4 Appendix

As mentioned in the final remark of Section 2, Delbaen [2] has pointed out that
the assertion of Corollary 2 holds even without the continuity assumption on M.
With his permission, we here give his statement and its proof.

Theorem B (Delbaen [2]) Let (Mt) t∈[0,∞) be a real-valued uniformly inte-
grable martingale, possibly with jumps, and (Ht) t∈(0,∞) a predictable, bounded
process. Assume either that

E
[ ( ∫ ∞

0+

Hs dMs

)+
]

< ∞ (4.1)

or that
E

[ ( ∫ ∞

0+

Hs dMs

)− ]
< ∞. (4.2)

Then the process
∫ ·
0+

Hs dMs is again a uniformly integrable martingale.

Proof Define the local martingale Nt
def=

∫ t

0+
Hs dMs. It should be noted that,

even without the assumptions (4.1) and (4.2), the general theory of martingales
gives the following two properties:

• N∞
def= lim

t→∞
Nt exists a.s. ;

• lim
λ→∞

λ P
[

supt |Nt| > λ
]

= 0.

Now, without loss of generality let us assume (4.2) as well as M0 = 0 and
|H| ≤ 1. For each n ∈ IN, define the stopping time

τn
def= inf

{
t : N−

t > n or |Mt| > n
}
. (inf ∅ def= ∞)

Then the local submartingale N− stopped by τn satisfies E
[

supt N−
t∧τn

]
< ∞

since

sup
t

N−
t∧τn

≤ n + |∆Nτn
|

≤ n + |∆Mτn
|

≤ 2n + |Mτn
|.
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Moreover,
∣∣ N−

τn
− N−

∞
∣∣ =

∣∣ {N−
τn

− N−
∞} 1{τn<∞}

∣∣

≤ N−
∞ 1{τn<∞}

+
{
2n + |Mτn

|
}

1{τn<∞, |Mτn |≥n}

+ 3n 1{τn<∞, |Mτn |<n}

≤ N−
∞ 1{τn<∞}

+
{

2n 1{supt |Mt|≥n} + |Mτn
| 1{τn<∞}

}
+ 3n 1{supt N−

t ≥n}

and it follows that

lim
n→∞

N−
τn

= N−
∞ in the L1 sense.

Thus the local submartingale N− is of class D, the process ( Nt )t∈[0,∞] is a
supermartingale with its terminal element and in particular

E
[ ∣∣N∞

∣∣ ]
< ∞.

We repeat the same argument with N− replaced by the local submartingale
∣∣N ∣∣

to get the desired result. �
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[1] Azéma, J., Gundy, R.F., Yor, M.: Sur l’intégrabilité uniforme des martin-
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