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This dissertation investigates three testing problems, testing for stationarity against seasonal
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stationarity with a break against a unit root. Since the tests for stationarity and a unit root
complement each other, Chapter 1 briefly reviews the three testing problems in a reversed
direction, that is, testing for a (seasonal, periodic)'unit root against stationarity. Chapters
2 to 4 develop three testing procedures for the above testing problems. In each chapter, we
derive the LM test statistics, their limiting distributions, and their characteristic functions.
Power functions are drawn and the test statistics are investigated under the alternatives as

well as under the null hypothésis.
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Chapter 1.

Introduction: Brief Reviews of Testing for Seasonal Unit
Roots, Testing for a Periodic Unit Root, and Testing for
a Unit Root against Stationarity with a Break

This Chapter briefly reviews three testing problems: Testing for seasonal unit roots, testing
for a periodic unit root, and testing for a unit root with a trend break. We will suppose
in later chapters the null hypothesis in reversed direction compared with the above prob-
lems, that is, we will fundamentally assume the null of stationarity. Since our tests in later

chapters and the above three tests compliment each other, it is necessary to understand the

above three testing problemé.



1. Introduction

It has been great concern to economists whether there is persistence of a unit root in the
time series or not, and testing for a unit root has an important role in the practical analysis.
From many empirical studies following the seminal work of Nelson and Plosser (1982), it is
believed that many macroeconomic time series have a unit root and, more or less, persistence

is found in such data.

In addition, seasonality and possibility of a structural change as well as nonstationarity
have been the much discussed problems and studied theoretically and in a practical analysis.
In this chapter, we briefly review the three testing problems concerning with nonstationarity,
seasonality and a structural change, that is, testing for seasonal unit roots, testing for a
periodic unit root, and testing for a unit root against stationarity with a break. Though our
main concern in this dissertation is testing for stationarity and the null hypothesis we are
interested in is not a unit root but stationarity, we review the above testing procedures since
testing for a unit root is strongly related to testing for stationarity. For example, suppose
that the researcher is interested in a unit root and the Dickey-Fuller (DF) test rejects the
null hypothesis of a unit root. Since the DF test has the power against more general
alternatives than a stationary one, a rejection of the null hypothesis does not necessarily
indicate stationarity of the series. Thus once the test rejects the null of a unit root, the
primary interest in turn becomes the null of stationarity, possibly with seasonality and a

break. In this sense, both tests for a unit root and stationarity should compliment each

other.

The plan of this chapter is as follows. Section 2 reviews the tests for seasonal unit roots
and the tests for stationarity against seasonal unit roots. As in the case of the non-seasonal
unit root tests, testing procedures for both the null of seasonal unit roots and that of
stationarity have been developed in the literature. Section 3 reviews the tests for a periodic

unit root, and Section 4 discusses the unit root test against trend stationarity with a break.

2. Seasonal Unit Roots



2.1. Testing for Seasonal Unit Roots

Many macroeconomic time series are observed quarterly or monthly and seasonality is one of
the important characteristics of the data. The economic variable is sometimes considered to
be generated from an integrated process and a seasonal difference operator such as (1 — B*)
seems to be appropriate to make the data stationary, where B is a backshift operator and s
denotes a seasonal period. A seasonal autoregressive integrated moving average (SARIMA)

model is one of the useful models to express such a seasonally nonstationary behavior.

Adequacy of such a seasonal difference operator is investigated in Dickey, Hasza and
Fuller (1984). They considered the following model: |
yt:zs:éijt-i-ayt_eret, t=1,.--,T, (1-1)
=1 :
where {e;} ~ i.i.d.(0,0%) and Dj; = 1 if t = j (mod s) and 0 otherwise. A seasonal difference
operator is adequate when a = 1 and then they investigated two test statistics, T(&—1) and
the t-statistic for testing o = 1 where & is a least squares (LS) estimator of a. The model
(1-1) is extended to have non-zero mean and a linear trend and also to the case when {e;}
is dependent. Tanaka (1996) considered the locally best invariant (LBI) test, the locally
best invariant and unbiased (LBIU) test and the point optimal invariant (POI) test for the
above hypothesis.

Moreover, since a seasonal difference operator (1 — B®) has s roots on the unit circle,
each root except for 1 is called a seasonal unit root and whether the time series has some of
seasonal unit roots as well as a non-seasonal unit root becomes interesting to the researcher.
For example, a quarterly seasonal difference, (1 — B*), can be decomposed into (1 — BY) =
(1~ B)(1+ B)(1 —iB)(1+B) where i = \/—1 and then it has four roots, 1, —1 and =i on

the unit circle, which correspond to frequencies 0, 7 and 7/2. We can consider the following

seven lag polynomials with roots on the unit circle.

Ai(B) = (1-B).
As(B) = (1L+ B).
A3(B) = (1+B?).
A4B) = (1-B)(1+B)=(1- B?). (1-2)



As(B) = (1-B)(1+BY)=(1-B+B?-B%.
Ag(B) = (1+B)(1+B? =(1+B+B*+ B%).
A7(B) = (1-B)(1+B)(1+B*=(1-B*%.

In the above quarterly model, we call the roots of —1 and #4¢ seasonal unit roots and
especially —1 a negative unit root. Then, testing for adequacy of a quarterly seasonal
difference is equivalent to testing for the joint hypothesis that {y;} has four roots on the
unit circle. Then, even if the null hypothesis is rejected, it is still possible for the process
to have some of unit roots. For example, (1 + B)y; = e; does not have all the unit roots
and the null of four unit roots will be rejected, but it still has a negative unit root and
is nonstationary. Neither a usual difference (1 — B) nor a seasonal difference (1 — B%) is
adequate to be applied to {y;}. In this sense, it becomes important to test for each seasonal

unit root as well as a non-seasonal unit root.

The limiting distributions of the LS estimators of autoregressive (AR) parameters when
the process has several unit roots are investigated in Ahtola and Tiao (1987) and Chan and
Wei (1988). When the process has complex unit roots at frequency 6, the model can be

expressed as
(1 — ewB) (1 - e“ieB> Y = €.

Expanding the left hand side, we have
Yt = 2cosye—1 + yr—2 + €.

Ahtola and Tiao (1987) considered the above complex unit roots model and investigated the

limiting distributions of T(q% —¢1) and T(Qf;z +1), the LS estimators of the AR parameters

of the regression,
Yt = P1Yt—1 + Pays—2 + ez
Chan and Wei (1988) considered a more general model. Let us consider the p-th order
AR model,
¢(Blys =€, ¢(B) =1—¢1B—¢B* - — ¢, B, (1-3)



and express the characteristic polynomial ¢(z) as

T
$(z) = (1-2)°1+2)° H(l — 2cosbz + 24 e(2),

j=1

where a, b, | and d; are nonnegative integers, 8; € (0, 7) and () is a polynomial of order
q=p—(a+b+2d;+---+2d;) which has all roots outside the unit circle. Denoting the LS
estimator of ¢ = (¢1,--,¢p) as ¢, Chan and Wei (1988) derived the limiting distribution
of (qB — ¢) multiplied by the appropriate weighting matrix.

Testing for seasonal unit roots are developed in Hylleberg, Engle, Granger and Yoo
(1990) (HEGY) using the above results. They extend the model (1-3) to that with a deter-
ministic component,

d(B)ys = it + ez

As a deterministic component, they considered five cases: i) no deterministic, ii) an intercept,
ili) an intercept and a seasonal dummy, iv) an intercept and a trend, and v) an intercept, a
sasonal dummy and a trend. According to HEGY, the above model can be expressed as

k

Yat = T1Y1e-1 + Tay2—1 + T3Yse—2 + Taysi—1 + Y O5yar—j + pe + €, (1-4)
=1 ,

where

yir = (1+B+B?+ By,
Yy = —(1—B+ B?- By,
yz = —(1— By,

Yar = (1—B%)yta

and k is defined appropriately. It can be shown that m; = 0, 7o = 0 and 73 = m4 = 0 under
the null hypothesis of a unit root at frequency 0, 7 and /2, respectively. The t-statistics
of m; and 72 are used for the test for a unit root and a negative unit root with a lower area
as a critical region and the F-statistic testing for m3 = mq = 0 is for the test for complex
unit roots at frequency m/2 as rejecting the null when it takes a large value. The limiting

distributions of these test statistics can be derived using the result of Chan and Wei (1988).



HEGY’s tests are extended in several directions. Joint tests for seasonal unit roots were
developed in Ghysels, Lee and Noh (1994), and Smith and Taylor (1988) considered the
same testing problem as HEGY with a different assumption of a deterministic component.
Breitung and Franses (1998) investigated the testing procedure for seasonal unit roots which
uses the nonparametric correction for nuisance parameters. According to their Monte Carlo
simulation, their test may be more powerful than HEGY’s test, whereas it suffers from severe
size distortions in some situations. All of these tests are for the quarterly observed data,
and seasonal unit roots tests are extended to the monthly time series in such as Beaulieu

and Miron (1993) and Taylor (1998).

2.2. Testing for Stationarity against Seasonal Unit Roots

All of the above tests consider the null hypothesis of seasonal unit roots. But once the
null hypothesis is rejected, our next concern in turn becomes the null of stationarity. Note
that, since the tests for seasonal unit roots have the non-trivial power against more general
alternatives compared with those assumed when the test statistics are constructed, rejection

of the seasonal unit roots does not imply stationarity of the time series.

Tests for the null of stationarity against a unit root are developed in Kwiatkowski,
Phillips, Schmidt and Shin (1992) (KPSS) and Leybourne and McCabe (1994). KPSS

considered the following error component model,
ye =& +reter, =11+ u,

where {u;} ~ 7.3.d.(0,02) and independent of {e;}. For {e;}, it is assumed that
T 2
. -1 _ 2
lel—rgoT E (t;et> = 0° < 00.

The null hypothesis is 02 = 0, in which case {y;} becomes trend stationary whereas when
02 > 0 {y:} has a unit root component. The Lagrange Multiplier (LM) statistic, which is
equivalent to the locally best invariant (LBI) test under the assumption of normality, is

1 T

t T l T—j

. 1 2, 2 . A a

nr = W _;_1 Stz, St = E €, 82(l) = T E 6? + T E ’U)(j,l) E €tC¢+5)
t= 7j=1 t=1 7=1 t=1



where & are regression residuals of y; on a constant and t, w(j,1) = 1 — |j|/(l + 1) is the
Bartlett window, the lag truncation parameter [ — oo as T' — oo and | = O(T'/?). Tt can

be shown that
g 1 1 2
Ny — / {W(r) + (2r — 3r2)W (1) + (—6r + 6’r2)/ W(s)ds} dr,
0 0

where W(-) is a standard Brownian motion and 2, denotes convergence in distribution.
They also showed that nr = Op(T/l) under the alternative of o2 > 0, that is, the LM
statistic n is consistent.

The problem of the KPSS test is that it may suffer from a size distortion in some
cases under the null hypothesis as shown by the Monte Carlo simulation in KPSS. Instead,

Leybourne and McCabe (1994) considered the following local level model,
¢(Blys =€t +rite, $(B)=1-¢1B—---—¢BP.

Firstly we have to construct the series y;‘ =yt — Yb_1 iYs—i, where ¢¥’s are the maximum
likelihood estimators of ¢;’s from the fitted ARIMA(p,1,1) model, Ay = £+3 01 ¢ Dys—i+
C — 08¢ _1 with A = (1 — B). Next we calculate residuals éf from the LS regression of y; on

an intercept and a linear trend. Then, it is shown that the test statistic
AN \ ¢
ﬁT:WZSZa S::Zé:s
€ t=1 j=1

where 632 = T2 3", &2, has the same limiting distribution as the KPSS test. According
to their Monte Carlo simulation, the size distortion of fr is not so severe as that of nr in

s01me cases.

The above testing procedures are extended to the test for the null of stationarity against
the alternative of seasonal unit roots in Canova and Hansen (1995) and Caner (1998). It
may be seen that the former extends the KPSS test to the seasonal model and the latter

the Leybourne-McCabe test.

Canova and Hansen (1995) considered the following model with s seasons,

yr=p+ o+ five+ e V= Ye—1+ U (1-15)



where {u;} is i.3.d.(0, 02), {e:} ~ (0, 02) satisfies mixing-type conditions as in Phillips (1987)
and is uncorrelated with {z:}, {z:} is any nontrending variables that satisfy standard weak
dependence conditions, o (# 0) is a fixed ¢ x 1 vector with ¢ = 5/2, and f; = [f{;, -, fou!'
with fj: = [cos((j/q)mt),sin((j/q)mt)] for j < g and fg = cos(nt) = (—1)*. It can be shown
that p+ f{v in the model (1-5) is equivalent to the dummy variables >°%_; §;Dj;. They also
considered that, to test for seasonal unit roots at only a subset of the seasonal frequencies,

the formulation of v is modified as
Alyy = Ay + g,

where A is a full rank (s — 1) x a matrix which selects the a elements of 4; that we wish
to test for nonstationarity. For example, to test whether the entire vector v is stable, set
A = I;_; and to test for unit roots only at frequency 6 (< ), set A = (0, I2,0) and for
frequency , set A = (0,1)'. Note that this model does not include a non-seasonal unit root.

The Canova-Hansen Test is constructed as
1 T R R 1 R R l 1 T_J
L=y ) FAAYATAR, O =3 wi D5 Y fusénifiés
t=1 j=—1 t=1
where é; is the regression residuals of y; on 1, z; and f, Fy, = Z;-:l fté: and w(j,1) is the

Bartlett window. Note that €)f is a consistent estimator of the long-run covariance matrix

of fier, O = limp_,oo T~ E[FpF}] with Fr = YI_; fie;. It is shown that
1
-4 / Wa(r)Y Wa(r)dr = VM(a),
0

where W, (-) is an a-dimensional standard Brownian bridge.

On the other hand, Caner (1998) extended the model of Leybourne and McCabe (1994)
to

qb(B)yt =+ ft/'Yt +et, M= Y-1 U ¢(B) =1l-$B—--— ¢po- (1 - 6)

They proposed the following test statistic:

1 .,
ZFt*/GFt*a

D=
P ee)
o2T =




where 632 = T7! Zle é}‘-z, Fr = Zs':l fi¢; and G = diag{2,---,2,1}. & is regression
residuals of ¥} on a constant and seasonal dummies, where y; = y; — 2?:1 ¢jyt—j with ¢¥’s
the maximum likelihood estimators of ¢’s from the fitted model,
p
Jo =+ ) ¢sle—j + O(B)G,
j=1
where §; = (1+L+---+ L* 1)y, and ©(B) an MA(s — 1) polynomial. They showed that D
has the same limiting distribution as L, D 2 vM (s —1). The test for a subset of seasonal

unit roots is also conducted as in Canova and Hansen’s method.

On the other hand, Tam and Reinsel (1997, 1998) and Tanaka (1996) developed testing
procedures for moving average (MA) seasonal unit roots with (1 — B*), but the model

considered in these papers are a little different from (1-5) and (1-6).

The above two models do not have a linear trend as well as a non-seasonal unit root.
However, many macroeconomic time series are trending variables. Then, in Chapter 2, we
will consider the Canova-Hansen type model with a linear trend and investigate the limiting
power properties of the test statistics. We will also consider the joint test for seasonal and

non-seasonal unit roots as well as for each seasonal unit root.

3. Testing for a Periodic Unit Root

One of the other time series models which are useful to represent a seasonal behavior is a
periodic autoregressive (PAR) model investigated by Gladyshev (1961), Pagano (1978), Tiao
and Grupe (1980) and Troutman (1979), among others. A typical example is a quarterly
PAR(1) model,

4
Y = Z $s Dstyr—1 + €. (1-17
s=1

The important property of the PAR model is that the AR parameters vary with seasons.
For example, when ¢ corresponds to the first quarter, {y;} is generated from the AR(1)
process, y; = ¢1ys—1 + €;;, while for the second quarter, y; = ¢2y:—1 + e; is an appropriate
model. Then, the effect of one quarter to the other quarters is different with seasons. This
assumption of seasonally varying parameters may be appropriate for the time series which

have a seasonal pattern and whose seasonal behavior can not be well approximated by such



as a seasonal deterministic term or a SARIMA model. Then, the seasonal properties of
the observed data would be made clearer using the PAR model. This model can also be

extended to have a periodic moving average disturbance.

Though the PAR model is not stationary, whether the process is stable or not depends
on the PAR parameters. Stacking each variable to the 4 x 4 annualized vector, the model

(1-7) can be expressed as

1 0 0 0 Yaj-3 000 —¢ Ya(j—1)-3 €453
—¢p2 1 0 0 Yaj—2 | _ |0 00 O Ya-1-2 | | €452

0 —¢3 1 0 Yaj-1 000 O Ya(j-1)-1 e4j—1 |’

0 0 —¢4 1 Y4j 000 0 Ya(i-1) €4;

or

®oY; = @1Yj1 + Ej,

where, e.g., Y; = [yaj-3,Y4j—2, Y4j—1,¥4;]. Then, the model (1-7) can be seen to be the
four dimensional vector autoregressive (VAR) process of order one, so that whether {Y}} is
stationary, or whether {y;} is stable, depends on the root of |®g—®12| = |1—192¢3d42| = 0.
If |¢1dodsds| < 1, {y:} is called periodically stationary and if ¢;¢ad3¢4 = 1, periodically
integrated of order one, PI(1), and in this case, {y;} is said to have a periodic unit root.

This definition is extended to the more general PAR(p) model in Chapter 3.

Using the PAR model, we can express the nonstationary aspect of the economic time se-
ries with a concept of periodic integration. Intuitively, a periodically integrated AR (PIAR)
model has a single stochastic trend just like a unit root process and seasonally varying AR
parameters. Then, the PIAR model may be suitable for expressing the time series data

which seems to be nonstationary and has a seasonal variation.

Testing for a periodic unit root of the PAR(1) model is proposed in Boswijk and Franses
(1995), and for the PAR(p) model, the testing procedure is developed in Boswijk and Franses
(1996) and Boswijk, Franses and Haldrup (1997). Let us consider the following PAR(p)

model,

4 4
Y= P1sDastiro1+ -+ > bpsDattii—p + €. (1-8)

s=1 s=1

According to Boswijk and Franses (1996), if {y:} has a periodic unit root, (1-8) can be

10



rewritten as

4 p—1
ys = 6sDstyr—1 + Y PisDet(y1—i — bs—ityt—i-1) + €z, (1-9)
s=1 i=1

where 6,’s satisfy the condition 8828384 = 1 and we use the convention 6,_4r = 65 for
k € N. Denoting the log likelihood from the model (1-9) as L (the restricted maximized log
likelihood) and that from the model (1-8) as £ (the unrestricted maximized log likelihood),
the likelihood ratio (LR) statistic is defined by LR = —2(£ — £). Boswijk and Franses
(1996) showed that

2

LR -4, ( /0 ' Wz(r)dr>_1 ( /O 1 W(r)dW(r)) .

Similar results are obtained for the model with a constant and a linear trend.

The above test is constructed for the null hypothesis of a periodic unit root. From the
same reason as the seasonal unit roots test, the test for the null of periodic stationarity
against a periodic unit root is also important, but such a testing procedure is not proposed
in the literature. In Chapter 3, we will derive the LM test statistic for the null of periodic

stationarity and investigate its limiting properties as well as finite sample properties.
4. Testing for a Unit Root with a Break

Testing for a unit root against stationarity with a break has been investigated from the work
of Perron (1989) and it has been discussed whether there is persistence in the macroeconomic
time series or not. By Perron (1989), it is shown that the DF test can not reject the null
hypothesis of a unit root under the alternative of trend stationarity with a structural change,
that is, the DF test does not have the non-trivial power against stationarity with a break.

Perron (1989) considered the following three models of a break:

Model A40 . Yr = 1 + OBt + po DU + x4,
Model BAC . y, = pu+ Bt + Bo DTy + x4,

Model C49 : y, = pq + Bit + wo DU + 3o DTy + x4,

where DU; = 1(t > T'’g) with 1(-) an indicator function and T’z a date of a break and DT} =
1(t > Tg) x (t —Tp). For {z}, it is assumed that ¢(B)z: = e; where ¢(B) = (1—aB)¢*(B)

11



is a lag polynomial of order p+1 with ¢*(B) invertible and {e;} ~ 4.i.d.(0,02). It is assumed
that a = 1 under the null hypothesis and |a| < 1 under the alternative. The above model is
said to be the additive outlier (AO) model, that is, a shock has an effect on y; only at one
time. On the other hand, the following model is called the innovational outlier (I0) model,

in which the effect of a structural change pervades the variables with lags.

Model AT9 : ¢(B)y; = u1 + Bt + puo DUy + e,
Model B : ¢(B)y; = p+ St + B2 DTy + e,

Model CTO : ¢(B)y; = u1 + Bit + uoDU; + Bo DT} + e

Under the assumption that the break date Ty is known, the testing procedures for a
unit root in the above models are proposed and critical points are tabulated.

However, the exogeneity of a break point is sometimes criticized, since the break date is
chosen by visual inspection of the data and the date chosen as a break point also depends on
the data. Then, it is insisted that the break date should be treated as an unknown parameter.
Banerjee et al. (1992), Perron (1997) and Zivot and Andrews (1992) developed the testing
procedures for a unit root with an unknown break point. In these papers, a structural
change is not assumed under the null of a unit root. On the other hand, Vogelsang and

Perron (1998) considered unit root tests that allow a shift in a trend at an unknown time

under the null.

The testing procedures are different between the AO model and the IO model. Testing
for a unit root in the AO model consists of two steps. The first step involves detrending the
series by the following regressions,

Model A4C : 4y, = g + Bt + uaDU; + Ty,
Model BAC .y, = u+ Bit + Bo DT, + 74,
Model CA9 : gy, = ) + Bit + po DUy + Bo DT, + 7.

The next step is that the unit root hypothesis is tested using the t-statistic for testing o = 1

in the following regressions,

P P
Models 449, ¢40 . 7, = ZwiD(TB)t-—i +aZi—g + ZciAi”t—z‘ + ey,

=1 =1

12



P
Model BA9 D B =af-1+ Y GAE i+ e,
=1

where D(Tg): = 1(t =Tp + 1).

For the IO model, the ¢-statistics for testing o = 1 are used in the following model.

P
Model AT y; = py + Bt +dD(TB)¢ + e DUy + oy 1 + Z DY + e,
i=1

p
Model B/ : yy = p+ Bt + BoDTy + ays—1 + D _ cillys—i + e,

=1

P
Model CTO gy = py + Bit + dD(TB): + peDU; + Bo DTy + ayy—1 + Z c;iAyt—i + e

i=1
To construct the t-statistics in the above regressions, we need to determine the break
date Tg. One selecting method is to choose T such that the ¢-statistic for testing o = 1
is minimized. This strategy is based on an idea that the selection of a break point is the
outcome of an estimation procedure designed to fit {y:} to a certain trend stationary rep-
resentation. Then, this strategy gives the most weight to the trend stationarity alternative
to choose the break date. The other method is that Tg is chosen so that the absolute value

of the t-statistic for testing puo = 0 or B2 = 0, or the F-statistic for testing [u2, 52] = [0,0],

1s maximized.

The limiting distributions of the test statistics depend on which selecting methods of
Tg to be used as well as whether a structural change is assumed under the null hypothesis
or not. For each cases, critical points are collected from the above papers and tabulated in

Vogelsang and Perron (1998).

In Chapter 4, we will investigate the test for the null of stationarity with a break against
a unit root. In our testing procedure, a structural change is always assumed under the null

hypothesis.

13



Chapter 2.

The Limiting Properties of Seasonal and/or Non-Seasonal
Unit Roots Tests

In this chapter we investigate unit roots tests with the quarterly seasonal model, extending
the model of Kwiatkowski, Phillips, Schmidt and Shin (1992). We derive the LM test
statistic, which is slightly different from that of Canova and Hansen (1995) and Caner (1998),
for the null hypothesis of stationarity against the alternative hypothesis of nonstationarity
with seasonal and/or non-seasonal unit roots. We develop the asymptotic theory of this
statistic under both the null and the alternative. We also investigate the test against the

alternative of nonstationarity, not specifying particular unit roots.
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1. Introduction

In this chapter, we consider both seasonal and non-seasonal unit roots under the alternative
with a deterministic linear trend and develop the testing procedures. Though some of our
procedures are the same as Canova and Hansen (1995) and Caner (1998), we investigate
the properties of the tests by deriving the explicit local power functions using the Fredholm
approach, which is extensively developed in such as Nabeya and Tanaka (1988) and Tanaka
(1990a, 1990b, 1996), and these functions would help us to understand the properties of
the tests more clearly. We also consider the test for the null of stationarity against the
alternative of nonstationarity without specifying the particular type of roots, since we are
sometimes interested not in the particular type of roots but only in whether the process is
stationary or not. Then we need to include a non-seasonal unit root as well as seasonal unit
roots in the model, unlike the model considered in Canova and Hansen (1995) and Caner

(1998). Using the Fredholm approach again, we will find the consistent test against the

alternative of unknown roots.

This chapter proceeds as follows. In Section 2 we see the model and notations. In
Section 3 we derive the LM test for the null of stationarity against the alternative of the
existence of particular unit roots. The limiting distribution and its characteristic function
will be derived both under the null hypothesis and under a sequence of local alternatives.
The explicit power functions will be derived by the numerical integration and compared
each other. Section 4 develops the test for the null of stationarity against nonstationarity,

not assuming the particular type of roots. Section 5 concludes this chapter. All proofs are

given in Appendix 2.
2. The Model and Notations
Consider the following quarterly model.
Yo = mB+wy, wy=ri+u, A(B)r= e, (G=1,---,7, t= L, 7) (2-1)

where 2, is a deterministic component, {u;} and {e;} are independent and NID(0, 02) with
02 >0, NID(0,02%) with 02 > 0, respectively, k1 = kg = 1, K3 = K4 = K5 = kg = 2, Ky = 4,

and we set 7o = 71 =r_3 = r_3 = 0. A;(B) denotes one of the lag polynomials defined
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in (1-2), and we assume that N = T/4 is an integer. «; has a role for rr to have the same
variance, T'o?, for each i. Though it does not affect the properties of the test itself, we
compare each test in the later section and then, for fair comparisons, we need to have the
same variance of rr for each A;(B). Note that when 02 > 0, the variance of {r¢} tends to
infinity as the process evolves. Then, in this chapter, we say {y:} is nonstationary when

02 > 0, that is, when it has the nonstationary stochastic component.

Our model (2-1) is slightly different from that of Canova and Hansen (1995) and Caner

(1998). In their model, the seasonal stochastic component r; is in an additive form,

e = five, Ve = Yi—1+ €4 (2-2)

where f; = (cos(nt/2),sin(nt/2), cos(nt)) and e; ~ i.i.d.(0,02Q,) with Q. = diag(2,2,1),
while the corresponding component in our model is in a multiplicative form as in (2-1). We
use the model (2-1) only for notational convenience. In fact, we can investigate the same
testing problem with the model (2-2) using the Fredholm approach, but such investigations
become notationally more complicated. Moreover, we can show that the same limiting
distributions in this chapter are derived using the model (2-2) with Q. = diag(1,1,1), and

then we may interpret our results as derived by slight modification of the Canova-Hansen

model.

Note also that we allow (2-1) to have a deterministic linear trend and a non-seasonal unit
root, and then, in this sense, our model may be seen as an extension of the Canova-Hansen
model. Inclusion of a non-seasonal unit root enables us to test against the existence of sea-

sonal and non-seasonal unit roots jointly and also against the alternative of nonstationarity

with unknown unit roots.

Stacking each variable from j =1 to T', we have
y=XpB+w, w=r+u, r= kil

where, e.g., ¥ = [y1,- -+, yr], and

Vi 0
L= V?l W . y
Vit - Vi Vio
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fori=1,---,7 with

1000 1111
1100 1111
Vio=\1 110l ™M=]1111]
1111 1111
1 0 0 0 1 -1 1 =1
-1 1 0 0 -1 1 -1 1
Vo= 3 1 oY= 1 11 1]
-1 1 -1 1 -1 1 -1 1
1 0 00 1 0 -1 0
0 1 00 0 1 0 -1
Voo=| 1 o 10" ™~ |1 0 1 o |
0 -1 0 1 0 -1 0 1
(1 0 0 0] 10 1 0]
0100 010 1
Vio=1|1 9 10|" 2|1 01 0]
010 1] (01 0 1]
1.0 0 0] 1 0 0 1]
1100 1100
Voo=109 110> ™ |0110]
(00 1 1] (00 1 1|
1 0 0 0] 1 0 0 -1
-1 1 0 0 -1 1 0 0
Vo=| o 1 1 ol = ¢ 1 1 o |
0 0 -1 1 0 0 -1 1
1.0 00
0100
(0001

where I; denotes the j x j identity matrix. Note that L; ' corresponds to A;(B) for i =
1,---,7.

We specify the deterministic term X as follows.
Case A : A seasonal constant and a linear trend.

X =[dy,dp] with d} = [I4,--+, 4], and dj = [L,2,---,T].
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Case B : A seasonal constant.

X = [dl] with d’l = {14, SN 14].
Case C : No deterministic term.

It follows that the dimension of 3 varies according to the definition of X.

Here we define the following functions, which will be used in the later sections.

Ki(s,t) = min(s,t) — 4st + 3st(s +t) — 35%¢%.
Ksy(s,t) = min(s,t) — st.

Ks(s,t) = 1-— max(s,t).

Di(N\) = % (2——\/_):sin\/x-—2cosx/X).

sin v/ X
ol
D3(\) = cosV.

Dy(N) =

Note that D;()) is the Fredholm determinant associated with the integral equation of the

second kind,
1
£ = [ Kifs, 0 ()ds,
0
for i = 1,2,3. We denote a sequence of eigenvalues associated with the above integral

equation as { A}

3. Testing for Stationarity against Nonstationarity with Particular Roots

Let us consider the LM test for the testing problem

2
: c
Hy:p=0 wv.s. H{:pzm (2-3)
where p = 02/02, cis a constant, and H? (i = 1,---,7) denotes a particular alternative with

Ai(B). For example, H] denotes the alternative hypothesis that {r;} has a non-seasonal unit
root while H? denotes the alternative of a negative unit root. So (2-3) signifies the testing

problem, the null hypothesis of no unit roots against the local alternatives of particular

roots.
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From the assumption, we have
y~ N (XB,0(kipLiLi + Ir) ) -
Then the log likelihood except for a constant term is give by
1 1 1o—1
L=—5hQf -5y - XB'Q(y - XP),

where Q = 02(k;pL; L. + IT), and the first derivative of £ with respect to p is given by

2 2
%% __ ”f“tmce (QL:LY) + ”‘;’ Uy — XB)Q L LIy — XB).
Then the LM test for (2-3) is given by
oL _ iy~ XBYLiLi(y — XB) + a constant, (2-4)
oplm, 03

as rejecting Hy when (2-4) takes large values, where 8 and &2 are the maximum likelihood

estimators of 8 and o2 under Hy and given by

- 1
B=(X'X)"X"y, &= 70D,
where @ = My with M = It — X(X'X)71X'. See also Kwiatkowski, Phillips and Schmidt
(1992) for its derivation. Then we use the following statistic,
. K . .
57 = Fazz (W — XB) LiLi(y — X55),

u

fori=1,---,7and j = A, B,C. If there seems to be no confusion, we omit the superscript
j and abbreviate Sf as S;. Note that the LM test is equivalent to the locally best invariant
(LBI) test as discussed in such as King and Hillier (1985), KPSS (1992) and Tanaka (1996).

3.1. The Limiting Properties under Hy

In this section, we derive the limiting distribution of Sf for 7 = A, B,C under Hg and

compare their distributions.

Let us consider the case A. Since y ~ N(X,02Ir) under Hy, we can see that

2
4 Koy

N252
2

d  KiOy _1p4
= 2L ML;z
252 ? g
N<g2

S;

ZIMLiLgMZ
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where z ~ N(0, I7) and £ denotes equality in distribution. Since we can easily see that &2

converges to o2 in probability, it is enough to consider the following statistic.
S = —7 LiML;z. (2-5)

To derive the limiting distribution and the characteristic function of S;, we use the next

lemma, which is due to Theorem 1 of Nabeya and Tanaka (1988).

Lemma 2.1 Consider the following statistic.
N :
1 AW,
Sy = N Z_ K (N’ N) 22k, (2-6)
Jk=1
where K (s, t) is a symmetric, continuous and positive definite function and {z;} ~ NID(0, I,)
with some fized integer q.

Let D()\) be the Fredholm determinant of K(s,t) and {\,} a sequence of eigenvalues of
K(s,t). Then the limiting distribution of Sy is given by

Sv-L 3 Aiz,gzn, @-7)

n=1 """

where Zn, ~ NID(0,1;). The characteristic function of (2-7) is given by

im B[] = {ﬁ (1- g;_9>-1/2] "= (DGis) .

n=1
Proof: See Nabeya and Tanaka (1988).

Let us apply Lemma 2.1 to deal with S; in (2-5). For this purpose, partition L;ML;
into N x N blocks with each block a 4 x 4 matrix and denote the (j, k) block of LML; as
(L;ML;)(j,k) for j,k=1,---,N. Then we can write

(LiML:) (5, k) = (LiL:) G b) = (LEX (X'X) ™ X'Ls) (3, B).
Note that

(L;Lz) (.7, k) = (N - ma'X(Ja k)) ‘/zllml + O(l)’ (2 - 8)

_ LI+ e, —2se O(N—?) O(N~3)
XIX 1 _ Ni4 AN €4€4 gNZC4
(X A } * { O(N-%) o(N~4)
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and the j-th row block of L. X is expressed as
LIX(,) = [(N = )V, 2(N? — 2)Viea] +[0(1), 00, (2-9)

where ¢}, = [1111]. Then the (4, k) block of L;ML;/N can be expressed as

i k

SEMLYGER) = F (%, 5

= >+O(N 1y, (2 - 10)

for all 7, k, where

(3 kY _ [_ J kN _(,_J ME)}/.
F’(N’N) = {1 max(N’N) (1 N)( w ) Vb
. 2 -2 k2

_3 <1— %) (1— -]]\3[—2) +3 (1— #) (1—m)}vi’1e4egvﬂ

_ Jj k Jj k (.7 k)} 1
= Kg <N N) V {Kz (N N) Kl N N ‘/;16464‘/11.

Note that the order of the second term of (2-10) is N~! for all j, k. By (2-10) and Lemma
3 of Nabeya and Tanaka (1988), we have

K

_ N k
ESz——ﬁJk 1Z‘F<]V, N)

iz{ (LiML;)(5,k) — F(%,%)}zk

Jk=1

2!5

so that N
— K k
Si— — LF;
‘* N z (N N )
Hk=1
converges to zero in probability from Markov’s inequality. Then it is enough to consider the

limiting distribution of
N

g i~ gp(J K _
=53 F(N N) (2-11)
Jik=1
Next let us consider to diagonalize V; Vi1 and V] eseV;1 to apply Lemma 2.1. Define a

4 x 4 orthogonal matrix P as

1 -1 0 —+v2
11 1 =2 o0
F=2l1 -1 0 w3l (-1
1 1 V2 o0
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A little algebra reveals that V}; Vi1 and Vjjeqe} Vi1 are diagonalized at the same time using

the matrix P.

Lemma 2.2 V)| Viy and Vjjese} Vi1 (i =1,---,7) are diagonalized using the matriz P.

P'V!,Vi1P = diag(16,0,0,0).  P'V} eseyVi1 P = 4 x diag(16,0,0,0).
P'Vy, Va1 P = diag(0,16,0,0).  P'Vyeqey Va1 P = 0.
P'V{ Va1 P = diag(0,0,4,4).  P'Viesey Va1 P =0.
P'VI,Vs1 P = diag(4,0,2,2). P'V5 e4€; V51 P = 4 x diag(4,0,0,0).

P'V{, Va1 P = diag(0,4,2,2).

)
)
P'V), V41 P = diag(4,4,0,0). P'Vjjesej Vi P = 4 x diag(4,0,0,0).
)
). P'V§ieqey Ve P =0.
)

P'VJ, Vi1 P = diag(1,1,1,1).  P'Vjesesy Vi1 P = 4 x diag(1,0,0,0).

Note that P’ e4e4V1P for 1 = 2, 3,6 are zero since Vle4 = 0. By this relation and the
equation (2-9), the j-th row block of L, X is expressed as

LiX(5,) = [(N = j)Vi1, 0] +[0(1), O(N)],

for ¢ = 2, 3, 6, so that a linear trend plays no role on the limiting distribution of S; and then,
as will be shown in the later, each limiting distribution in the case A is the same as that in

the case B for ¢ = 2, 3, 6.

Now applying Lemma 2.1 to S; using Lemma 2.2, we can obtain the limiting distribution

of S; and its characteristic function.

Theorem 2.1 The LM test statistic S{* converges in distribution under Hy and its charac-

teristic function, ¢{(8; Hy), is given by

¢1'(6; Ho) = [Dy(32:6)] "/
50, Hy) = [Do(3240)]7Y/2.
$4(6; Hy) = [Dy(16i6)]7L.
¢5(0; Hy) = [D1(1648)]7Y2 x [D,(1646))7/2.



¢A(0; Hoy) = [D1(16i6)]7/ x [Da(8i6)] " .
¢80, Hy) = [Da(16i6)]7Y/2 x [Dy(8i6)] 7"
¢A(0; Hy) = [Di1(8i60)]7Y% x [Dy(840)] %2,

Next we derive the limiting distribution in the case B. As in the case A, note that

(X'X) = 11, (2-13)

and the j-th row block of L] X is expressed as
(LiX)(5,1) = (N = 5)Vi1 + O(1). (2-14)

Then from (2-8), (2-13), and (2-14), the (3, k) block of LM L;/N is given by

1 | k )
ML) = Ko (F, 5 ) Ve + 00V )

for all j,k. Then, from the same discussion as in the case A, it is enough to consider the
limiting distribution of

. N y
=53 o (K () Vi) o (2-15)

Jk=1

Using the result of Lemma 2.2, we have the following theorem.

Theorem 2.2 The LM test statistic S2 converges in distribution under Hy and its char-
acteristic function, ¢p2(8; Hy), is given by
67 (6 Ho) = ¢3 (6; Ho
¢3 (6; Ho) = 6% (6; Ho

= [Dy(32i6)]7V/2.

) (

) [D2(1646)] 7.

$2(6; Ho) = 98 (6; Ho) = [D2(16i6)]7/2 x [D(8i)] "
¢7 (0;Ho) = [D2(836)]".

As is mentioned in the case A, we can see that ¢5(8; Hy), ¢Z(8; Hp), and ¢£(8; Hy) are
the same as ¢4(8; Ho), ¢4 (8; Ho), and ¢4 (6; Ho), respectively. We will also see that, under
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H? for i = 2,3, 6, the limiting distribution of SiA is the same as SiB . Then a linear trend has
no effect on the limiting distribution not only under the null hypothesis but also under the
alternative hypothesis, for ¢ = 2,3,6. Thus, even if we do not know whether a linear trend
should be included or not in the model, we can test (2-3) using the model with a linear

trend, having the same limiting power as the model with no linear trend.

Note that, as far as the test for a non-seasonal unit root is concerned (the case when
A;(B) = A;1(B)), the limiting distribution of the test statistic with a seasonal constant (and
a linear trend) is the same as that with a non-seasonal constant (and a linear trend), which
can be proved completely in the same way as Theorems 2.1 and 2.2. See also Section 9.10
of Tanaka (1996). Then our test statistic S; has the same limiting properties as those of
the KPSS test. The only difference between them is that our test statistic is normalized by
N? while the KPSS test is by T2. Since N = T'/4, we can see the relation ‘S; = 16x (the
KPSS statistic)’. Thus our test for a non-seasonal unit root, or equivalently the KPSS test,
is applicable to the model both with a seasonal constant and with a non-seasonal constant.

In the case C, we have no deterministic term and then the (j, k) block of LM L;/N is
given by

1

F LG = Ka (%, ) Viva + O )

1
= (L'ML)(5,k) =

N

Since we can derive the characteristic function in the case C as in Theorems 2.1 and 2.2, we

omit a proof of the following theorem.

Theorem 2.3 The LM test statistic S¢ converges in distribution under Hy and its char-
acteristic function, ¢ (6; Hy), is given by
o7 (6; Ho) = ¢ (6; Ho) (
95 (0 Ho) = ¢ (6, Ho) = [D3(1639)] "
95 (6 Ho) = ¢§ (6 Ho) = [Ds(
¢7 (6; Ho) (

= [Ds(32i6)]7Y/2.

16i6)]1/2 x [D3(8i6)]
= [D3(8i6)]

From the above three theorems, we can obtain the distribution functions, GZA(ZC; Hy),

GEB(z; Hy), and GS(z; Hy), by inverting the characteristic functions. Since each limiting
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distribution is nonnegative, we have, using Lévy’s inversion formula,
: 1 o [1—e"
G(z; Ho) = ;/0 Re {——;—W(e Ho)} dé,
fori=1,---,7and j= A, B,C.
Tables 1, 2, and 3 show percent points of the limiting distributions for the cases A,
B, and C, respectively. Note that, as shown in Theorems 2.1 and 2.2, we have G4 = G&,
G4 = GF and G§ = GE, so that the rows corresponding to these cases in Tables 1 and 2 are
completely the same. From each table, we can see that, for a fixed i, G (z; Hp) is located
to the right compared with G{*(z; Hp) and so is G (z; Hy) compared with G2 (z; Hy). For
example, the 95% points of G{(m; Hp) are about 2.4, 7.4, 26.5 for j = A, B, C, respectively.

That is, the less complicated the deterministic term is, the further is the limiting distribution

shifted to the right.

On the other hand, we can see that, for ¢ < j, the limiting distribution of S; has fatter
tails than S; except for the case A. In other words, for the cases B and C, the less the

number of roots is, the fatter is the both tails of the limiting distribution.
3.2. The Limiting Properties under H}

As in the previous section, we derive the limiting distribution of S; in each case under H?.

Firstly we consider the case A. Since y ~ N(X8, 02(kipL; L, + Ir)) under H?, we can
see that

d K40 u
Si & Fagg? (wipLiLi+ In)' P MLLM (sipLll + Ir) 22

d 'fzi

N252

2 LM (kipL; L + IT)M L; 2.

As in the previous section, we can see that &2 converges to 02 in probability under H f 50

that it is enough to consider the following statistic.

?z' = N2 L/M(KipLiLfi—FIT)MLiZ

Ki 1 .2
ok '{NL;ML + 03 (L;MLi)Q}z

2 N

N
= N2 { (LML), ) + 5 %(L;ML»(J;z%(L;MLi)(z,k)}zk
=1

25



To derive the limiting distribution, we need the similar result to Lemma 2.1. We use the

following lemma, which is due to Nabeya (1989) and Tanaka (1996).

Lemma 2.3 Consider the following statistic.

1 N

o= B () A5 ) )

I
where v is a constant real value, K(s,t) is a symmetric, continuous and positive definite
function and {z;} ~ NID(0, I;) with some fized integer q.
Let D(X) be the Fredholm determinant of K (s,t) and {\,} a sequence of eigenvalues of
K(s,t). Then the limiting distribution of Sy is given by

SN————>Z< >Z’Z (2 — 16)

where Zn, ~ NID(0,1,). The characteristic function of (2-16) is given by

gl - [ s (-2}

n=1
—q/2
= (D (i0 +4/—62% + 2i’y9) D (i@ —4/—02+ 2i'y€)> .
Proof: See Theorem 5.13 of Tanaka (1996).

To use the above lemma, we need the similar result to (2-10). Note that

NZ (LiML) l)]ir(L’ML )1, k) — i A% 5) R (5 %)

i N'N

= Nz{[ (LiML;) (5,1 (j ]i,>] (LiML;)(1, k)
+F<m©>{wém (v}

= O(N7D), (2-17)

for all j, k, since the equations in the square brackets are O(N 1) by (2-10) and (LM L;)(j, k)/N

and F;(j/N, k/N) are bounded uniformly for all 5, k, N. Then, by (2-10), (2-17) and Lemma
3 of Nabeya and Tanaka (1988), we have

E|S; — — 0,
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where

3

N 2 N .
j k KiC g 1 Ik )
N AT i\ AT AT i\ N AT ) 2-18
Z { (NN)“LN?;F(NN)F(NN g (2-18)
so that §; — S; converges to zero in probability. Then it is enough to consider the limiting

distribution of S;.

Using Lemma 2.2, we have the following theorem.

Theorem 2.4 The LM test statistic S{ converges in distribution under H{ and its charac-

teristic function, ¢2(0; HE), is given by

oi(0;HY) = [Dy(16(i6 + /=67 + 2ic%) ) Dy (16(i6 - \/m))y”?
926, H2) = D2 (166 + =07 + 2ic?)) D (16(s6 - \/m))]—l/z.
$(0,5) = [Ds (308 + /=07 +2ic%)) Dy (8(i6 - V=07 +2i%))| "
9R(6; HY) = [D1(8(i6+ V=67 +2ic9)) Dy (8(i6 \/m))]—lﬂ

x [Dy (8(36 + V=62 + 2ic*9) ) Dy (8(i0 VT ms)| 12
o4(0sHT) = [Dr (869 + V=7 2ic%)) Dy (860 - =7+ i)

X [Dz (4 z0+\/m) 2(4 \/m))]—1
GO HD) = [Ds (804 V=67 + 2ic%6)) Dy (8(i6 - \/m))]-l/z

x [ Dy (4(:6 + V=67 + 2ic%)) 2(4,,9_\/_92—+2w§—))]
s30;1]) = [y (460-+ V¥ 26c29)) Dy (48 — V=57 25020))|

x [ Dy (436 + V=67 + 2ic%9) ) Dy (4(:0 - \/m))}—?»/z.

We can obtain the characteristic functions for the cases B and C in the same way as

above and then we omit proofs of the following two theorems.

Theorem 2.5 The LM test statistic SB converges in distribution under H¢ and its char-

acteristic function, ¢ (8; H}), is given by
o2 (0; HY) = ¢2(9; H?) = [Dz (16(29 + V=62 + 2ic20) ) Dy (16 (20 — /=62 + 2ic20) )]

27



I

SB6; 1Y) = P (0 HP) = [Dy (800 + V=07 + 2ic0)) Dy (8(i6 — V=82 + 2ic%) )] . -

PP (6 H) =GB (6 HY) = [ D (8(:0 -+ V=07 1 2c%6)) Dy (8(i6 — V=6 + 23%9))| ok
x [Da (436 + V=% + 2ic%9)) Dy (4(i6 — V=82 + 2i29))] . =

$2(6;H]) = [Dy(4(i6+V=62+2ic%)) Dy (436 — V=62 + 2ic?6) 9)] 2

Theorem 2.6 The LM test statistic S¢ converges in distribution under H and its char-

acteristic function, ¢S (8; H?), is given by

o7 (0, ) = ¢ (6; HY) = [Ds (16(i8 + =62 + 2ic%9) ) D3 (16(i9—\/m)]*1/2

9§60 H9) = 9§ (6 1F) = [Ds (8(i6+ /=67 + 20c6)) D (8(20 — V=07 + 2ic29)) ] .

6 (0; HS) = ¢ (6; HS) = [D3(8(z9+\/W)D3(8(ze V=2 £ 2i%0) )| V2
x [Ds (4(i6 + /=07 + 2ic20)) Ds (4(i6 ~ V=82 +2ic%) )| h

856 H]) = [Da(4(i6 +/=07 + 2c0)) Ds (4(i6 — V=2 +2ic%) )| . 2

As in the previous section, we can obtain the limiting distribution functions, GZA(:E; H {),
GE(z; H}), and G¥(z; Hi), by inverting the characteristic functions. Then the limiting

power functions are given by

. , , . 1 oo 1— e——'wac
gi(e; Hi) = P (Gi(z; H) 2 2") =1 - —/ Re | ~—————¢1(6; Hy})| db,
T Jo i
fori = 1,---,7 and j = A, B,C as a function of ¢, where z* denotes a percent point
corresponding to the significance level. We calculate the limiting powers using the upper
5% points in Tables 1, 2 and 3. Note that the above tests are all consistent in the sense

that gf(:z:,H{) —lasc—oofori=1---,7and j=A,B,C.

Figure 1a shows the limiting powers in the case A. Comparing with each limiting power
of the test statistic, we can see that, for small values of ¢, S5t (corresponding to g4 (c; H?))
is most powerful whereas S (corresponding to g{*(c; H1)) is least powerful, that is, the LM
test for a negative unit root is most powerful and the LM test for a non-seasonal unit root is

least powerful in the case A. We also note that g4'(c; H?), g4'(c; H?), and g¢!(c; H), which
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are not affected by a linear trend, dominate the other power functions in the limit until the

powers reach around 0.65.

Figures 1b and lc show the limiting powers in the cases B and C, respectively. In both
cases, the more the number of roots increases, the less powerful is the test for small values
of ¢, whereas for large values of ¢, this relation is completely reversed and the test for the
full unit roots is most powerful.

Figures 2a-2d show the limiting power function gg (c; HE) for i = 1,4,5,7 and j =
A, B,C, respectively. We can see that the more complicated the deterministic term is,
the less powerful is the test. Note that ¢4(8; HZ) = ¢P(9; H}) = ¢¥(8; H?), ¢4 (6; H}) =
$5(0; HY) = ¢2(6; HE) and ¢4(6; H) = ¢B(6; H}) = ¢5(6; Hf) and they are drawn in
Figures 2a-2d.

4. Testing for Stationarity against Nonstationarity with Unknown Roots

In the previous section, we considered the null hypothesis of stationarity against the alter-
native hypothesis of nonstationarity with particular roots. We can test the hypothesis using

the LM statistic S; if we are interested in such particular roots.

However, in some cases, econometricians do not have interest in particular roots and wish
to know only whether the observed variable is stationary or nonstationary. Then, in this
section, we consider the test for the null hypothesis of stationarity against the alternative

of nonstationarity with unknown roots, that is, we consider the following testing problem:

2
c
Hy:p=0 wvs. Hl:p:"ﬁﬁ‘ (2-19)
We can interpret the alternative hypothesis H; as
7 .
Hy = H;. , (2 —20)
=1

Then H; is a composite alternative hypothesis, even if we fix the value of P, so that there

exists no LBI test for the testing problem (2-19). That is, we can not derive an optimal test

for (2-19).

Instead of the LBI test, let us consider the test which is LBI against a particular alterna-

tive H} and consistent against the other hypotheses H 1" for m # i. Then it seems that the
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possible test statistic is one of the LM tests derived in the previous section, since S; is the
LBI test against H¢ and might be consistent against the other hypotheses H® for m # i.
If so, our interest may be which test statistic is desirable among S; (i = 1,--+,7) in view of

the power.

Let us consider the test statistic S{* for a fixed i. Since H; can be interpreted as
(2-20), we investigate the power properties of S{* under each HJ* for m # i. Note that
y ~ N(XB,02(kmpLm L, + IT)) under HT* and that 52 converges to o2 in probability as

in the previous section. Then it is enough to consider the following statistic:

Sim = N2 2'LiM (kmpLiy Lo + IT)M L2
P N 1
= N ; ] {(NL ML:)(j, k) L’ML Z)N(L;nMLi)(l,k)}zk
j’ 1 :
In the same way as the previous section, we can see that
L LML) G k) = Fn <‘7 ) 4oy, (2—21)
N 7 m ) N N

for all 3, k, where

ik j k Jj k j ok
i (5503v) = (o) Ve = 1 (% (55 ) = 5 (R ) VsV

Then, from the same discussion as in the previous section, it is enough to consider

N 2 N .
S = 2 J kRN mCnp (4 \p (LK
Sim = N lz {F (N N>+ N Z:Fzm(N’N)F’m(—’YV“)}Z’“

Jk= =1
4 i z'-{P’F(i E)P
N e N'N
K €2 o I k
=1

The following lemma is important to investigate the limiting power properties.
Lemma 2.4 For each pair of (i,m) = (1,2), (1,3),(1,6), (2,3),(2,5), and (3,4),
j k
PPy, (N, N) P =0, (2 - 23)
for all j,k,N.
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From this lemma, we can see that the second term in the braces of (2-22) vanishes for
some pairs of (i,m), so that ¢ has no influence on the limiting distribution of S;m under
the alternative. That is, the LM test statistic is inconsistent for these pairs of (¢, m). For
example, if we use the test statistic S{* and under the alternative of HZ that {r;} has a
negative unit root, the limiting power of S{* does not increase under H? and then S{ is an
inconsistent test. Since A;(B) and A,,(B) have no common roots for each pair of (i,m) in
Lemma 2.4, we can say that the test is inconsistent if the alternative hypothesis we assume
and the true data generating process (D.G.P.) have no common roots. This tendency has
been observed in Canova and Hansen (1995), Hylleberg (1995) and Caner (1998) by Monte
Carlo simulations. Their results show that if we consider the test against a negative unit root
(A2(B) = (1+B)) but the data generating process has annual unit roots (43(B) = (1+B)?),
the power of the test does not increase and vice versa. Our investigation of power functions

supports their results theoretically.

Table 4 shows whether each pair of (i,m) leads to a consistent or inconsistent result.
Since the same result as (¢, m) holds for the pair of (m, ), the upper right of the table has
no entry. From this table, we can see that if we suppose the alternative hypothesis (2-20),
the LM test statistic S; derived in the previous section, except for Sy, is inconsistent in the
sense that the power will never increase under some specific alternatives. Then S:;‘ is only
a consistent test statistic against the alternative hypothesis H; in the limit. This also holds
in the cases B and C, that is, S? and S¢ are only consistent tests among SZ and S for
i=1---,T.

From the above result, our interest is concentrated on the power properties of S7 under
H;. Then we investigate Som for m = 1,---,6, since we have already studied the limiting
properties for m = 7 in the previous section. To derive the limiting distribution and the
characteristic function of 5'7m in the case A, we have to evaluate the equation in the braces

of (2-22). From some algebra, we can prove the following lemma similar to Lemma 2.2.

Lemma 2.5 Vi Vin1 and Vies€y Vi (m =1, ,6) are block-diagonalized using the matriz
P.

PV Vi1 P = diag(4,0,0,0).  P'ViieseVi1 P = 4 x diag(4,0,0,0).
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P'V4, Va1 P = diag(0, 4,0, 0). P/V.,'le46f1V21P =0.
P'V4 Va1 P = diag(0,0,2,2).  P'V7eqeyVa1 P =0.
P'V3 VP = diag(2,2,0,0).  P'Viiese Vs P = 4 x diag(2,0,0,0).

PV, V51 P = diag | 2,0, 11 . P'V] esej V51 P = 4 x diag(2,0,0,0).
71 -1 1 71

PV Ve1 P = diag <Oa 2, [ i _i }) . P'VijeseyVer P =0.

In the same way as the previous section, we can derive the limiting distribution of S4

under H{" for m = 1,---,6 and its characteristic function using the above lemma.

Theorem 2.7 The LM test statistic S4 converges in distribution under H* for m =
-,6 and its characteristic function, ¢£(6; H), is given by
—1/2
o2 (0; HY) [Dl (4(1:9 +vV=62 + 8ic20)) D, (4(ie — V=2t 8ic29))] "% Dy (866)] 2.
—-1/2
A6, H2) = [D (8i0)]/? x [D2 (4(i9 V-0 ¥ 8ic26)) D, (4(1:9 — V= ¥ 8ic29))] /

x [Dy (846)] 7"

Il

¢7(6;HY) = [D1(8i9)]7Y/% x [Dy (8i0)]7/2

x [D2 (436 + V=67 + 4ic%6)) Dy (4(i6 — V=67 + ic20))] .
86 11) = [Dy (40 + V=07 + 4ic29)) Dy (4(i8 — V=& + ic2))|

x [Dy (4(i8 + V=02 + 120)) D, (4(i8 ~ V=62 + 4ic%6)), T 1D, (8i0)] !
67 (6;H) = [D1 (46 + /=07 + 4ic%) ) Dy (4(i8 — =67+ 4ic%6))| Y2 (Da (8i0)] 2
x [D, (4(i8 + V=02 + 2i%) ) Dy (4(i6 — V=07 +2ic%) ) -
B8 HY) = [D1(8i6)]7/% x Dy (4(i6 + V62 1 4ic20)) Dy (4(i6 - mw” ?
x [D (436 + =62 + 2i0)) D, (4(i6 — /~02 1 2ic%9)) |~

In the cases B and C, the following theorems can be obtained in the same way as in the

case A.
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Theorem 2.8 The LM test statistic S¥ converges in distribution under H* for m =

-, 6 and its characteristic function, ¢ (8; HT), is given by

¢7 (6; H) = o7 (6; HY)
— [ Do (4(i8 + =077 5ic%8) ) Dy (4(66 — V=87 + 8ic?6))| " x [Ds (8i6)] 2.
¢7 (6; H) = ¢7 (6; HY)
— Dy (466 + V=67 1 4ic20)) D, (4(i6 — V=42 + 4i%6))] " x [Ds (8:6)]
¢7 (6; HY) = 7 (6; H7)
— [Da (4(0 + /=87 + £i%9)) Dy (4(i8 — /=6 + 4ic%6) )}'1/2
x [Dy (4(:6 + V=67 + 2ic%) ) D, (4(i9 — /=62 + 2ic%6) )] « [Ds (8i6)] V2.

Theorem 2.9 The LM test statistic S§ converges in distribution under H for m =

1,---,6 and its characteristic function, ¢$(9; HTY), is given by

7 (6; H) = ¢5 (6; H)

= D5 (4(i6 + V=62 + 8ic%) ) D3 (4(ie - m)) T 1D (8i0)] Y2

¢7 (6, HY) = ¢7 (6; HY)
= [Ds (426 + V=% 1 4ic%)) D5 (4(i6 — /=07 + 4ic20))] " x [Ds (8i6)]

o5 (6; HY) = ¢ (6; HY)

= [Ds (4066 + V=07 + 4ic%)) Ds (4(:i6 — V=8 + 4ic%0)) i

x | D3 (4(i6 + V/=67 + 2ic6) ) Ds (4(i0 — V=02 + 2ic26 ))] x [Ds (8i6)] /2.

As in the previous section, we can obtain the limiting powers, g;(c; H™) form=1,---,7
and j = A, B, C, by inverting the characteristic functions. Figures 3a-3c show the limiting
powers g#(c; HT), g2 (c; H™), and ¢$(c; HP*) for m = 1,---,7 in the cases A, B, and C,
respectively. From Figure 3a, we can see that S# under H} (corresponding to g#'(c; HL))
is least powerful overall while 5% under H? (corresponding to g4 (c; H$)) is most powerful.
Figure 3b is similar to Figure 3c. They show that, for small values of c, the powers are

almost same for each alternative and, as ¢ increases, the test becomes more powerful as the
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number of roots included under the alternative increases. Then we can say that the test

statistic S7 is least powerful under H{ in each case.

Next let us compare the power of S{‘ with that of S,’}L under the alternative of H{" in
Figures 4a-4f. From Figure 4a, we can see that, under HJ, the test statistic S# is rather
less powerful than Sf* while, from Figure 4f, S4 has almost the same power as SZ' under
H$. These results are two extreme cases and, as shown in Figures 4b-4e for m = 2,--, 5,
54 is less powerful than S/ under H™ but the divergence between them is moderate in

comparison with the case of m = 1.

Figures 5a-5¢ and 6a-6¢ correspond to the cases B and C. In both cases, S is less powerful
than Sy, under HJ* for m =1,--.,6 as in the case A, though the divergence between them

is not so much for all m.

5. Concluding Remarks

We have investigated the LM test for the null hypothesis of stationarity against the alterna-
tive hypothesis of nonstationarity using the quarterly seasonal model. If we are interested
in particular roots, we can use the test statistic S; while if we are interested in whether the
observed variable is stationary or nonstationary, it is only S7 that is consistent against the
alternative H;. Though these results were derived under the assumption of normality, we

can relax this assumption, as is well known in the literature.

Since our interest is the limiting properties of seasonal and/or non-seasonal unit roots
tests, we did not consider the serial correlation in the error term. If we want to apply our
tests to a practical analysis, we have to modify them to have the same limiting distributions
as derived in this chapter under the assumption of the serial correlation. This modification

can be achieved in the same way as Canova and Hansen (1995) and Caner (1998).
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Appendix 2.

Proof of Theorem 2.1: We prove only for 4 = 5. The other cases can be proved in an

entirely analogous way and then a proof of them is omitted.

Since k5 = 2, we have, from the equation (2-11) and Lemma 2.2,

. 2 X ik
Sy = W Z;-Fs (—J—,——>zk

k=1 NN
2 & k
I Zzg{Kz(]Jv N)P’ 4 VsL P
k=1

J
1 ik i k
_Z (K2 (7{[—-, N) K (N N)) P/V:r,,1646£1V51P} ZK

2 iz’ {K 2 k)dzag(4022)
= = 2

N 22 N'N

) -0 (R '“)) Ja
- L EN g (L d
Kz(N’N) K (N N iag(4,0,0,0)

2 X i k N j k

= N j%z:l 4_K1 (—N—, ‘ﬁ) 21521k + = j%z:l 2K2 (]*v‘, ']—v—> Zéj22k,

where {z1;} and {22;} are independent and NID(0,1), NID(0, I2), respectively. Applying

Lemma 2.1, we have

2 §:4K(—] —k> LN }:822
Njk:1 L\ N' v ) 9%k “— Ain In

2 §N:2K (j ~k>' 4, }:——4 z, 7
2 1 _
N & “"*\N'N 25 %2k Lt Qg TR

where {Z1,} and {Za,} are independent and NID(0,1), NID(0, I5), respectively, and joint

convergence of the above also applies since {z1;} and {z3;} are independent. Then, the

limiting distribution of S5 is given by

5—*2 Z1n+2)\ ZinZon.-

The characteristic function of the limiting distribution is given by

oo = [[L1-) ][ (-20) "]

= [D;(16i60)]7Y? x [D,(8i6)] 7!,
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applying Lemma 2.1.0

Proof of Theorem 2.2: From the equation (2-15) and Lemma 2.2, we have
3 (4 5) P}

1 N’'N
K ( £\ diag(4,0,2 2)}

Z 2\ NN ag

ik |k
4Ky (N N) lezlk-}- ZQKQ (N N) 22322k)

where {z1;} and {2,} are independent and NID(0,1), NID(0, I2), respectively. Applying

S5

I
2|
"TTMZ

2|

J 1

™= “,T'Mz

2™
i

Jk=1

Lemma 2.1, we have

55 —) Z )\ Zln + Z )\ Z2nZ2na

n=1

where {Z1,} and {Z2,} are independent and NID(0,1), NID(0, I2), respectively.

The characteristic function of the limiting distribution is given by

[e o]

st = [ (12,2 )" [ (1-2058) ™

n=1 =1
= [D2(168)] 71/ x [Dy(846)] ",

applying Lemma 2.1.
The other cases can be proved in an entirely analogous way.O

Proof of Theorem 2.4: Let us consider S5. From the equation (2-18) and Lemma 2.2, we

have

2 X j k 322 & jg 1 l
= = 4K — R -, =
Nj:él{ 1<N’N> N ;Kl (N’N)Kl (N’N) 21521k
2 X i k\ 82X jol Ik
"r‘]—v— .;1 {2K2 (N, N) + W;KZ (—]\7, N) K2 <—]\—7, N) Z2Jz2k;
Jk= =

36



where {z1;} and {zy;} are independent and NID(0,1), NID(0, I3), respectively. Applying
Lemma 2.3, we have
82¢ 4 422
55——>Z< )Zln-kZ()% X2 )Zanzn,
where {Z1,,} and {Z2,} are independent and NID(0,1), NID(0, I5), respectively.

The characteristic function of the limiting distribution is given by

oo ~1/27 [ oo 9 2\ —1/212
Ll}l{pzw (/\8 +8/\2 2)} } {1}1{1_2@6 (/\jn %\%i)} }
= [ D1 (8(i0 + V=82 + 2ic29)) Dy (8(i6 — V=07 + 2ic%9) )| i
v [D2 (4(126 +v/—0 ¥ 2ic29)) Do (4(i9 NV 2@'029))] -

applying Lemma 2.3.

H

o2 (0; HY)

The other results are obtained in an analogous way.O

Proof of Lemma 2.4: Some algebra reveals that, for each pair of (i,m), P'V/{VaP =0

and P'V]eseyVinaP = 0, so that we obtain (2-23) from the definition of Fj,(j/N,k/N).O

Proof of Theorem 2.7: Let us consider when m = 5. Note that, since k5 = 2 and k7 = 4,

s 4 X k i1 Ik
.5'75%-]7 ; {PIF7 <]‘zf N>P+_ZPIF75 (N N) PP'Fy; <N N> P}Zk.
Gk=1

From Lemma 2.2, we can see that

y j k _ |k
PF7( )P = Kg(N N)dzag(llll)

N'N
J k J k
K
( 2<N N) Ky (N N))dzag(lOOO)
Jj k k
= Kl(N N>dzag(1000)+K2<]‘<] N)dzag(Olll)

In the same way, we have, from Lemma 2.5,

P'Frs (X{ ]]:r>P
k)dzag (2, 0, [ _j 1 }) - (Kg (%,%) - K <f{7_ ;)) diag(2,0,0,0)
>d7,ag(2 0,0,0) + K> <]—jv— %) diag (0,0, [ _i i }) , (2-24)
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and then
= p g (LK 2-25)
ZPF75(— ——>PPF57 v, P (2-

L§N:1 1<' >K1<Jif ;>d2a9(4000)+K2(N Jif>K2<]if ;)dzag(OOQZ).

From (2-24) and (2-25), S5 can be expressed as
N 2 N .
5y 2 I E) 2 (4 Dy (LB,
Sts = N Z {Kl (N N) +t N ;fﬁ <N’N> K NN ( APk

N ] k
P (% N) Che

N 2 N .
j k 4c j ! ) ( l k) ,
= = L VK [ = = 23k,
N ’21{K2 (N N) + 5 ;Kz (N’N 2\ v ) ([ 2Bk
where {z1,}, {#2;}, and {z3;} are independent and NID(0,1), NID(0,1), and NID(0, I3),
respectively. Then the limiting distribution of S7 is given by

32¢ 4 16¢
Sy _> Z </\1n A2 ) Zln Z Xon Z2n + z (A2n )\ ) Z3nZ3'm

where {Z1n}, {Zan} and {Zs,,} are independent and NI1D(0,1), NID(0,1), and NID(0, I3),

respectively.

The characteristic function is given by

U I YRR AN Nl I - 4 \"12
¢7(0; HY) = h;[l{l—ma()\ln K%f)} X }1(1——21,0)\—2n>

oo 4 162\)""
X[Il{l-—?z&()\zn—F*Xg;)} }

and the result of the theorem is obtained.

We can prove the other results in an analogous way and then omit the proof.0
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Table 1. Percent Points of the Limiting Null Distributions of S{* (Case A)

0.0l 005 01 09 0.95 0.9
GA&(x; Ho) | 0.2763 0.3745 0.4462 1.9075 2.3662 3.4839
GA(z; Hp) | 0.3968 0.5850 0.7362 5.5569 7.3818 11.8953
G4 (xz; Ho) | 0.6306 0.8754 1.0578 4.8563 5.9802 8.5893
GA(z; Ho) | 0.4958 0.6612 0.7804 3.3763 4.2811 6.5296
G&(z; Hy) | 0.6304 0.8168 0.9459 3.0499 3.6179 4.9265
GA(z; Ho) | 0.7764 1.0392 1.2267 4.5421 5.4821 7.7221
GA(z; Ho) | 0.8001 1.0269 1.1829 3.6473 4.2843 5.7190

Table 2. Percent Points of the Limiting Null Distributions of S? (Case B)

0.01 0.05 0.1 0.9 0.95 0.99
) { 0.3968 0.5850 0.7362 5.5569 7.3818 11.8953
) | 0.6306 0.8754 1.0578 4.8563 5.9802 8.5893
GB(z; Hp) | 0.7764 1.0392 1.2267 4.5421 5.4821 7.7221
) | 0.9242 1.2026 1.3945 4.2524 4.9492 6.4905

Table 3. Percent Points of the Limiting Null Distributions of S¢ (Case C)
0.01 0.05 0.1 - 0.9 0.95 0.99

GY(z; Hp) | 0.5514 0.9034 1.2246 19.1331 26.4918 44.5993
G (z; Ho) | 1.0153 1.5924 2.0825 16.4977 20.9924 31.4289
G (z; Hp) | 1.3701 2.0713 2.6327 15.2650 19.0218 27.9910
G$(z; Ho) | 1.7504 2.5648 3.1854 14.1639 16.9358 23.0816

Table 4. Consistency and Inconsistency of S;

Hy

HI(1) HP(-1) H}(i) Hi1) HY(L%) HY(-1,4) HI(x1,)
H{i(1) +
H?(-1) - +
H3(£i) - - +
HY  HE(£1) + + - +
H(1, +i) + - + + +
HS(—1, +i) - + + + + +
HI(£1,44) |+ + + + + + +
“+” and “-” denote that the pair of (i,m) leads to consistency and inconsistency, respectively.

The numbers in parences denote the corresponding unit roots.
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Figure la. The Limiting Powers; g{'(c; H:) (Case A)
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Figure 1b. The Limiting Powers; g2 (c; H}) (Case B)
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Figure 2a. The Limiting Powers; under H 11

1 T T [ T { 1 I

Figure 2b. The Limiting Powers; under Hy
1 | T T

I I . e

41



Figure 2¢. The Limiting Powers; under H. ir’
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Figure 3a. The Limiting Powers; g4 (c; HT*) (Case A)

Figure 3b. The Limiting Powers; g¥ (c; HT*) (Case B)
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Figure 3c. The Limiting Powers; g¥ (c; H*) (Case C)
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Figure 4d. The Limiting Powers; under H ¢ (Case A)
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Figure 5a. The Limiting Powers; under H { (Case B)
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Figure 5b. The Limiting Powers; under H3 (Case B)
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Figure 5c. The Limiting Powers; under Hy (Case B)
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Figure 6a. The Limiting Powers; under Hi (Case C)
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Figure 6b. The Limiting Powers; under H; (Case C)
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Chapter 3.

Testing for Periodic Stationarity

In this chapter we investigate the test for the null hypothesis of periodic stationarity against
the alternative hypothesis of periodic integration. We derive the limiting distribution of the
test statistic and its characteristic function, which is used to tabulate the percent points of
the limiting distribution by numerical integration. We find that some parameters, which we
have to assume ﬁnder the alternative, have an important role on the limiting power and we
should carefully choose such parameters. The Monte Carlo simulation reveals that the test
has the reasonable power but also is affected by the lag truncation parameter which is used

for the nuisance parameter correction.
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1. Introduction

In this chapter, we investigate the test for the null hypothesis of periodic stationarity against
the alternative of periodic integration. The testing procedures for periodic integration are
developed in such as Boswijk and Franses (1995, 1996), Boswijk, Franses and Haldrup (1997)
and Franses and Paap (1995). The tests in these papers assume that the null of periodic
integration against the alternative of no periodic integration, and, as in the case of the
seasonal unit roots test, the test for the null of periodic stationarity seems to be useful
and to complement the periodic integration tests investigated in the above papers. The
derived test statistics in this chapter are free from nuisance parameters and critical points

are tabulated.

The plan of this chapter is as follows. Section 2 briefly reviews the properties of periodic
integration. Section 3 derives the test statistic using the error-components model. We
investigate the limiting properties of the test both under the null and under a sequence of
local alternatives. Section 4 considers the limiting behavior of the test statistic using the
PAR model and also proposes the slightly modified test statistics. Section 5 investigates the
finite sample properties of the tests through the Monte Carlo simulation, and the empirical

applications are illustrated in Section 6. Section 7 concludes this chapter. All proofs are

given in Appendix 3.

2. Periodic Integration

In this section, we briefly review the properties of periodic integration. Throughout the
chapter, we will concentrate on the quarterly time series, but our results would be extended
to the other seasonal models such as the monthly model. Let us consider the following
quarterly periodic autoregressive model of order p (PAR(p)):

4 4
Yo =D ¢1sDstye—1+ -+ > dneDettpr—p + ut, (3-1)
s=1

s=1

where {u:} ~ 1.i.d.(0, 03) and Dy is the seasonal dummy variable which takes 1 when the
period ¢ is in a season s and 0 otherwise. Note that the AR parameters vary with seasons,
so that the structure of the model also varies with seasons. For example, the effect of the

first quarter on the second one may be different from that of the third one on the fourth
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one.

For notational convenience, we represent the PAR(p) model (3-1) as, when ¢ is in a

season s,
Yt = P1sYi—1 + - + PpsYt—p + Uty (3-2)

where ¢;5, 1 = 1,-- -, p, are periodically varying parameters.
Stacking each variable to the annualized vector, such as Y; = [y4;-3, Y4j-2, Y41, e

we may represent (3-2) as
&Y, =®Y; 1+ -+ ®pY;_p + Uy, (3-3)

where P = [(p — 1)/4] + 1 with [z] denoting the largest integer < z and each ®; is defined
appropriately. Following Franses (1994), we call {Y}} the vector of quarters (VQ) process
of {y:}. We can easily see that whether {Y}} is stationary or not depends on the roots of

\@o—élz—---—épz”jzo. (3—4)

We call {y:} is periodically stationary if all roots of (3-4) are outside the unit circle, and
periodically integrated of order one, PI(1), if one root of (3-4) is 1 and the other roots are
outside the unit circle. We also say that the periodically stationary process is periodically
integrated of order zero, PI(0). See also Definition 1 of Boswijk and Franses (1996). Though
we can think of a situation where (3-4) has more than one unit root (multiple unit roots),
we will consider the PI(0) or PI(1) process in this chapter. Note that, in general, {y:} is

not stationary even if it is periodically stationary.

The VQ process {Y;} has the error correction representation,
AY; :FlAYj_l+"'+Fp_1AY3_P+1+H}’3‘_1+U;, (3-15)

where IT = —&;' 3>, &;, Ty = &5 27, &;, U} = &;'U; and AY; = Y; — Yj_;. Note that
rank(II) = 3 when {y;} is PI(1) so that we may interpret that {Y;} is cointegrated of order
(1,1) with cointegrating rank 3. In this case, it is shown that, with some normalization, the

4 x 3 cointegrating matrix can be expressed as

6 1 0 0
0 -6 1 0],
0 0 -6 1



for some &, # 0, s = 2,3,4. Defining 6; = 1/(626364), Boswijk and Franses (1996) showed
that ysj+1 — 61y4; becomes stationary. Then we may see that two successive seasons are
cointegrated. In other words, (y: — 6sy:—1) has a stationary VQ representation with 6; =
1/(626364), though {y:} is a nonstationary and nonstable process. According to Johansen
(1991, 1992), {Y;} is expressed as Y; = II* _, Ur 4 0p(1) with rank(IT*) = 1, and then we
may see that {Y;} is driven by a single stochastic trend as in the case of a unit root process.

The PAR(p) model (3-2) can be extended to have the periodic moving average distur-
bance such as u; = € + f156t-1 + -+ + Ogs€t—q Where {€} ~ i.3.d.(0, 02). This model may
be seen as an extension of the ARMA model with seasonally varying parameters.

The properties of the PI(1) process are discussed in Boswijk and Franses (1995, 1996),
Boswijk, Franses and Haldrup (1997), Franses (1994, 1996), Franses and Paap (1994), Ghy-
sels, Hall and Lee (1996), while those of the PI(0) process are in Osborn (1991), Osborn and
Smith (1989), Pagano (1978), Tiao and Grupe (1980), Troutman (1979), among others.

3. Testing for Periodic Stationarity

In this section, we derive the test statistic for the null of periodic stationarity and investigate
its properties. Though our concern is the PAR model, we introduce the error-components
model which is convenient to derive the test statistic, but slightly different from the pure
PAR model. Such a model is considered in KPSS (1992), in which the test for stationarity

is developed. We will see in the next section that the test derived in this section is also

useful for the pure PAR model.

Let us consider the following error-components model.
Yt = fl:;ﬁs + Wi, Wy =T¢+ Ut, ¢ps(B)ut =, Tt= 687't—1 + €t (3 - 6)

fors=1,---,4andt =1,-..,T with N = T'/4 an integer, where {z;} is a seasonally varying
deterministic component, ¢ps = 1 — ¢15B — -+ — ¢, BP with which {u;} is periodically sta-
tionary, 61, 02, 03, 84 satisfy the condition 8;626364 = 1 so that {rt} is periodically integrated,
and {v;} and {e} are independent and NID(0,02) with o2 > 0, NID(0,02) with 02 > 0,
respectively. We set ro = 0 without loss of generality, and for a while, we assume {4} are

known. The unknown case will be treated on page 62.
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We denote the VQ representation of (3-6) as
Y;=X;8+W;, W;=R;+Uj, (B)U; =V;, GoRj =0O1Rj-1+ Ej, (3-17)

for j=1,---, N, where, e.g., Y = [yaj_3, Usj2,Yaj—1, yajl’, 8(B) = o — ®1B—---—&pB*
with P = [(p— 1)/4] + 1, BU; = Uj_1 when B operates on the annualized vector Uj, and

1 0 0 0 000 &
| -6 1 0 o0 o000 B
=1 g 8 1 ol” ©1=10 0 0 o0 (3-8)
0 0 =6 1 000 O

Since {U;} is stationary, ®(B) is invertible and we have the MA representation of {U;} as
oo

U;=®(B)'V; = AVj., say. (3-9)
=0

We define the deterministic term X as

Case 1 ; no deterministic,
Case 2 ; a seasonally varying constant; X; = Iy,

Case 3 ; a seasonally varying constant and linear trend; X; = [Iy, j14],

where I, denotes the n X n identity matrix.

Note that when 02 = 0, w; = u; and the model (3-6) is expressed as y: = z}8s + uy, or

equivalently,
d’ps(B)yt = xtﬁ: + v¢.

Then, in this case, the model (3—6) is the pure PAR(p) model. On the other hand, when
02 > 0, we can easily show that a root of |©g — ©1z| = 0 is 1, so that {r;} is periodically
integrated of order one. Thus, {y;} has both PI(1) and PI(0) components in this case,
though (3-6) can not be expressed as the pure PAR model.

Since {y;} is periodically stationary when o2 = 0 while periodically integrated when
o2 > 0, we consider the following testing problem:

c?

Hy:p=0vs. lepzm,

(3 — 10)
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where p = 02/02 and c is a constant, so that (3-10) signifies the testing problem, the
null hypothesis of periodic stationarity against a sequence of local alternatives of periodic

integration.

Stacking each variable from j =1 to N, we have
y=XB+w, w=r+u, r=Le

where, e.g., y = [Y{, -+, Y{], X = [X{,---, Xy, and

Lo 0
Ly Ly
Ly - Ly Lo
with
1 0 0 0 1 6636, 6160 6
o 1 0 0 6o 1 616964 6169
_ _ . —11
Lo 58 6 1 0| [ 5o85 s 1 60655 (3-11)
696364 06364 64 1 690364 8364 b4 1

Note that L~! has 1’s in the diagonals, §,’s immediately below the diagonals and 0’s in the

other elements. Then, each component of L™1r; = ¢; corresponds to (1 — §sB)r; = ;.
To derive the LM test statistic for (3-10), we consider the special case when {u;} ~

NID(0,02), as in KPSS (1992). This simplification is only for expository purpose, and we

will investigate the derived test statistic assuming the model (3-6).

Since y ~ N(X3,0%(pLL' + Ir)) with the above simple model, it is easily derived that
the LM test for (3-10) is given by

1, , 1 Y
Sm = 23y MLL'My = EZIG;GJ-
v v J:
as rejecting Hp when S,, takes large values, for m = 1,2 and 3 aécording to the definition
of the deterministic component X, where M = Iy for m =1 and M = It — X(X'X)71X'
for m = 2 and 3, 67 = y'My/T, G; = LyU; + L{ SN, Ui for j = 1,-+-,N ~ 1 and
Gy = LGU' N with {UJ} denoting the regression residuals of Y; on a constant term, X;. The

second expression is convenient to calculate the test statistic in practice. Note that this LM
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test is equivalent to the locally best invariant test as discussed in such as King and Hillier

(1985).

Now we investigates the limiting properties of the test statistic S, with the model (3-6).
As shown in the proof of Theorem 1, the test statistic Sy, is of order N2, and the limiting
distribution of S,,/N? depends on the ‘long-run variance’ of {U,} as well as {;} and is
proportional to w = k'Qk, where k = {1+1/634+1/(6362)+1/(626263)}/2[1, 6, 6263, 626364)'
and Q is the long-run variance of {U;}, @ = 0244’ with A = Y72, A;. Then we consider
the following test statistic:

1 !/

where & = x/Qxk and  is a consistent estimator of Q of the form

—l—szZl ( —I—I‘())

with ['(i) a consistent estimator of the covariance matrix of {U;}, TG) = E 1 U; UJ' +i/N
and w(i, ¢1) the Bartlett kernel, w(i,£;) = 1 —i/(¢; + 1) for £; = o(N1/2).

The limiting distribution of (3-12) is given in the following theorem.

Theorem 3.1 i) The LM test statistic Sy,r converges in distribution under Hy,

(3—13)
and 1its characteristic function, ¢, (6; Hp), is given by
bm(Bs Ho) = lim B [e7577] = D 2i8)) 7%,

for m =1, 2 and 3 according to the definition of the deterministic component X, where

{Zn} ~ NID(0,1) and both {Am s} and Dp(-) are defined in Appendiz 3.

ii) The LM test statistic Smy converges in distribution under H 1

2.2
Smr ‘*" Z ( c igwl) ZTZw (3 - 14)

and its characteristic function, ¢, (8; H1), is given by

-1/2

Gm(0; Hy) = [Dm (i9 + \/—92 + 2i0203w%9/w) Dy, <i9 - \/-—6'2 + 2ic203w%9/w>] ,
(3 - 15)
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for m = 1, 2 and 3 according to the definition of the deterministic component X, where

w; = K'K.

Though this theorem is proved using the assumption of normality, we can relax it as discussed

in Nabeya and Tanaka (1988).

From the above theorem, the limiting distribution function, Fy,(z; Hp), can be obtained

by inverting the characteristic function ¢, (6; Hp) using Lévy’s inversion formula, that is,

1 > 1— g =
Fm(a:;HO)z;r-/o Re | ——"—¢m(6; Ho) | d9,

for m = 1, 2 and 3. Table 1 shows percent points of the limiting distributions, which are
calculated by numerical integration. From the table, the limiting distribution of Sy, shifts

to the left as the deterministic terms become complicated.

As shown in Theorem 3.1 (ii), the limiting distribution under H; depends not only on ¢
but also on {65} and Q through w; and w. To investigate the limiting properties of this test
statistic under Hj, let us consider the simple case when {u:} is an independent sequence,

{u:} = {v;} ~ NID(0,02). In this case, A = I4 and then w = 02’k = 02wy, so that

d - 1 uwy
n=1 m,n m,n

under H; for m =1, 2 and 3. Then, for w{ > w’f, we can easily see that

> 1 Awt\ |, - 1 A\ o
P<n2::1 <>\m7n + /\%w) Zn>wa> > P(Z (Am,n + ., 72> z,

n=1

for a given critical value z, and then the test against the alternative of periodic integration
with the larger w; is more powerful than with the smaller one. Figures la-1c give the limiting

power of S3; as a function of ¢ for some values of w; in the cases 1, 2 and 3, respectively.

These power functions are given by

T

1 [ 1 — e~
1- —/ Re | =25 "4 (6, H))| do, (3 16)
0 6
as a function of ¢, where the characteristic function ¢.,(8; Hy) is given by
. » . _1 2
bm(0; Hy) = [Dm (ze +v/-02 + 2262w19) D (zH —-V= 5 2ic2w19)] &
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We calculate (3-16) by numerical integration using the upper 5% point, o = To05. As
discussed above, the limiting power function with the larger w; dominates the power function
with the smaller wy for each case. Note that the above test is consistent in the sense that

the limiting power reaches at 1 as ¢ goes to infinity for each m =1, 2 and 3.

In the above discussion,
' 2 2¢2 | 2¢2¢2 1 1 1
w1:l€/{=<1+52+6253+(526354) 1+Sg+5?%3g+5%—5§—%

plays an important role and it also affects the power of the test in the dependent case as

shown in (3-14). From some algebra, we can see that wy > 16 and, especially, w; = 16 when

{(53} € A=A UAs with

A = {{1,1,1,1},{-1,-1,-1,-1}{-1,1,-1,1},{1,-1,1,-1}},
Ay = {{-1,1,1,-1},{-1,-1,1,1},{1,1,-1,-1},{1,-1,-1,1}}.

And the farther some of |6s|’s deviate from one, the larger does w; become. Then we might
see wy as a measure of deviation of {8} from 4 and, especially, if all §,’s are positive, we
could regard w as a measure of the degree of periodic integration. For example, we say that
the degree of periodic integration of the model with {61, 62, 83,64} = {1,2,1,1/2} (w1 = 25)
is stronger than that with {61, 62, 63,64} = {1,5/4,1,4/5} (w1 = 16.81). Then, as discussed
above, the more stronger the degree of periodic integration is, the more powerful is the test.

In other words, when 8§, > 0 for all s, the more {65} fluctuate, the easier to detect periodic

integration.

The above investigation of the limiting power is based on the assumption that {6} of the
true process are identical to {§,} we assumed under the alternative. Here, we investigate
the effect of misspecifying the alternative hypothesis, that is, we assume {6;} under the
alternative but the true process is the model (3-6) with {60} instead of {§,}. The following

corollary gives the limiting power under such a situation.

Corollary 3.1 Suppose that Spr is constructed using {65} and {y:} follows the model (8-6)
with {60} instead of {65} and ¢ > 0. Then,

et 1 2 2
Sy~ <—A + = ;7> z2, (3-17)
n=1 m,n m,n



~1/2
dm(0; Hy) = [Dm (w + \/—92 + 2ic20379/w> Dm, (ie - \/—62 + 2ic20376/w>] ,

form=1, 2 and 3, where v = k' LILYx and LY = Ly in (3-11) with {63} instead of {6s}.

At first sight, this C(Srollary is almost the same as Theorem 3.1 except for the difference
between w? and . However, v has an important role on the limiting power since it is
possible for 7 to be zero, which means that the limiting power does not increase and remains
at the significance level under the alternative. This would occur if « is orthogonal to the
space spanned by the columns in L(l). For example, if we assume the unit root (§; =
83 = 83 = 64 = 1) under the alternative but the true process has a negative unit root
(89 = 69 = 63 = 69 = —1), then, we can see that LYk = 0, so that the limiting power of the
test does not increase. This non-increasing power was observed for the seasonal unit roots
test in Caner (1998), Canova and Hansen (1995) and Hylleberg (1995) through the Monte
Carlo simulation and analytically investigated in Chapter 2. In Corollary 3.1, we proved

the similar result for the periodic integration test.

Note that if both {6} and {60} belong to A; or Ay with {65} # {60}, we can show from
direct calculation that LYk = 0 which implies ¥ = 0. When {6,} belongs to A; (A3) and
{69} to A2 (A1), v = 64, which is smaller than 256 when {6} = {67}. Then, we deduce
that ~ takes a small value if signs of {§;} we assume are different from those of {62} of the
true process, so that the limiting power of S,,; would be very low. To illustrate how the
power is affected by them, let us consider the simple case when {u:} = {v;} ~ NID(0,02)
and A = I as in the case of Figures la-1c and we construct Sy,,; with §; = 6y = 63 = 6, = 1.
That is, we are going to test against the alternative of a unit root. In this case, the limiting

distribution of S,,; in (3-17) becomes

s 43" (=4 550 ) 4
n=1 m,n

w1 )‘gn,n

since w = 02w in this case. Then the power depends on 7y/w; and c?. Figures 2a-2c
draw the limiting power as a function of ¢ in the cases 1, 2 and 3 for {6?,69, 69,89} =
{1,1,1,1},{1.5,1.5,2/3,2/3}, {1.5,1.5,-2/3,—2/3} and {~1.5,—1.5, -2/3,—2/3}, and the
corresponding values of y/w; are 16, 14.79, 4 and 0.24, respectively. As shown in figures,

the misspecification of signs of {§,} affects severely on the limiting power. On the other
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hand, Sy, under the alternative of {§7,69,69,69} = {1.5,1.5,2/3,2/3} is less powerful but
still have a moderate power in comparison with the case when {69, 69,639,689} = {1,1,1,1}.
Then, we should carefully assume signs of {§,} under the alternative in view of the limiting

power.

4. Extension to a PAR Model

So far, we have considered the model (3-6) and investigated the LM test for periodic sta-
tionarity. However, in econometric analysis, it is often the case that the pure PAR model
is considered instead of the model considered in the previous section. Then, in this section,

we consider the limiting behavior of S,,; for the PAR model.

Let us consider the following model.
Y = .’E;ﬂs + Ut, ¢ps(B)ut = Ut, (3 - 18)

where ¢ps = 1—¢1sB— - —pps BP, {04} ~ i.i.d.(0,02), and z; denotes the same deterministic
component as in the previous section. Since the above model can be expressed as ¢ps(B)(y:—
x}0Bs) = vy, we may see (3-18) as the PAR(p) model with a periodic deterministic term. The

VQ representation of (3-18) is expressed as
Y;=X;8+U; ®(B)U; =V, (3-19)

where ®(B) is the lag polynomial of order P = [(p — 1)/4] + 1. Since we are interested in
whether the model (3-18) is PI(0) or PI (1), not allowing it to be a explosive model, we
assume that all the roots of |®(z)| = 0 are outside the unit circle or equal to one and do not

assume multiple unit roots.

Since we can not define the parameter p for the model (3-18), we consider the following

testing problem:

Hj: |®(1)] #0v.s. H : |3(1)] = 0.

Then, under the null hypothesis Hj, the model (3-18) is periodically stationary whereas,

under the alternative hypothesis Hi, it is periodically integrated of order one.

Firstly we consider the limiting distribution of S,,; under H). Since {w+} is periodically

stationary under Hg, the model (3-18) is the same as the model (3-6), so that if we construct
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the test statistic Sy, in the same say as the previous section, we have the same limiting
null distribution as Theorem 3.1 (i) and we can refer to Table 1 for the asymptotic critical

point.

On the other hand, under Hj, {u;} is PI(1) and then, according to Boswijk and Franses
(1996), the PAR(p) model of {u;} can be expressed as

p—1
U — Ssusm1 = D is(Us—i — Bsmitit—io1) + V¢, (3 —20)
i=1
where 81820364 = 1, 65_4, = 5 for a positive integer k and (1 — ¢, B —--+ — ¢p_1,sB”“1) is

a periodic autoregressive polynomial of order p — 1 whose coeflicients are defined from the

following backward recursion,

¥ps = 0, Vs,
.=
dio = BHLAZOa oy
$—1

Then the VQ representation of {u;} is given by
¥(B) (69 —-©:B)U; =V},
where ©g and ©; were defined in (3-8), and then
OoU; = ©1U;-1 + V; with V;* = ¥(B)™'V;, (3-21)

because of invertibility of ¥(B). Noting that the VQ representation of {y:} is given by
(3-19) with {U;} given by (3-21), we have, in the stacked form,

y=XG+u, u=Lv".
Using this expression, the numerator of the test statistic S,,,; is expressed as
Y MLL' My = v*L'MLL' M Lv*. (3 —22)

In the same way as the proof of Theorem 3.1 (ii), we can show that (3-22) is of order
N* while Q = Op(€1N) by Phillips (1991) and KPSS (1992). Then, as a whole, Sy is
Op(N/£1) under H{ and then the power of S,,; would increase to 1 as N goes to infinity

since £1 = o(N'/2), that is, Sy is consistent.
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The above testing procedure includes the estimation of the long-run variance of {U;}
using a nonparametric method, but sometimes this estimation procedure causes severe size
distortions of the test under the null hypothesis in a small sample. Thus, instead of the
nonparametric estimator of (2, let us consider an autoregressive spectral density estimator.
For simplicity, we assume p < 4. This assumption is not too restrictive since, according to
Franses and Paap (1994) and Boswijk and Franses (1996), many economic time series are
well approximated by the PAR(p) model with p at most 4, and our following procedure can

be easily extended to the case when p > 4.

Under the assumption of p < 4, the VQ representation of {U;} is
BoU; = 31U +V;
and that of {y;} is given by
(2o — 21B)Y; = (o — 1.B) X;8 + V.

Under the null hypothesis, {Y;} is a stationary process with a deterministic component and
then by inverting (®g — $1B) = Bo(Iy — @0_14513), we have

> .

Y= X84+ UV,

=0

where ¥ = &;'®;. The long-run variance €2 is expressed as
g .
Q0 =07CC', where C= ¥&jo.
' i=0

Then the autoregressive spectral density estimator (! is given by ) = “36’@” with ¢ =
Zfio \i!ii)a ! where 52, @0 and ¥, are consistent estimators of 012;, ®g and ¥y, respectively

and £ — oo. The consistent estimator of each element of ®; and ®; will be obtained by

regressions,
Ye = BOS + Blsj + élsyt——l + (Z)psyt—p + ’lA)t, (3 — 23)

where j = [(t — 1)/4] + 1, and the consistent estimator of o2 is given by 62 = "7 $2/T.

Note that we do not necessarily estimate all the elements of &y and ®; but only the unknown
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elements of these matrices. For example, if we consider the PAR(1) model, we will obtain

b1 by regressions (3-23) and &y and & should be constructed as

1 0 0 0 000 ¢u
. —p12 1 0 0 . 000 0

= A @ -
®o 0 —¢3 1 o0of F 000 O
0 0 —¢u 1 000 O

Using these estimators, w is consistently estimated by ' Qk.

On the other hand, under the alternative, |®¢ — ®12| = 0 has a root on the unit circle
and ($o — ®1B) is not invertible, which means that Efio Ul — 0o as £y goes to infinity.
Since 02 and each element of ®; and ®; are consistently estimated by regressions (3-23)
under the alternative, ¢ and then Q will diverge, and the rate of divergence is important
for the consistency of the test. Since ¥ MLL'My/N? in (3-12) is Op(N?), €2 should be of
the smaller order than O,(N?2) in order for the test to be consistent. Note that if we use the
truncation parameter f; where /3 is of order N¢ with 0 < d < 1, €' = Y2, ¥&;! = 0,(N?)
and Q = §2CC" = O,(N??), Then, the test statistic is Op(N?(0~9) under the alternative,
which means that the test is consistent. Since this & converges to C in probability under
the null hypothesis even if we restrict o = O(N?) and then Q= &30@" is the consistent

estimator of 2 under the null, we consider the test statistic S,,7; defined by
1 ! !/
Smir = Wy MLL My,

where & = k'Qk.

We also consider slight modification of S,,rr. In the construction of C’, let us consider

the weighted sum of ¥,
{3

C =Y w(,)¥et,
=0

where w(i, £3) is the kernel defined in the previous section and Z3 = O(N?) as ¢3. Then
define the test statistic
1 / /
Smirr = SN2y MLL My,

where @ = §2k/CC’k. Though this modification has no effect asymptotically, it might enable

us to avoid accumulation of the bias of the estimator Wt.
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So far, we have investigated testing procedures assuming that {45} are known, but in
practical analyses, we often encounter the situation where we have interest in only whether
the observed variable is periodically stationary or nonstationary and no interest in a par-
ticular set of {6s}. Even in such a case, we have to set values of {6,} since we use them to
construct the test statistics. As shown in the previous section, the power of the test crucially
depends on {8} assumed under the alternative and especially in some special cases, the lim-
iting power might stay in the significance level set by the researcher and not increase. Then
we have to carefully determine which set of values of {§,} should be assumed in construction

of the test statistics developed above.

One candidate for {5} used in the test statistics is the estimates of {6,} under the
restriction of 61628364 = 1, since {8,} must satisfy this restriction. Since this restriction is
adequate under the alternative, we can estimate {85} consistently under H| by regressions of
(3-23) with such a restriction, that is, by the nonlinear least squares (NLS) method. Then,
we can easily see that the test statistics Sy,r, Smrr and Smrrr, constructed by using the NLS

estimates, {33}, have the same limiting properties as those using the true {6} under Hj.

Turning to Hy, the NLS estimates of {65} have no meaning since the restriction 6;626364 =
1 is inadequate under H|. In practice, we would obtain the estimates of {65} which have
no meaning. However, for a given set of values of {65}, the limiting distributions of the test
statistics do not depend on {65} under Hy, so that we could expect that the finite sample
distributions of the test statistics with {§,} would be well approximated by the limiting
distribution (3-13) if only {68} satisfy the restriction b1 323334 = 1. Note that this strategy
is similar to “cointegrating regression” discussed in Engle and Granger (1987), in which the

cointegrating vector is identified only under the alternative,

In sum, for the PAR(p) model (3-18) with {6,} unknown, our testing procedure is that i)
obtain {8,} by NLS regressions of (3-23) with the restriction &; 698385 = 1, ii) construct the
test statistic using {4,}, iii) reject the null hypothesis when the test statistic is larger than
a critical value (95%, say) in Table 1. Here we should keep in mind that the test statistic
considered in this section is no longer the LM statistic, since the model (19) is different from

(6). However, the test statistic is still consistent and then useful.
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5. Finite Sample Properties
In this section, we investigate the finite sample properties of the test statistics derived in
the previous section through the Monte Carlo simulation. We use the quarterly PAR(1)

process as a simulation data generating process:

Ye = OsYi—1 + €,

where {¢;} ~ NID(0,1), s = 1,---,4 and the sample size T' is 100 and 200. Note that
|61628364] < 1 under the null of periodic stationarity whereas 61698364 = 1 under the alter-
native of periodic integration. We set §; > 0 for s = 1,--.,4 since many economic time
series are positively autocorrelated. From the discussion of Section 3, w1 may be seen as a
measure of the degree of periodic integration and affect the limiting power under the alter-
native. Then, we conduct the simulation for several values of wy, and for a given wy, consider
three sets of {8,}, 61 = & = 63 = &4, 6, = 20, = 83 = 264 and 6; = & = 263 = 26,. We
select w; = 16, 18 and 20 under the alternative, which imply {61, 62, 63,64} = {1,1,1,1},
{1.414,0.707,1.414,0.707} and {1.414,1.414,0.707,0.707}, respectively. For the null hy-
pothesis, we assume 61628364 = 0.2, 0.4, 0.6 and 0.8 and the relation among {8} is propor-
tional to the alternative. For example, we set {61, 62,683,684} = {0.669, 0.669,0.669, 0.669},
{0.946,0.946,0.473,0.473} and {0.946,0.473,0.946, 0,473} for 81626364 = 0.2. To construct
the test statistics, we used not the true {65} but the NLS estimates of them, {és}. The
upper 5% critical value is used and the level of significance is set equal to 0.05. The number

of replication is 1,000 in all experiments.

Table 2 reports the frequencies of rejection of Sy,r, Spmrr and Spyyr for T = 100. We
investigate each test statistic for several values of the lag truncation parameter. We used
41 = 2,4, 6 and 8 for S,1, £ = 1, 2, 3 and 4 for Spyr, and f3 = 2, 4, 6 and 8 for Spyrr,
respectively. From the table, we can see that, under the null hypothesis of 61826364 = 0.2,
0.4, 0.6 and 0.8, the lag truncation parameter has much influence on the empirical size,
especially the empirical size of Sy, is very sensitive to the truncation parameter. In most

cases, the larger §;626364 is, the longer lag truncation parameter does each statistic need to

have the empirical size close to 0.05.

The power of each test, corresponding to the row of §;826304 = 1, also varies according
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to the lag truncation parameter. Though we should carefully see the results since the
empirical power is not size-adjusted, it seems that Sp,r is less powerful than the other two
test statistics which have the reasonable power. Comparing the cases 1, 2 and 3, the case 1

is most powerful and the case 3 is least powerful, like the other unit root tests.

Table 3 shows the result when 7" = 200. We used ¢; = 4, 6, 8 and 10 for Sp,1, 42 = 1,
2, 3 and 4 for Spyr, and 43 = 4, 6, 8 and 10 for Sy,11, respectively. We can see that the
relative performance of the tests is preserved without the fact that they require the longer
lag truncation number to have the empirical size close to 0.05 compared with the case when
T = 100.
6. Empirical Applications
In this section, we illustrate the empirical applications of the testing procedure derived in
the previous section. Since our test assumes the null of periodic stationarity, it is useful
to use our method in conjunction with the procedure developed in Boswijk and Franses
(1996), in which the test for the null of periodic integration is proposed. We investigate two
Japanese macroeconomic time series: Real national consumption expenditure (CP) and real
disposable income of household (YDH) for 1955.1-1996.4 measured in logarithms. Figure 3
plots CP and YDH. Since both series have a seasonal pattern and increase with time, we
include a seasonal dummy and a seasonal linear trend for the models of both series through

all the testing procedures conducted below.

Firstly we test for the null of periodic integration against the alternative of no integration
and next for the null of periodic stationarity. We take the same model selection procedure
proposed in Franses and Paap (1994): i) decide the order p of the periodic autoregression, ii)
test for the presence of periodicity, and iii) if the null of no périodicity is rejected, then test
for periodic integration. By use of the Schwarz-Bayesian information criterion, we decide the

order p of the PAR(p) model as two for both CP and YDH. Then, we assume the following
PAR(2) model for both series:

Yt = Hos + P1s] +Ut, Ut = P11 + dastus_a + v, (3-24)
where j = [(t —1)/4]+ 1 and s =1,---,4. The model of {u;} can also be expressed as
(1-6sB)(1 —¢sBlus = vz, (3—25)
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where 8; + s = ¢15 and sths = —os for s =1, -+, 4. If {ug} is PI(0), both (1 —63sB) and
(1 — ¢sB) constitute stationary VQ parameters whereas, if {u;} is PI(1), we assume that
(1 — 6,B) constitutes periodically integrated VQ parameters, that is, 618268364 = 1.

Next step is to test for the null of no periodicity against the alternative of periodicity.

The null hypothesis is expressed for the model (3-24) as
HY? : ¢11 = $12 = ¢13 = 14 and ¢21 = P22 = ¢23 = P24

The likelihood ratio (LR) test is investigated in Theorem 2 (i) of Boswijk and Franses (1996)
and for both CP and YDH, we reject the null hypothesis HJ'? with a 5% significance level,
so that the PAR(2) model is appropriate for both series.

Now we test for the null of periodic integration. The LR test statistic is given by
LR=T<ln (liatz)-ln(li@f)), (3 - 26)
Ti= T

where T' = 166 is the number of observations, {7} are the NLS residuals with the restriction

81626364 = 1 and {0;} are the (unrestricted) least squares residuals. Table 4 reports the

values of the test statistic LR and the NLS estimates of {§}. According to Theorem 1 of

Boswijk and Franses (1996), the null of PI(1) is rejected when LR is larger than the square

of the critical value of Fuller’s (1976) 7, statistic, and the null is not rejected both for CP

and YDH with a 5% significance level.

Next, we test for the null of periodic stationarity against the alternative of periodic
integration using Ssy, Ss;r and Ssrrr developed in the previous section. Since we have to
decide the values of {65}, we use the NLS estimates of {65} in Table 4 to construct the test
statistics. Note that, from our calculations, there seem to be many local minima in the
objective function of the NLS, especially when we conduct the NLS using one of the A as
starting values of {65}, we obtained the estimates of {6;} with same signs as the starting
values. Since signs of {6} have an important role on the power of the tests as discussed in

Section 3, we should carefully estimate {65} which minimizes the objective function globally.

Table 5 reports the values of the test statistics. Since the lag truncation parameters
have an effect on the empirical size and power, we calculate the statistics for several values

of them. Using the critical value of Table 1, all the test statistics reject the null of periodic
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stationarity for both CP and YDH with a 5% significance level. Then, with the results of
Table 4, it seems that both CP and YDH are periodically integrated.

Though we rejected the null of no periodicity, it is possible that either of {65} or {#s} in
(3-25) are not periodic. Noting that integration in a usual sense is a special case of periodic
integration, we test the null of a unit root, 6; = 63 = 03 = 64 = 1, within the periodically
integrated model, which is investigated in Theorem 2 (ii) of Boswijk and Franses (1996). The
test statistic is the same as LR in (3-26) in which {7;} are the least squares residuals with
the restriction §; = 62 = 63 = 84 = 1 and {{:} are the NLS residuals with the restriction
61626364 = 1. Under the null hypothesis, the test statistic is asymptotically chi-squared
distributed, and we reject the null for CP whereas do not reject for YDH, that is, YDH
has a (non-periodic) unit root and the periodicity of YDH seems to be due to the stable

parameters.

To conclude, both CP and YDH can be expressed as a PAR(2) process and CP is

periodically integrated whereas YDH is integrated in a usual sense.

7. Concluding Remarks

We investigated the test for the null of periodic stationarity against the alternative of pe-
riodic integration. We derived the several test statistics which fundamentally are the same
but different in the correction of nuisance parameters. We found that the limiting power
of the test is much affected by signs of {45}, and in a finite sample, the lag truncation

parameter affects both the size and the power through the Monte Carlo simulation.

Though we do not consider multiple unit roots which correspond to the case when
rank(Il) = 0, 1 or 2 in the equation (3-5), our tests should have the considerable power
against such a case. But we should carefully decide {45} to be used for the test statistics so

as not to lose the power by a bad selection of them as discussed in Section 3.
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Appendix 3.
Proof of Theorem 3.1: (i) Firstly note that W; = U; under Hy and {U;} can be expressed

as
Uj = AV + Vi1 = Vi,
where V; = 5352, Ale_l with 4; = 3%, 1 Ak, and in the stacked form,

’LI/ZQAU-F’I}_l—f),

where Q4 is a block diagonal matrix with each block A, Q4 = diag{A--- A}. Then, we can

express the test statistic Spur as

1 / !

1
= =33 VQUMLL MQav + 0p(1)
d ‘7121 i /
= mz L MQAQAMLZ -+ Op(l)

o2 X 1, , .
- G)Xf :L zj]—V-(L MQAQML)(j, k)21, + op(1),
Jk=1
where z = [21, 25, -+, Zy] ~ N(0, IT), 2 denotes equality in distribution, and the expression

(H)(J, k) denotes the (4, k) block of a T' x T matrix H when H is decomposed into N x N

blocks with each block a 4 x 4 matrix. The third equality in distribution is due to normality

of v.

Let us consider the case 3. Note that

SIMOULMIYGE) = L (FOAQLL)(, k) — (D22 X (X'X) XL (G, K
DX (X X)X QUQL) G, K)

1
+N(L’X(X’X)‘1X’QAQ’AX(X’X)”1X'L)(j,k), (3-27)
and from direct calculations, each term is expressed as

ik

1
HLQAQL) G, k) = (1 ~ max <N’ N)) LLAAL; + O(N7Y),

1
N(L’Q AAX (X' XY IX'L) (4, k)
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j k‘2 jZ k‘2
-3 (1 - N) (1 - ﬁ) +3 (1 - N2) <1 -7 | {LAAA Ly

+O(N™H), (3-28)

and the third and fourth terms of (3-27) have the same expression as (3-28) except for the
O(N~1) term. Then (3-27) can be expressed as

j k

L (L MQuQUME) (G, k) = Kg( .

> LLAAL + O(NY),

2=

where

Ki(s,t) = 1—max(s,t)—4(1—-s)(1—1t)+3(1—s)(1—1)
+3(1 = s)(1 —t2) — 3(1 — t3)(1 — %)

= min(s,t) — 4st + 3st(s +t) — 3522
From the above relation and Lemma 3 of Nabeya and Tanaka (1988), we have

ik

N'N —0

Z — LMQAQ ML)(j, )zk-—jv— E K3<

) z;-L'lAA'lek
j,k 1 J k=1

2

so that the above difference in determinant converges to zero in probability by Markov’s
inequality. Then, since ! = Q and & - w under Hy where -2 denotes convergence in

probability, it is enough to consider the limiting distribution of

(712; LAY '
SSI*Q}NJ;IKB (N N> LAALle

To derive the limiting distribution of S3;, we use Lemma 2.1, and to apply it to this

case, we diagonalize the matrix L{AA'L; by the 4 X 4 orthogonal matrix P,

P = [P17P2,p3ap4]

1 0 -1 —616963(626% + 1)
|t | &ss | 1| —1 | 1 f 0 | 1| 8a8u(6a8a + 6164)
\/61‘ 6104 ’ Va2 0 ’ Va3 bob3 |’ \/ZIZ —51(5%52 +1) ’
o1 6364 0 6263 + 6104
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where each ¢; is a normalizer for p; to have a unit length. Especially, g1 = (1 + 6% 4+ 6262 +
626363). Then, since L1p; = 0 for ¢ = 2, 3,4, we have

P'LYAA'L P = diag(x' AA', 0,0,0), (3 —29)

where k = Lip1 = (1 + 82 + 6262 + 626263)V/2(1, 64, 6263, 626384)'. Note that P'LIL1P =
diag(k'k,0,0,0) and 'k is a nonzero eigenvalue of LiL;. By (3-29) and Lemma 2.1, we

have

2 N A
S;:I - = Z K3 <%, ‘ﬁ) Z9PPIL£AA/L1PPle
k
N

wN =

) Zidiag{x'AA’k, 0,0, 0}z

= Sz (3-30)

since w = o2k’ AA'k, where {)3,} is a sequence of eigenvalues of K3(s,t). Since the Fred-

holm determinant of K3(s,t) is

D3(\) = % (2— VAsinvV\ — 2COS\/X>,

(see Nabeya and Tanaka, 1988), the characteristic function of (3-30) is [D3(2i8)]~'/2 by

Lemma 2.1.
For the cases 1 and 2, we can show that
1. ) : J RN -1
L MOUML) G, K) = Ko (ﬁ, N) LLAALy + O(NY)
for m =1 and 2, where

Ki(s,t) =1 —max(s,t), Ks(s,t) = min(s,t)— st,

and the corresponding Fredholm determinants are

sin \/X

Di1(\) =cosV\, Dy()) = 7

.0
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(ii) Since, under Hy, w = Le + Qav + 0-1 — ¥ and (Le + Q4v) ~ N(0, o2(pLL' + Q49)),
we have

Smr = ~—]1v—2w MLL'Mw
2
~ ](’,2 2 (pLL' + Qo) V2 MLL' M(pLL' + Qa84)Y22 + 0p(1)
2
”J:ﬂ 2 L'M(pLL + Qa4 )M Lz + o0,(1)

le

e

= Ty (%(L’MQAQ ML)G,K) + & (U MLL ML), k)) 2 + op(1)

N
= Ly (%(L'MQAQ'AML)( +< Z—(L ML), )—(L’ML)(l k)) 25 + 0p(1)
-1 l 1

In the same way as (i), we can derive that

UML) R) = Ko (£,

Z N)L’L1+O( 1y, (3 31)

for the case 3, and since Q —2+ Q under H; and from the same discussion as (i), it is enough
to investigate the limiting distribution of
2 N ;
$ok Ty J k / ! C2 l ) ( l k) / 2

= — K .
S3I oN ]%::1 {Kg (N N>L AA L1+ (Z 3<N N K3 N N (LlLl) Zk

Since P'LYAA'L; P = diag(k' AA'k, 0, 0,0) from (3-29) and P'L{ Ly P = diag(x'k, 0,0, 0)
by direct calculations, we have, using Lemma 2.3,

o2

N .
- Oy J k
S o= Zl ziP {Kg, (N’ N) P'LiAA'L, P

Jk=

+£ f:K (ii>K i.ﬁ P'LiL,P)?*} P
v\ v w) e\ w) | ERlE) Pa

2 N k
w]1<7 2! {K3 (N N) diag(k'AA'k,0,0,0)

+§Vi <ZK3 (—]‘z—[, -J%) K3 (—]i? Z)) diag((x'k)?,0,0, 0)} Pz,

Jle
Q

d, 0_12, i kK AA'K + 02(;;’5)2 7
W n=1 >\3)n A3,’)’1.
> 1 020'2(4)%

= | 22 3-32
7’; <>\3’n w>\§1n " ( )



Then, by Lemma 2.3, the limiting characteristic function is given by (3-15).

For the cases 1 and 2, note that

j k

ML) E) = K (N N)L'L1+O< -,

for m =1 and 2, and the theorem is proved in the same way as above for these cases.D

Proof of Corollary 3.1: Since w = L% + u where Lo = L with {60} instead of {4;}, we
have, as in the proof of Theorem 3.1 (ii),

2
Sor & 2 z’L’M(pLOLO'—I—QAQ’A)MLz—i-op(l)

N2
2 1 N
= : i Z z; <N(L’MQAQ’AML)(]', Z (L'ML%)3G, )+ (LO'ML)(Z, k)) 21+ 0p(1),
Jk=1 :1

In the same way as (3-31), we have

j k

1., _
YV—(LMLO)(],k)zK (N &

) LiLY + O(Nh),

form=1,2 and 3. Then, since L1 P = [k, 0, 0, 0], we have

i n’AA’n+c2m'L(1’L‘1)’n 72
Ao "

in the same way as (3-32).0
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Table 1. Percent Points of the Limiting Null Distribution of Sp.r

0.01 0.05 0.1 0.5 0.9 0.95 0.99

Sir | 0.0345 0.0565 0.0765 0.2905 1.1958 1.6557 2.7875
Sor | 0.0248 0.0366 0.0460 0.1189 0.3473 0.4614 0.7435
S3r | 0.0173 0.0234 0.0279 0.0555 0.1192 0.1479 0.2177
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Table 2. The Size and Power of Sp.z, Smzr and Sprrr with 5% Asymptotic Critical Value:

T=100
Smr1 Smir Smirr
51626384 (ratio) | £1=2 4 6 8 | fa=1 2 3 4 £3=2 4 6 8

Case 1
(1:1:1:1) } 0.712 0.539 0.023 0.000 | 0.898 0.807 0.721 0.631 | 0.905 0.818 0.742 0.660
1(2:1:2:1) | 0.713 0.521 0.012 0.000 | 0915 0.811 0.728 0.636 | 0.920 0.823 0.749 0.664
(2:2:1:1) | 0.676 0.423 0.000 0.000 | 0.911 0.796 0.716 0.620 | 0.919 0.814 0.736 0.650
(1:1:1:1) | 0.286 0.099 0.001 0.000 | 0.579 0.348 0.197 0.085 | 0.608 0.403 0.257 0.163
0.8 (2:1:2:1) | 0.276 0.092 0.001 0.000 | 0.585 0.358 0.206 0.098 | 0.618 0.415 0.274 0.163
(2:2:1:1) | 0.242 0.043 0.000 0.000 | 0.609 0.360 0.190 0.079 | 0.641 0.408 0.269 0.143
(1:1:1:1) | 0.120 0.029 0.001 0.000 | 0.263 0.097 0.033 0.016 | 0.303 0.156 0.072 0.046
0.6 (2:1:2:1) | 0.120 0.026 0.000 0.000 | 0.277 0.104 0.036 0.016 | 0.324 0.174 0.084 0.046
(2:2:1:1) | 0.085 0.015 0.000 0.000 | 0.279 0.091 0.032 0.011 | 0.343 0.164 0.073 0.041
(1:1:1:1) | 0.066 0.017 0.001 0.000 | 0.097 0.033 0.020 0.017 | 0.147 0.068 0.042 0.029
0.4 (2:1:2:1) | 0.065 0.017 0.000 0.000 | 0.103 0.033 0.020 0.016 | 0.160 0.073 0.043 0.034
(2:2:1:1) 0.050 0.008 0.000 0.000] 0.109 0.028 0.014 0.010 | 0.169 0.071 0.038 0.030
(1:1:1:1) | 0.035 0.008 0.000 0.000 | 0.044 0.027 0.026 0.026 | 0.071 0.047 0.036 0.032
0.2 (2:1:2:1) | 0.038 0.010 0.000 0.000 | 0.048 0.026 0.024 0.022 { 0.079 0.051 0.038 0.035
(2:2:1:1) ; 0.035 0.004 0.000 0.000 | 0.045 0.021 0.020 0.020 | 0.084 0.047 0.036 0.031

Case 2
(1:1:1:1) | 0581 0.377 0.117 0.005 | 0.850 0.669 0.534 0.400 | 0.872 0.709 0.577 0.473
1(2:1:2:1) | 0.580 0.379 0.109 0.003 | 0.861 0.693 0.540 0.406 | 0.877 0.732 0.595 0.485
(2:2:1:1) | 0.545 0.276 0.007 0.000 | 0.863 0.677 0.538 0.385 | 0.886 0.716 0.593 0.459
(1:1:1:1) | 0.300 0.109 0.012 0.002 [ 0.554 0.306 0.129 0.035 | 0.594 0.368 0.221 0.106
0.8 (2:1:2:1) | 0286 0.115 0.016 0.001 | 0.574 0.318 0.136 0.040 | 0.624 0.392 0.233 0.117
(2:2:1:1) | 0.238 0.051 0.002 0.000 | 0.570 0.295 0.128 0.031 | 0.615 0.365 0.220 0.108
(1:1:1:1) | 0.158 0.058 0.011 0.001 | 0.286 0.098 0.027 0.011 | 0.362 0.167 0.088 0.042
0.6 (2:1:2:1) | 0.166 0.059 0.011 0.002 | 0.323 0.108 0.035 0.015 | 0.395 0.187 0.094 0.054
(2:2:1:1) | 0133 0.028 0.001 0.000 | 0.324 0.095 0.024 0.009 | 0.388 0.180 0.081 0.039
(1:1:1:1) | 0111 0.041 0.010 0.002 | 0.125 0.041 0.024 0.021 | 0.191 0.093 0.056 0.045
0.4 (2:1:2:1) | 0.108 0.047 0.008 0.002 | 0.139 0.043 0.024 0.020 | 0.218 0.100 0.058 0.046
(2:2:1:1) | 0.081 0.025 0.002 0.000 | 0.140 0.036 0.015 0.014 | 0.219 0.091 0.053 0.043
(1:1:1:1) | 0.064 0.030 0.010 0.002 | 0.055 0.041 0.038 0.034 | 0.106 0.066 0.052 0.048
0.2 (2:1:2:1) | 0.068 0.033 0.007 0.003 | 0.062 0.042 0.037 0.036 | 0.108 0.069 0.056 0.051
(2:2:1:1) | 0.060 0.025 0.005 0.000 | 0.059 0.035 0.031 0.029 | 0.123 0.061 0.052 0.045

Case 3
(1:1:1:1) | 0.448 0.204 0.087 0.266 | 0.726 0.439 0.213 0.093 | 0.782 0.527 0.392 0.176
1(2:1:2:1) | 0444 0.202 0.092 0.274 | 0.764 0.458 0.228 0.099 | 0.812 0.564 0.342 0.200
(2:2:1:1) | 0337 0.056 0.013 0.131 | 0.750 0.414 0.193 0.074 | 0.798 0.528 0.303 0.165
(1:1:1:1) | 0.267 0.100 0.063 0.294 | 0.548 0.218 0.056 0.006 | 0.634 0322 0.153 0.046
0.8 (2:1:2:1) | 0.262 0.104 0.060 0.298 | 0.590 0.229 0.074 0.011 | 0.678 0.360 0.168 0.070
(2:2:1:1) | 0190 0.025 0.021 0.162 | 0.580 0.204 0.050 0.013 | 0.674 0.315 0.145 0.048
(L:1:1:1) | 0152 0.061 0.077 0364 | 0.274 0.063 0.010 0.004 | 0.378 0.142 0.055 0.018
0.6 (2:1:2:1) | 0.164 0.057 0.071 0.371 | 0.308 0.076 0.013 0.004 | 0.430 0.174 0.071 0.028
(2:2:1:1) | 0.102 0.020 0.037 0.237 | 0.307 0.069 0.007 0.003 | 0.439 0.143 0.053 0.017
(1:1:1:1) | 0.094 0.050 0.090 0.432 | 0.099 0.025 0.010 0.010 | 0.i8 0.073 0.040 0.025
0.4 (2:1:2:1) { 0.091 0.048 0.093 0.434 | 0.127 0.030 0.011 0.009 | 0.226 0.087 0.049 0.030
(2:2:1:1) | 0.063  0.023 0.066 0.317 | 0.118 0.024 0.008 0.008 | 0.233 0.081 0.041 0.022
(L:1:1:1) | 0.069 0.043 0.112 0481 | 0.050 0.025 0.022 0.019 | 0.092  0.055 0.041 0.037
0.2 (2:1:2:1) | 0.070 0.051 0.123 0.490 { 0.055 0.030 0.026 0.025 | 0.109 0.060 0.044 0.038
(2:2:1:1) | 0.056 0.039 0.097 0414 | 0.053 0.021 0.017 0.016 | 0.112 0.058 0.043 0.035
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Table 3. The Size and Power of Sy, Sz and Sprrr with 5% Asymptotic Critical Value:

74

T=200
S Senir Smirr
51626354 (ratio) Zl=2 4 6 8 52=1 2 3 4 Ea=2 4 6 8
Case 1
(1:1:1:1) | 0.756 0.690 0.597 0.463 | 0.965 0.925 0.877 0.828 | 0.931 0.883 0.839 0.797
1(2:1:2:1) { 0.750 0.685 0.600 0.474 | 0.978 0.918 0.878 0.833 | 0.927 0.883 0.843 0.802
(2:2:1:1) | 0.728 0.643 0.520 0.327 | 0.976 0.933 0.872 0.815 | 0.944 0884 0.835 0.788
(1:1:1:1) § 0.205 0.130 0.072 0.028 | 0.630 0.413 0.278 0.188 | 0.456 0.332 0.243 0.187
0.8 (2:1:2:1) | 0.209 0.121 0.073 0.028 | 0.643 0.426 0.289 0.182 | 0478 0.345 0.257 0.190
(2:2:1:1) | 0.167 0.097 0.038 0.008 | 0.645 0.404 0.258 0.166 | 0.452 0.311 0.224 0.162
(1:1:1:1) | 0.096 0.055 0.032 0.008 | 0.302 0.137 0.081 0.048 | 0.192 0.133 0.096 0.082
0.6 (2:1:2:1) | 0.094 0.054 0.025 0.005 | 0.325 0.145 0.080 0.050 | 0.212 0.135 0.094 0.081
(2:2:1:1) | 0.073 0.037 0.015 0.003 | 0.315 0.132 0.069 0.039 | 0.191 0.126 0.098 0.071
(1:1:1:1) { 0.062 0.033 0.016 0.005 | 0.130 0.057 0.043 0.037 { 0.111 0.0v8 0.064 0.056
0.4 (2:1:2:1) | 0.057 0.031 0.014 0.003 | 0.136 0.061 0.044 0.033 | 0.110 0.079 0.065 0.061
(2:2:1:1) | 0.044 0.019 0.010 0.002 } 0.125 0.057 0.034 0.029 | 0.101 0.074 0.065 0.054
(1:1:1:1) | 0.040 0.023 0.012 0.003 | 0.064 0.043 0.040 0.036 | 0.066 0.057 0.053 0.051
0.2 (2:1:2:1) | 0.040 0.021 0.012 0.002 { 0.070 0.038 0.036 0.036 | 0.075 0.064 0.057 0.052
(2:2:1:1) | 0.034 0.016 0.007 0.001 | 0.062 0.035 0.030 0.030 | 0.066 0.060 0.056 0.052
Case 2
(1:1:1:1) | 0.625 0.525 0.446 0.340 | 0.960 0.892 0.799 0.716 | 0.909 0.832 0.750 0.679
1(2:1:2:1) | 0.621 0.535 0.445 0.340 | 0.969 0.903 0.796 0.708 ; 0.923 0.833 0.753 0.672
(2:2:1:1) | 0.586 0.479 0.362 0.210 | 0.965 0.883 0.794 0.700 | 0.900 0.828 0.750 0.656
(1:1:1:1) | 0.215 0.131 0.068 0.034 | 0.701 0.417 0.254 0.160 | 0.484 0.341 0.234 0.166
0.8 (2:1:2:1) | 0.218 0.139 0.071 0.037 | 0.734 0.446 0.267 0.159 | 0.511 0.345 0.242 0.175
(2:2:1:1) | 0.166 0.090 0.041 0.014 | 0.734 0.424 0.247 0.142 | 0.513 0.323 0.215 0.150
(1:1:1:1) | 0.099 0.067 0.044 0.027 | 0.320 0.138 0.072 0.045 | 0.206 0.129 0.096 0.075
0.6 (2:1:2:1) | 0.109 0.068 0.042 0.020 | 0.353 0.147 0.080 0.046 | 0.222 0.136 0.106 0.082
(2:2:1:1) | 0.074 0.050 0.026 0.011 { 0.355 0.131 0.063 0.043 | 0.216 0.126 0.086 0.068
(1:1:1:1) | 0.064 0.052 0.038 0.024 | 0.139 0.054 0.040 0.034 | 0.109 0.081 0.058 0.051
0.4 (2:1:2:1) | 0.067 0.050 0.036 0.019 | 0.150 0.062 0.042 0.035 | 0.117 0.086 0.065 0.057
(2:2:1:1) | 0.057 0.043 0.023 0.010 | 0.139 0.058 0.044 0.038 | 0.110 0.076 0.063 0.057
(1:1:1:1) | 0.061 0.044 0.034 0.019 | 0.061 0.04T 0.037 0.036 | 0.072 0.057 0.054 0.048
0.2 (2:1:2:1) | 0.055 0.041 0.032 0.018 | 0.069 0.043 0.040 0.039 | 0.075 0.065 0.058 0.051
(2:2:1:1) | 0.050 0.038 0.023 0.011 | 0.067 0.042 0.040 0.038 | 0.075 0.059 0.054 0.051
Case 3
(1:1:1:1) | 0512 0.373 0.247 0.147 | 0.953 0.822 0.653 0.487 | 0.868 0.719 0587 0.473
1(2:1:2:1) | 0.505 0.368 0.251 0.148 | 0.069 0.826 0.667 0.497 | 0.880 0.741 0.604 0.477
(2:2:1:1) | 0435 0.267 0.113 0.022 | 0.959 0.821 0.630 0.461 | 0.875 0.712 0567 0.441
(1:1:1:1) | 0207 0.123 0.060 0.045 | 0.792 0.453 0.223 0.108 | 0.563 0.357 0216 0.129
0.8 (2:1:2:1) | 0.212 0.116 0.064 0.047 | 0.825 0.479 0.239 0.119 | 0.606 0.375 0.224 0.147
(2:2:1:1) | 0.155 0.063 0.026 0.008 | 0.824 0.466 0.218 0.093 | 0.572 0.355 0.202 0.121
(1:1:1:1) | 0.103 0.056 0.049 0.043 | 0.409 0.134 0.046 0.017 | 0.232 0.134 0.080 0.051
0.6 (2:1:2:1) | 0.092 0.059 0.047 0.043 | 0.445 0.143 0.048 0.025 | 0.256 0.142 0.083 0.056
(2:2:1:1) | 0.063 0.031 0.024 0.012 | 0.445 0.132 0.041 0.016 | 0.248 0.125 0.071 0.042
(1:1:1:1) | 0.057 0.036 0.041 0.046 | 0.138 0.040 0.016 0011 | 0.108 0071 0.043 0.032
0.4 (2:1:2:1) | 0.053 0.040 0.040 0.045 | 0.158 0.041 0.018 0.014 | 0.127 0.075 0.053 0.037
(2:2:1:1) | 0.039 0.025 0.027 0.022 | 0.166 0.042 0.013 0.010 | 0.118 0.079 0.048 0.035
(1:1:1:1) | 0.035 0.033 0.039 0.044 | 0.053 0.025 0.018 0.016 | 0.057 0.043 0.036 0.034
0.2 (2:1:2:1) | 0.034 0.032 0.042 0.049 | 0.057 0.025 0018 0.018 | 0.066 0.049 0.039 0.037
{(2:2:1:1) | 0.036 0.025 0.027 0.034 | 0.060 0.020 0.016 0.015 | 0.077 0.053 0.033 0.031



Table 4. The Test for Periodic Integration

61 62 (53 54 LR
CP |0.964 1.033 1.025 0.980 | 0.206
YDH | 0.997 0.989 1.041 0.973 | 0.573

Table 5. The Test for Periodic Stationarity

Sar Sarr Sarrr
l1=4 6 8 =2 3 4 £3=8 10 12
CP {0.246 0.194 0.167 | 10.284 5.637 3.577 | 3.664 2.559 1.900
YDH | 0.244 0.190 0.164 | 4.978 2.711 1.729 | 1.822 1.293 0.978
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Figure la. Limiting Powers in the Case 1
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Figure 2a. Effects of Signs of {§,} in the Case 1
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Figure 2b. Effects of Signs of {6} in the Case 2
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Figure 2c. Effects of Signs of {85} in the Case 3
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Figure 3. Log of Real National Consumption Expenditure and Log of Real Disposable Income of Household
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Chapter 4.

Testing for Stationarity with a Break

In this chapter, we investigate the test for the null hypothesis of stationarity with a structural
change against a unit root. We derive the limiting distribution of the LM test statistic and
its characteristic function under a sequence of local alternatives. We also propose the test
statistic which does not depend on the fraction of a break date to the sample size. Applying
our tests to the Nelson-Plosser data, we find that for some macroeconomic time series, for
which the tests proposed by Perron (1997) and Zivot and Andrews (1992) reject the null of

a unit root, our tests accept the null of stationarity with a break.
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1. Introduction

In this chapter, we propose testing procedures for the null hypothesis of stationarity with a
structural change against a unit root. According to the empirical studies reviewed in Section
4 of Chapter 1, there are several cases that the null hypothesis of a unit root is rejected. In
such cases, the researcher may guess that the time series obey a stationary process possibly
with a break, but the rejection of a unit root does not necessarily imply stationarity of the
data since the tests for a unit root may have the power against more general alternatives.
Then, once the null of a unit root is rejected, the test for the null of stationarity with a
break becomes of primary interest. As in the tests for the null of a unit root possibly with
a break, we suppose that the fraction of the break date to the sample size is constant, and
the limiting distribution of our test based on the LM principle also depends on its fraction.
We also propose the test statistic which does not depend on the fraction under the null
hypothesis in some cases as in Park and Sung (1994) (we call that test the PS test). The
limiting properties of the tests proposed in this chapter are compared under a sequence of
local alternatives, and, as suggested in theory that the LM test is locally best invariant
(LBI) under the assumption of normality, the limiting power of the LM test dominates that
of the PS test under the alternative close to the null, though this is not always the case

when the local alternatives diverge from the null.

The plan of this chapter is as follows. Section 2 sets up the model and assumption. Two
test statistics are proposed in Section 3 and the limiting properties of them are investigated.
Finite sample properties are investigated in Section 4 and the tests proposed in this chapter

are applied to the U.S. macroeconomic data in Section 5. Section 6 concludes the chapter.
2. The Model and the Testing Problem
Let us consider the following error-components model.

Y =20+ T, Te=YetU, Y= Vel + € U =0y, (4-1)

where z; denotes a deterministic component which includes a trend break, {v;} ~ NID(0, 02)
with 62 > 0, {&:} ~ NID(0,02) with 02 > 0, and {u} and {e¢} are independent. We set

t=1,---,T, and 79 = 0 without loss of generality since z; includes a constant term as
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defined below. We suppose that a structural change occurred at time Tg (1< Tg <T)
and that w = Tg/T is fixed. For the deterministic component, z;, we consider the following

four cases.

Case 0 : a constant with a break; z = [1, DU/,

Case 1 : a constant with a break and a linear trend; z; = (1, DU, ],

Case 2 : a constant with no break and a linear trend with a break; z = [1,t, DT3]',
Case 3 : a constant and a linear trend both with a break; z; = [1, DUy, t, DT;],

where DU, = 1(¢t > Tg) and DT} = 1(t > T) x (t — Tp) with 1(-) denoting an indicator
function. The case 0 corresponds to the model without a linear trend such as an interest rate
and the purchasing power parity as discussed in Perron (1990) and Perron and Vogelsang
(1992a, b), whereas the cases 1 to 3 the model with a linear trend such as the gross domestic
product and many macroeconomic variables. Perron (1989) called the case 1 the “crash
model” while the case 2 the “changing growth model”. The case 3 allows for a “sudden

change in level followed by a different growth path”.

Basically we will investigate the above “additive outlier model”, that is, we suppose that
a shock affects the observation only at one time, but we will later discuss the case that

the effect of a structural change pervades the variables with lags, which may be called the

‘innovational outlier model”.

We also assume that the break point is known. As discussed in the literature, this
assumption might be inadequate and the unknown break point emerges. However, when
the observation obeys a stationary process, the testing procedures for a structural change are
proposed in the literature and the consistent estimator of the break point has been developed
and is available. Then, our analysis below can be established using such an estimator even
with an unknown break point. See, for example, Andrews (1993), Andrews and Ploberger
(1994) and Vogelsang (1997) for the tests of the structural change, and Bai (1994, 1998)

and Nunes, Kuan and Newbold (1995) for the consistent estimation of the break point.

The model (4-1) can be expressed as the vectorized model by stacking each variable,

y=2Z8+z, z=v+u, v=1Le u=v,
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where, e.g., ¥y = [y1, -+, yr]| and L is a lower triangular matrix with lower elements 1’s,
1 0
L=\ .
1 .. 1
To test for the null hypothesis of stationarity with a break, we consider the following
testing problem:
(4-2)
where c is a constant. Then, under the null hypothesis, 02 = 0 so that {y;} is (trend)
stationary with a break. On the other hand, under Hy, xz; contains a unit root component
7 so that {y:} becomes a unit root process with a break. By considering a sequence of the

local alternatives, not a fixed alternative, we can derive the local limiting power functions

and we will investigate the properties of the test statistics by drawing such functions.

3. Testing for Stationarity

3.1. The LM Test

For the testing problem (4-2), it is well known that the LM test statistic is proportional
to y’ MLL'My where M = I — Z(Z'Z)7*Z'. See, for example, Kwiatkowski, Phillips and
Schmidt (1992) for its derivation. We will consider the limiting distribution of 3/ M LL' My
multiplied by T-2. Note that, under the assumption of normality, the LM test is equivalent
to the LBI test as discussed in King and Hillier (1985).

Here we allow for dependence of {u;} since the assumption of independence is too re-

strictive. We suppose that

oo o0
Uy = Zajvt—j, > dlayl < oo
5=0 =1

We also assume that a = 3772, a; # 0. Note that a finite-order autoregressive moving

average (ARMA) process satisfies the above condition.

Since the limiting distribution of the LM test statistic depends on a nuisance parameter

as shown in the proof of Appendix 4, we consider the following statistic.

1 / ) Tl 2
T—.a‘szyMLLMy:WZ E.’L’t y (4—3)

j=1 \t=1
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where

£
Y(0) +2) " w(, £)7(i), (4-4)
=1

with (i) = S150 #:3¢44/T and w(3,£) = 1 —i/(£ 4 1) the Bartlett window for £ = o(N1/2),
and Z; are regression residuals of y; on z,
T s
v (L) T
\35_:1 t=1
The second expression of (4-3) is convenient for the practical calculation of the test statistic,
though we mainly use the first expression for the theoretical explanation.
The following theorem gives the limiting distribution of S and its characteristic function

for each case. For notational convenience, we define the following functional of a standard

Brownian motion as a generic form,
2
G(B;?) / B(r)2dr — X(BYA"'X(B) + ¢ / ( / B(s)ds — Z )’A“lX(B)> dr,

where B(-) is a standard Brownian motion and X(B) denotes a functional of B(-). Since

the null hypothesis is a special case of the alternative (¢ = 0), we give the result only under

the alternative.
Theorem 4.1 Consider the model (4-1). (i) For the cases 0 and 8, under a sequence of
local alternatives, Hy,

Sr 5 W2G(By; Pt fo?) + (1 — w)2G(By, A1 — w?) /a?), (4-5)

and its characteristic function is expressed as

#(6;c) = [D (iw20 + \//—w462 + 22’c2w46/a2> D (iw29 - \/—w402 + 2ic2w49/a2>} e
[D ( (1 - )20+ /~(1 - )02 1 2i2(1 )40/a2>
D (i(l ~ )% — /(1 - w)*6? + 2ic*(1 — w)49/a2>] o , (4-6)

where By (-) and By(-) are independent Brownian motions, i = \/~1, and

(i-a) for the case 0,
X(B) = /0 'Br)dr, Z(r)=r. A=1,
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D(Y) = %@

(i-b) for the case 8,

1 T
xe = f50 | 2o=] 2] 2]

(e Sl
[ IS—— |

(ST

D(\) = % (2— VAsinVA - 2COS\/X).

(ii) For the cases 1 and 2, under a sequence of local alternatives, Hi,
Sr % G(B; /o), (4-7)
and its characteristic function is expressed as

b(8;¢c) = [D (w +y/-62 + 2ic20/a2> D (i@ — /62 + 2ic29/a2>] _1/2, (4-8)

where B(+) is a standard Brownian motion and

(ii-a) for the case 1,

Jo B(r)dr r 1 1-w 1
X(B)=| [LB(r)dr |, Z(r)=|dtr |, A=|1-w 1-w =2 |,
2
fol rB(r)dr = % 1_2_w2 %
by 12\/Xsin Vw? sin /AT = w)? +2 (sin VX — sin v2w? — sin VXT=oP)

A/2w(1 — w){1 = 3w(l — w)} ’
(ii-b) for the case 2,

fol B(r)dr r
X(B) = fo rB(r)dr y Z(r)= L; ,
fj (T‘ — u))B(T)dT‘ ]_(7" > w) (r—2w)2
1 i (A=w)?
A= ! % (1—w)§(w+2) . D) = Dy (/\)7;1-2 D32()\) + 133(/\) ,
(el (-w)wr2) (B AT7203(1 - w)

with
D1(A) = dw(l — w) sin V),

Da(X) :2{sin\/m+sin1/)\(l —w)? —sin VA — A\1/? <wcosm+ (1 —-w)cos \/m>}

D3()) = A1/ (cosx/X—F cos Vaw? cos /(1 — w)2> ,

where dt, = 1(r > w) X (r — w).
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Remark 1: For the cases 0 and 3, the limiting distribution is expressed as the sum of two
independent functionals, G(B;) and G(B3), so that its characteristic function is expressed
as the product of two characteristic functions. This is because the test statistic St can be
expressed as the sum of two functions, one is a function depending on the observation before
the break and the other is after the break. See the proof of Appendix 4. Since St for the
cases 1 and 2 can not be expressed in such a form, its characteristic function becomes a little
complicated. Though the limiting distributions for the cases 0 and 3 can also be expressed
as (4-7), the expression (4-5) may be more intuitive to understand why their characteristic

functions have the form as (4-6).

Remark 2: Under the null hypothesis, ¢ = 0 so that Sy converges in distribution to

w? (/01 Bi(r)%dr — X(Bl)’A—1X(31)> + (1 - w)? </01 By(r)2dr — X(Bz)’A‘lX(Bz)) ,
(4-9)

for the cases 0 and 3, and
1
/ B(r)%dr — X(B)YA1X(B), (4 - 10)
0

for the cases 1 and 2. And their characteristic functions can be expressed more compactly
as
#(8) = [D (2i%0) D (2i(1 - w)?9)] 2 (4—11)
for the cases 0 and 3, and
9(6) = D (2i0)]7'/2, (4~12)

for the cases 1 and 2.

Remark 3: Though the proof of Theorem 4.1 depends on normality of disturbances, the
null distribution can be derived only with i.i.d. assumption on {v;}. For example, let us
consider the case 0. From the second equality of (4-3), Sp = T~ -6 1T-12 )| 7,)
and, as in the proof, we can see that 5-17"1/2 qu} 7 -2, B(r) — Z(ryA71X* = V(r)
with X** = [B(1), B(1) — B(w))’ under Hy. Then, using the continuous mapping theorem,

St converges in distribution to f; V(r)2dr, which is another expression of the limiting

distribution different from (4-9). Here we used the invariance principle and then we have
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only to need the i.i.d. assumption, so that whether normality is assumed does not affect the
limiting distribution. In this sense, the percentiles of the null distribution tabulated below

can be used for the model with the more general assumption of disturbances.

From the above theorem, we can obtain the distribution function F(z) in each case by
inverting the characteristic function. Since the limiting distribution is nonnegative, we can

calculate the percent points by numerical integration, using Lévy’s inversion formula,

0 _ e—i@:z:
Flz) = }7; /0 Re [17—-¢(9;c)} do. (4—13)

Especially for the null distribution, we set ¢ = 0, that is, we use the characteristic function
(4-11) or (4-12).

Tables 1a-1d report the percent points for the cases 0 to 3. Since, as we can see from
the characteristic function, the limiting distribution when w = w* is the same as when
w = 1—w*, that is, it is symmetric around w = 0.5, we tabulate percentiles only for w = 0.1,

0.2, 0.3, 0.4 and 0.5. For w > 0.5, we can refer to the tables corresponding to 1 — w.

From the tables, we can see that, for the cases 0, 2 and 3, the more centered the break
point is, the further is the distribution function located to the left. But the properties of
the distribution for the case 1 is different from the others. When w increases from 0.1 to
around 0.3, the distribution shifts to the left, whereas as w goes up to around 0.5, it moves

back to the right.

As in the case of the null distribution, the location of the break point, w, also affects
the limiting power properties. The limiting power function can also be calculated by the
numerical integration and is given by 1 — F(z) as a function of ¢. Figures 1a to 1d draw the
power functions for w = 0.1, 0.2, 0.3, 0.4 and 0.5. As in the case of the null distribution,
the properties for the cases 0, 2 and 3 are siﬁilar when c is close to 0. For these cases, the
power for the smaller w dominates that for the larger w (< 0.5) near the null hypothesis.
On the other hand, for the case 1, the power function for w = 0.1 is located higher than
that for w = 0.3, but the case of w = 0.5 is most powerful among five values of w when c is

close to 0. These properties seem to be only for the small values of ¢ and as ¢ increases, the

above relation does not hold.
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Next we compare the limiting power functions of four cases for a fixed w. Figures 2a-2e
draw them for w = 0.1, 0.2, 0.3, 0,4 and 0.5. As in the many other tests such as the Dickey-
Fuller test, the more complicated the deterministic term becomes, the less powerful is the
test statistic. We can see that the power function of the case 0 dominates the other three
cases, and the test in the case 3 is least powerful. These differences among power functions
tend to diminish as the value of w decreases to 0.1, and especially when w = 0.1, the power
functions of the cases 1, 2 and 3 are almost the same, though the power of the case 0 still

dominates the others.

3.2. The Test Independent of the Break Point

As we can see from Theorem 4.1, the limiting distribution of the LM test statistic depends
on the break point and then we tabulated the percent points of the null distribution for
several w’s. In this section, we consider the test statistic whose limiting distribution does
not depend on the value of w. We can construct such a test not for all cases but only for the
cases 0 and case 3, that is, for the cases when there is one time break in all deterministic
components included in the model. Then we consider only the cases 0 and 3 in this section.

Fundamentally our method is the same as Park and Sung (1994).

Firstly we make the weighted variable y; following the idea of Park and Sung (1994).

* T/TB'yt : t:l’...,TB,
. T/(T-Tg)y : t=Tg+1,---,T.

Then, using this variable, we construct the following statistic, which we call the PS statistic.

pS 1 ! ! 1 = J ’
ST = 5’2T2y M LL My = -——————5_2T2 E 1 E 1 mt ,
j: t=

where 2 is defined in (4-4) and %} are regression residuals of ¥ on z,
T -1
~k ok / ! *
t=1

The following theorem gives the limiting distribution of the PS statistic and its characteristic

function.
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Theorem 4.2 Consider the model (4-1). For the cases 0 and 3, under a sequence of local

alternatives, Hi,

85 - G(By; P’ fo?) + G(Byy (1 - w)*/a?),
and its characteristic function is expressed as
| : ~1/2
$(;¢) = |D (6 + V-0 + 2ic2w29> D (i - v/—62+ 2zc2w29)] (4-14)

x [D (w + /=62 + 2ic3(1 — w)20)D(if — /62 + 2ic>(1 - w)20>] o ,

where G(By), G(Ba) and D()\) are defined as in Theorem 4.1 (i-a) and (i-b) for the cases
0 and 8, respectively.

Remark 4: Though the above limiting distribution depends on the value of w under Hj,

we have, for ¢ = 0,

1 1
e 4, < | Biryar - X(Bl)'A‘lX(B1)> + ( | Balry?ar - X(Bz)’A‘lX(Bg)> ,
0 0
and ¢(6) = [D(2i6)]™", so that the null distribution does not depend on the break point.

Remark 5: Note that when w = 0.5 for the cases 0 and 3, the characteristic function of
the LM test (4-6) has the same structure as that of the PS test (4-14). Then, the PS test

is équivalent to the LM test when the break point is located at center of the sample.

As in the case of the LM test, we can calculate the percentiles of the PS test under Hy
by numerical integration using the inversion formula (4-13). Table 2 reports each percent
points of the PS test for the cases 0 and 3. As in the case of the LM test, the limiting
distribution of the case 0 is located to the left compared with that of the case3, though both
distributions of the PS tests are shifted to the right in comparison with those of the LM

tests.

Though the null distribution does not depend on the break point, it depends on w under
a sequence of local alternatives as shown by Theorem 4.2, so that the power depends on
the location of the break point. Figures 3a and 3b draw the limiting power functions of the

PS tests for the cases 0 and 3. Again, as the characteristic function is symmetric around
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w = 0.5, we consider only for the cases of w =0.1,0.2,0.3, 0.4 and 0.5. The relation among
power functions are very similar to the case of the LM test. That is, the power function
corresponding to the smaller value of w dominates that corresponding to the larger value of
w. However, the difference among the values of w is not so much as the LM test for both

cases 0 and 3.

Now we have two test statistics, St and S§, for the cases 0 and 3. Then, our interest is
the difference of the powers of their limiting distributions and whether one dominates the
other in view of the power. Figures 4a-4d depict the limiting power functions of the LM test
and the PS test for the case 0 and Figures 5a-5d for the case 3. From Figures 4a and 4d, we
can see that the power of the LM test dominates that of the PS test when w = 0.1, whereas
when w = 0.4, such a relation holds for small values of ¢ but that relation is reversed when
c increases over 8, though the difference between their powers is slight. Since the LM test
is LBI, the dominance of the LM test local to the null can be seen as a theoretical result.
As discussed in Remark 5, their power functions are completely the same when w = 0.5 and
then the PS test can be seen as the LBI test in such a case. For the case 3, the relation

between the LM and the LBI tests are very similar to the case 0.

3.3. The Innovational Outlier Model

Until now we have investigated the additive outlier model, with which the structural change
affects the observation only at one time. Here we discuss the innovational outlier model,

that is, we consider the case when the shock is gradual.

Let us consider the following model.

Y = 2151 + Y(B)(25,02) + x4, (4~-15)

where 23 = 1 or [1,t], z0¢ = DU;, DTy, or [DUy, DTi]' according to the cases 0 to 3,
P(B) =1+ 1B+ + ¥mB™ is an m-th order lag polynomial, and z; is defined as in the
model (4-1). By introducing the lag polynomial (B), the shock of the structural change
affects y; gradually with lags.
To test the null of stationarity with a break, we put z; = [2{;, 25 with 23, = (25, 251, 2]’

and, as in the case of the additive outlier model, construct the test statistic as (4-3).
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To consider the limiting distribution of the test statistic, we investigate Z;, regression

residuals of y; on z. Note that we can write
¢(B)DU; = noDUs + d(t, T)n",

Y(B)DT; = v%DU; + 1 DT + d(¢, Ts)7",
where 7705 77* = [771, e 7Tlm]’, Y0, Vis and 7* = [72a T 7'Ym+l], are lmphC1t1y defined and
d(t,Tg) = [D(TB)t, - -, D(TB)t—m) with D(Tg); = 1(t = Tp + 1). Some elements of n* and

~* might be zero. Then, F; is equivalent to regression residuals of y; on z;, where

z¥ = [1,DUd(t,Tg)] for the case 0,

zr = [1,t,DU;,d(t,Tg)]) for the case 1,

z¥ = [l,t,DU;, DTy, d(t, Tg)]" for the case 2,
2z = [1,t,DU;, DT, d(t, Tg)]" for the case 3.

However, since d(t, Tg) is asymptotically negligible, Z; can be seen as regression residuals of
y: on zf = [1, DUy, [1,¢, DUy, [1,t, DUy, DTy, and [1,¢t, DU;, DTy} for the cases 0, 1, 2 and
3, respectively. Then, for the cases 0, 1 and 3, the limiting distributions of the test statistics
with the innovational outlier model are the same as those with the additive outlier model,
whereas, for the case 2, the limiting distribution is the same as in the case 3. Then, if we
investigate the time series with the innovational outlier model, we can refer to Tables la,

1b, 1d, and 1d for the cases 0, 1, 2, and 3, respectively.
4. Finite Sample Properties

In this section, we investigate the finite sample behavior of the LM test statistic St and
the PS test statistic SES for the sample size 7' = 100 and 200. Since the test statistics are

invariant to 3, we consider the following data generating process (D.G.P.) for all cases.
Yt = Ye T U, Ve =Ye-1 €y U = QU1 + Vg, (4 - 16)

where e, ~ NID(0, p), vy ~ NID(0,1), {e:} and {v:} are independent, 79 = 0 and ug = 0.
The size of the test depends on a and w whereas the power is affected by p as well as

those parameters. We set a = 0, £0.2, £0.5 and £0.8, w = 0.1 to 0.9 step by 0.1, and
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p=0.01, 1, and 100. In addition, both the size and the power depend on the lag truncation
number £ in the equation (4-4), we consider the three values of £ as a function of T": £0 =0,
¢4 = [4(T'/100)/%), and £12 = [12(T/100)1/4], as in KPSS (1992). The number of replication
is 1,000 in all experiments, performed by the GAUSS matrix programming language.
Table 3a reports the empirical sizes of the LM test and of the PS test. The rows
corresponding to w = 0.1 to 0.9 are the size of the LM test, and those to “PS” are the size of
the PS test. Since we used the upper 5% point as the critical value, the nominal size of the
test is 0.05. From the table, we can see that the size of the LM test is much affected by the
persistence of the stationary error, a, and the lag truncation number, £. As a whole, there is
tendency of the over-rejection when the value of a goes to 1 and of the under-rejection when
a is a negative value. We can also say that when the absolute value of the AR parameter,
lal, is large, we need the longer lag truncation number to obtain the empirical size close to
0.05. The empirical size of the PS test also depends on the above parameters but not so

much compared with the LM test, and seems stable especially when the sample size is 200.

Tables 3b-3d show the simulation results for the cases 1 to 3. They are similar to the
case 0 and the relative performance of the tests is preserved. But for the case 3, the longer
lag truncation number does not necessarily contribute to the correction of the size distortion

and tends to cause the over-rejection of the LM test when 7" = 100 and of the PS test.

Tables 4a-4f report the power of each test (not size adjusted). For each w, we consider,
as the D.G.P., not only the error components model (4-16) but also the pure random walk

model, y; = ¢, whose result corresponds to the rows labeled “R.W.”.

Table 4a shows the empirical power of the case 0. The power increases when the sample
size becomes large whereas it tends to decrease when we use the longer lag truncation
number, except for the case when p = 0.01 and a is negative. We can also see that the
larger value of the signal to noise ratio, p, entails the higher power. For a large value of
p, the power of the test does not depend on a, especially when p = 100. This is because
the large value of p means that the nonstationary behavior of the process, v¢, dominates
the stationary one, u;. On the other hand, when p = 0.01, the empirical power much

depends on the value of a. Note that when a = 0, the lag truncation number /0 is chosen,
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and the sample size is 100, the powers, for example, for w = 0.2 and 0.8 are 0.477 and
0.491, respectively, which are larger than 0.413 for w = 0.5. Though we should carefully
compare the powers since they are not size-adjusted, the above comparison is adequate
since the empirical sizes for these cases are close to 0.05. This result is consistent with the
previous section, that is, the limiting power is higher when the break point is not the middle
but the ends of the sample for the case 0 when c is close to 0 (and when p is small). In
addition, we can see that the above values, 0.477, 0.413, and 0.477 are not so far from the
theoretical limiting powers, 0.513, 0.452, and 0.513 corresponding to the case when ¢ = 10
(p = 2/T? = 10?/100% = 0.01). We also note that the powers for w and 1 —w is very close,
which is also indicated in the local limiting power analysis.

As is shown in Tables 4b-4f, we can see that the similar properties are established for

the other cases.

5. Empirical Results

In this section, we apply the testing procedure developed in the previous section to the data
series of Nelson and Plosser (1982). The Nelson Plosser data are used in various studies,
and, especially, the existence of a unit root is one of the iﬁteres’cing issues and was analyzed
in Perron (1997) and Zivot and Andrews (1992), assuming trend stationarity with a break
under the alternative. Their results are very similar, that is, with the model corresponding
to our case 1, the unit root hypothesis is rejected for 5 out of 11 macroeconomic time series,
real GNP, nominal GNP, industrial production, employment and nominal wages, weakly
rejected (at 10% level) for real per capita GNP, and, with the model corresponding to our
case 3, the null of a unit root is rejected for common-stock prices. Here we should keep
in mind that, though their tests are designed to have the power against the stationarity
alternative, the rejection of a unit root hypothesis does not necessarily indicate stationarity
of the series since the tests will have the power in detecting more general alternatives. Then,
once the null of a unit root is rejected, our next interest may be whether the rejected time
series are well specified as a stationary model with a break. We apply the tests proposed
in the previous section to the above 7 macroeconomic time series as well as unemployment

rate originally investigated in Nelson and Plosser (1982).
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Firstly we should investigate whether the model with the structural change is adequate
to these time series. Vogelsang (1997) proposed the conservative test for the null of no
structural change for the I(0) or I(1) model and applied it to the Nelson Plosser data. For
our 8 time series, their results indicate that the null of no break is rejected for nominal
GNP and industrial product, weakly rejected for unemployment rate and common-stock
prices, but is not rejected for the other 4 time series. However, since the Vogelsang’s test is
conservative, the null hypothesis may be accepted too much often. In fact, its conservative
critical value is derived with the unit root model and, if the model is known to be the I(0)
process, the critical value becomes more liberal (smaller than the conservative one). As
mentioned above, the unit root model seems not adequate for our 8 time series and if we
apply the critical value corresponding to the stationary model (Table 1 in Vogelsang, 1997),
the null of no break is rejected for all of our time series, except for employment. Then, more
or less, the no-break model seems not to be a good specification for those 7 time series, for

which we proceed to test for the null of stationarity with a break.

Next we estimate the break point. We use the consistent estimator of the breék point
proposed in Nunes, Kuan aﬁd Newbold (1995). Note that it is enough for the estimator to
be consistent under the assumption of stationarity (not under the alternative of a unit root)
for our purpose, because we can see that the tests proposed in the previous section have the
non-trivial power for the unit root model even when the break point is misspecified. The
third and fourth columns in Table 5 report the estimated break point, T'5, and the fraction
of the break, w, respectively. The estimated break dates are around either 1929 or 1940.

Now using the above estimates of the break point, we apply the test for the stationarity
with a break for 7 time series. The model of the case 1 is used for all the series except
for common-stock prices, to which the model of the case 3 is applied. As was seen in the
previous section, the test depends on the lag truncation number ¢, we calculate the statistics
for £ = ¢4 and £12. We also calculate the PS test statistic for common-stock prices. From
the table, we can not reject the null of stationarity for unemployment and common—stock
price, whereas for real GNP, nominal GNP and nominal wages, there is a weak tendency
against stationarity, but, since the tests tends to over-reject the null from the finite sample

simulation of Section 4 when we use ¢4 as the lag truncation number, the stationary model
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with a break may be adequate for these series. On the other hand, there is a strong tendency
of rejection of stationarity for the real per capita GNP and industrial production. Then,
for these series, both the null of a unit root and stationarity are rejected, and the further
investigation may be required for them, possibly trying other models than the simple 1(0)

and (1) models.

6. Conclusion

In this chapter, we developed the testing procedure for the null hypothesis of stationarity
with a break against nonstationarity. We proposed the LM test and also the PS test which
does not depend on the fraction of the break point, w, under the null hypothesis. The
local limiting power is also investigated and the tests are shown to be consistent against
the alternative of a unit root. The simulation experiment reveals that the finite sample
properties depend on some parameters and, especially, we should be careful in selecting the
lag truncation number. By applying our tests to the Nelson Plosser data, some of the time
series for which the null of a unit root is rejected in Perron (1997) and Zivot and Andrews

(1992) are well specified as the stationary process with a break, but the others are not.

Though the several testing procedures are proposed to test for the null of a unit root
against stationarity with a break, our tests suppose the null of stationarity. Then, they do

not compete but complement each other to investigate the persistence of the time series.
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Appendix 4.

Proof of Theorem 4.1: Firstly we prove (4-5) and (4-7). Since we can easily see that
52 25 02 = o202 under Hy, where - denotes convergence in probability, we can re-define

St = 0 2T~2y MLL' My instead of (4-3) as far as the limiting distribution is concerned.

(i) Let us consider the case 0. Since [1 — DU;, DU;] spans the same space as [1, DUy}, we
can replace z = [1, DUy by 2z = [1 — DUy, DU, and then replace the orthogonal projection
matrix M by M, = diag{ M,, My}, where M, and M, are the TgxTg and (T'—-Tg)x(T'-Tg)
orthogonal projection matrices on a constant, z,; = 1 and z, = 1, respectively. Then, we
have the relation L'My = L'M.,y. Hereafter, we use the subscripts ¢ and b to denote

that the vector or the maftrix is associated with the data before a break and after a break,

respectively.

The typical j-th element of L' M,y is Zf:j Z but from the property of the regression, we

can see that Z?:TB 1%t = 0 so that Zg;j Ty = 2;-”3]. Z¢ for j < Tp. Then, we have

[ TliE ] [ TEE ]
o E / i
- _ L 0 T
IMy=L5=| Z=To% | _ S I | = LM,
2$=T3+1 Tt EngB+1 Tt 0 L Tb e
L & | L oz
(4-17)
where L, and Ly are the Tg X T and (T'—Tg) X (T'—Tg) matrices with the same structure
as L, L. = diag{Lq, Ls}, Zo = [Z1, -+, Z1,) and Zp = [Zrg41, -, Z7]".

Next we decompose the stationary component u; as
Ut = QU + Vg1 — Uty

where 0y = 3372 &jve—; with &; = 352, ) ag. Then we can write the stochastic component
of y; as & = v + v + ¥;_1 — ¥, of which the last two terms are asymptotically negligible.

Noting that under Hi, v; + avy ~ N(0,0%(a?Ir + pLL')), we have, using the relation
(4'17)7

1 /
ST - Fﬁx M*L*LLM*ZC
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2

4 3%2 V(eI + pLL') Y2 M, L, L. M.(a®Ir + pLL')Y?v 4 0,(1)
o2
4 2%2 VLM, (o*Ir + pLL'YM. L.v + 0p(1)
1 2
= VLML + 2T4 V' L M, LL' M, L + 0p(1), (4-18)
where v = [V,,1}) ~ N(0,Ir) and = 2 denotes equality in distribution. The third relation

holds because of normality of v. From the definition, we have

L'M,L, 0 }

0 L MyLy (4-19)

LML, = [

In addition, in the same discussion as the equation (4-17), since M, L.v is the regression

residual of L.v on the space spanned by [1 — DUy, DUy, the following equivalence holds.

LML =1 [ M } = [ AV ] (4~ 20)
Using (4-18), (4-19) and (4-20), the LM test statistic is expressed as
sp & 1}2 {L’ ML + zc; (L;M,,,La)2} Ve
1 2
+rath {LbeLb + e (LiMbLb)z} v + 0p(1)
= Sor + Spr +0p(1), say. (4-21)

Since v, and vy are independent, we can investigate the limiting distributions of S, and S
separately. We first consider the limiting distribution of S,7. Denoting the ¢-th element of

LoV, as 14, we have
[Tpr]

1
\/T—Bna[TBr] = Z vy _’ Bl

where B (-) is a standard Brownian motion and [p] denotes the largest integer < p. We can

also see that

]_ B d 1 TB
= ;Tzamat R /0 By(r)dr = X(By), ;Tzatz:lt'r _1=A

where T =T5 172 Then,

-1
1 1 s 1 5
T2 VaLI MLy, = ‘,fg tZ; ngt - < Z natzatr> (Z TzatzatT) (E Z T ZatTat
— t=1

t=1

/O 1 By (r)%dr — X(B1)'A™ X (By). (4-22)
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Next, denoting regression residuals of Nat on gt a8 flat, We have

(Tsr] . [ [T Tg i -1 /7y .
= Z,
T3 /2 Z nat - T3 /2 Z Nat — Z Za,tT ; ZatZay ; atTat

B | t=1

/0 By(s)ds — Z(r) A1 X (By).

Since the typical t-th element of L,M,Love = Lgfl, is EJ +laj = —Zg;ll flaj because

ZZ‘BI 7; = 0 in the same reason as (4-17), we have

2 2 Tal 2
7 V(LoMaLa)ve = 71 tz ZnaJ

J=

2 1 2
2, 55 ( / Bi(s)ds — Z(r)’A”lX(B1)> dr. (4-23)
a“ Jo \Jo
From (4-22) and (4-23), we obtain
T% 1 T o
SaT = T2 T2 l/aLlM Lal/a T4 2T4 a(L,M L ) Va

02“;2 /0 1 ( /0 " Bi(s)ds — Z(r)’A‘lX(Bl)>2 dr}

= W? {/ Bi(r)%dr — X(B1)A™'X(By) +
0
=  Ww?G(B1;Puw?/a?).

Completely in the same way as Sy, we obtain Spr <, (1 — w)2G(Ba; A(1 — w)?/a?)
with T = (T — T;z)~1/2, where By(-) is a standard Brownian motion independent of Bj(-),
and then (4-5) is established.

For the case 3, we can replace z = [1, DU, t,DTi) by z = [1 — DUy, DU, 1(t <
Tg) x t, DT;] and then replace the orthogonal projection matrix M by M, = diag{ M,, My},
where M, and M; are the orthogonal projection matrices on a constant and a linear trend,
zet = [1,t] and zp: = [1,], respectively. Then, in an analogous way as the case 0, putting
T = diag{T§1/2,T§3/2} or diag{(T — Tg)™Y/2,(T — Tg)~3/?}, the relation (4-5) can be
established.

(ii) For the cases 1 and 2, we can not decompose M as diag{M,, Mp}. But in the same way

as (4-18), we have,
i 0

St o272

V' (02Ip + pLLYY2MLL' M (2 I + pLL)Y?v 4 0,(1)
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2

4 ‘;Tzu L'M(a2Iy + pLL)MLv + 0p(1)
g
- 7{ L (LML) + op(1). (4-24)

We also have, as (4-22) and (4—23),

1
ﬁV'L’MLV 4, /0 B(r)2dr — X(B)YA~1X(B),

and

aj; V(ML =~ ; (Zm) LR gg /O 1 ( /0 " B(s)ds Z(r)’A*1X(3)>2dr,

using T—1/2 Z[ 1]Vt — B(r), where B(-) is a standard Brownian motion and #j; is con-

structed as 7jq; with the full sample. Then, (4-7) is established.

Next we derive the characteristic function of the limiting distribution. Note that, in

general, as shown in Theorem 5.13 of Tanaka (1996), if S} is defined by

.1
St = TV 'Brv + T2V 'B2y, (4 —25)
where v = [vy, -+, vp), {n} ~4.4.d.(0,1) and Br satisfies
FALAY _
Aim max Br(j,k) - K (T’ T)' =0, (4 - 26)

with K(s,t)(# 0) a symmetric, continuous and nearly definite function, Lemma (2.3) can
be applied to S}. Then, we have only to check (4-25) and (4-26) so as to apply Lemma 2.3
to St.

(i) For the cases 0 and 3, w™2S,7 has the same expression as (4-25) with By = Ty ngMaLa
and v = c*w?/a?. Moreover, from some algebra, we can see that the (j, k)-th element of

Tg'L!iM,L, is expressed as K (j/Tg, k/Tg) + O(T5') with
K(s,t) = min(s,t) — st, and K(s,t) = min(s,t) — 4st + 3st(s +t) — 3s%%,

for the cases 1 and 3, respectively, so that both K (s,t)’s satisfy the condition (4-26). Then,

by Lemma 2.3, the characteristic function of the limiting distribution of S,r is given by

lim [¢5r] = Jim [ei*0 8]

T—o0 T—o00

= [D (isz + \/—w492 + 2ic2w49/a2> D (iw29 ~ \/—w492 + 2iczw49/a2>]
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where the Fredholm determinants of Kg(s,t) and K3(s,t) are given in the Theorem 4.1, as
shown by Theorem 6 of Nabeya and Tanaka (1988) and by the equations (5.34) and (9.94)
of Tanaka (1996, p.139 and p.369).

The characteristic function corresponding to Spr is obtained similarly, and since Sy
and Spr are independent, we have the expression (4-6).
(ii) For the case 1, St in (4-24) has the same expression as (4-25) with By = T~'L'ML and
v = c?/a?, and we can find the kernel K (s,t) satisfying the condition (4-26). Then the next
step is to find out the Fredholm determinant of K(s,t). Here note that the characteristic
function of the limiting distribution of S% in (4-25) with v = 0 is given by [D(2i6)]"'/? as
in Lemma 2.1. Then, if we derive the characteristic function of the null distribution of St
corresponding to the case when ¢ = 0, we can obtain the Fredholm determinant D(}).

To derive the characteristic function under the null, we follow the method used by Perron
(1991), and use the expression of the limiting distribution (4-7) with ¢ = 0. Denote by ugp
and py the measures induced by the processes B(-) and Y(-) which is generated by the

following stochastic differential equation:
dY (t) = =bY (t)dt + dB(t), Y(0) = B(0) = 0.

Then the measures 15 and uy are equivalent and the Radon-Nikodym derivative dug/duy

evaluated at y is given by

dnadur(s) = cap o [ Cy(0)dy(t) +57/2 / 1 o]

See, for example, Liptser and Shiryayev (1977) and Theorem 4.1 of Tanaka (1996). Then,

we obtain

$(6:0) = [exp /O lB(r)zdr—GX(B)’A“lX(B)}]

E {0
= E [e:z:p {9/01 Y (r)?dr —0X(YYATIX(Y) + g(Y(1)2 -1+ -1’2—2/01 Y(t)zdt}]

= e bY2EF {ezp{gY(l)2 - QX(Y)/A—IX(Y)H
= e 2E [exp {F'AF}]
— (ebu - 2EA|) i ,
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where we put b2 = —26, F = [Y(1), X(Y)")', A = diag{b/2,—A™'}, and T is the variance-
covariance matrix of F. The last equality follows from normality of F. Making use of the
computerized algebra MAPLE V, we obtain the characteristic function #(6;0) = D(2i6)~1/2
where D()\) is given in Theorem 4.1.

The characteristic function for the case 2 can be obtained similarly and we omit the

proof.C.

Proof of Theorem 4.2: As in the equation (4-21) of the LM test statistic, we have

d 1 c? 2
s L Ps’{LgMaLa-l-a—z—ﬁ(L’aMaLa) }ugs
1 s/ 2 i 2 S
+T2‘V5 LbeLb+ 2T2 —5== (L, MpLyp) 1/5 +Op(].)

= Ser + Sir+op(1), say,

where vP° = T'//Tgv, and v}° = T/(T — Tp)vs. Then,

DS 1 2T123 1 !
ST o= 1z V. LaMyLave + T V(L MyLa)?ve
2 2 2
, /Bl(r dr—X(Bl)’AX(Bl)+—/ (/ By(s)ds — Z(rY A 1X(Bl)) dr
=  G(By;Puw?/a?).
Similarly,

o L [ B - X(BYAX(Ba) + at b A ([ Batoys - Z(r)'A‘lX(Bz)>2dr

=  G(By (1 -w)?/a?),

and then the limiting distribution of S¥’ can be derived.

The characteristic function of the limiting distribution is obtained in an analogous way

as the LM test and we omit the proof.O
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Table 1a. Percent Points of the Null Distribution of the LM test: Case 0

0.01 0.05 0.1 0.5 0.9 0.95 0.99
w=0.110.02160 0.03123 0.03892 0.09797 0.28299 0.37538 0.60388
w—0.210.02049 0.02895 0.03548 0.08302 0.22915 0.30212 0.48265
w—=0.3] 002001 0.02796 0.03396 0.07440 0.18678 0.24247 0.38052
w=0.4] 0.01978 0.02749 0.03326 0.07050 0.16007 0.20106 0.30162
w=0.510.01971 0.02736 0.03305 0.06939 0.15176 0.18688 0.26842

Table 1b. Percent Points of the Null Distribution of the LM test: Case 1

0.01 0.05 0.1 0.5 0.9 0.95 0.99
w=0.1]0.01544 0.02057 0.02426 0.04680 0.09840 0.12162 0.17821
w=0.210.01517 0.02005 0.02350 0.04343 0.08537 0.10376 0.14839
w=0.3]0.01525 0.02019 0.02370 0.04412 0.08579 0.10304 0.14291
w=0.41]0.01541 0.02050 0.02415 0.04623 0.09736 0.12080 0.17842
w=0.51]0.01549 0.02066 0.02439 0.04741 0.10551 0.13378 0.20405

Table Ic. Percent Points of the Null Distribution of the LM test: Case 2

0.01 0.05 0.1 0.5 0.9 0.95 0.99
w=20.11]0.01536 0.02064 0.02448 0.04816 0.10263 0.12716 0.18696
w=20.21]0.01441 0.01907 0.02242 0.04267 0.08879 0.10956 0.16020
w=0.3|0.01394 0.01825 0.02129 0.03907 0.07815 0.09563 0.13829
w=0.410.01371 0.01784 0.02073 0.03712 0.07138 0.08643 0.12299
w=0.5|0.01364 0.01772 0.02056 0.03651 0.06909 0.08318 0.11727

Table 1d. Percent Points of the Null Distribution of the LM test: Case 3

0.01 0.05 0.1 0.5 0.9 0.95 0.99
w=0.1]0.01463 0.01962 0.02325 0.04566 0.09724 0.12046 0.17704
w=20.210.01331 0.01744 0.02039 0.03826 0.07903 0.09737 0.14208
w=20.3| 0.01267 0.01634 0.01889 0.03343 0.06485 0.07889 0.11308
w=20.41]0.01237 0.01582 0.01817 0.03095 0.05570 0.06615 0.09122
w=20.5]0.01228 0.01566 0.01796 0.03022 0.05267 0.06163 0.08216

Table 2. Percent Points of the Null Distribution of the PS test
0.01 0.05 0.1 0.5 0.9 0.95 0.99

Case 0

0.07883 0.10942 0.13222 0.27757 0.60704 0.74752 1.07366

Case 3

0.04912 0.06265 0.07184 0.12087 0.21067 0.24654 0.32862
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Table 3a. The Size of the Case 0

20

T =100
4 212

£0

T =200
24

212

6.8
0.5
0.2

-0.2
-0.5
-0.8

0.794
0.356
0.108
0.039
0.013
0.000
0.000

0.256 0.101
0.089 0.053
0.047 0.044
0.040 0.044
0.031 0.042
0.022 0.029
0.002 0.014

0.845
0.346
0.122
0.044
0.009
0.002
0.000

0.283
0.097
0.062
0.050
0.036
0.020
0.002

0.122
0.062
0.056
0.048
0.045
0.039
0.018

0.8
0.5
0.2

-0.2
-0.5
-0.8

0.814
0.356
0.117
0.049
0.014
0.000
0.000

0.253 0.107
0.098 0.068
0.057 0.055
0.038 0.046
0.032 0.036
0.021 0.027
0.001 0.022

0.864
0.359
0.122
0.040
0.012
0.001
0.000

0.287
0.091
0.049
0.040
0.031
0.017
0.006

0.110
0.072
0.055
0.050
0.040
0.030
0.016

0.8
0.5
0.2

-0.2
-0.5
-0.8

0.862
0.399
0.124
0.048
0.013
0.000
0.000

0.263 0.114
0.089 0.057
0.056 0.052
0.044 0.045
0.038 0.037
0.021 0.035
0.000 0.019

0.921
0.412
0.129
0.047
0.011
0.000
0.000

0.308
0.106
0.057
0.047
0.033
0.017
0.003

0.113
0.067
0.052
0.050
0.047
0.039
0.023

0.8
0.5
0.2

-0.2
-0.5
-0.8

0.929
0.478
0.153
0.054
0.014
0.000
0.000

0.277 0.105
0.101 0.062
0.053 0.055
0.041 0.050
0.032 0.047
0.025 0.044
0.002 0.033

0.953
0.502
0.129
0.038
0.009
0.000
0.000

0.347
0.090
0.050
0.038
0.031
0.011
0.002

0.098
0.053
0.044
0.041
0.038
0.025
0.014

0.8
0.5
0.2

-0.2
-0.5
-0.8

0.934
0.514
0.179
0.056
0.011
0.000
0.000

0.323 0.064
0.113 0.044
0.054 0.041
0.038 0.035
0.029 0.032
0.018 0.027
0.003 0.023
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0.958
0.508
0.138
0.037
0.005
0.000
0.000

0.365
0.096
0.045
0.034
0.022
0.015
0.001

0.075
0.038
0.031
0.031
0.030
0.025
0.018



Table 3a. The Size of the Case 0 (continued)

T =100 T =200
a 20 4 212 £0 4 212

0.8 | 0.922 0.305 0.085 | 0.953 0.326 0.095
0.5 | 0.498 0.103 0.060 | 0.473 0.105 0.052
0.2 | 0.164 0.055 0.051 | 0.139 0.059 0.045
w=061| 0 | 0047 0.040 0.049 | 0.045 0.042 0.040
-0.2 | 0.016 0.034 0.044 | 0.008 0.032 0.036
-0.5 | 0.000 0.018 0.034 | 0.000 0.015 0.030
-0.8 | 0.000 0.002 0.018 | 0.000 0.001 0.018

0.8 | 0.876 0.280 0.110 | 0.916 0.274 0.105
0.5 | 0.419 0.106 0.065 | 0.396 0.101 0.061
0.2 | 0.144 0.058 0.059 | 0.123 0.057 0.050
w=07| 0 |0.054 0.046 0.049 | 0.045 0.042 0.046
-0.2 1 0.013 0.036 0.043 | 0.010 0.037 0.045
-0.510.001 0.022 0.035 | 0.000 0.027 0.039
-0.8 | 0.000 0.002 0.019 | 0.000 0.000 0.025

0.8 | 0.833 0.291 0.122 | 0.866 0.266 0.101
0.5 1 0.392 0.101 0.056 | 0.359 0.095 0.054
0.2 | 0.130 0.058 0.039 | 0.115 0.049 0.043
w=08]| 0 |0.043 0.039 0.034 | 0.040 0.039 0.038
-0.2 1 0.013 0.028 0.031 | 0.011 0.029 0.037
-0.5 | 0.000 0.015 0.023 { 0.000 0.019 0.029
-0.8 | 0.000 0.001 0.014 | 0.000 0.001 0.010

0.8 | 0.806 0.276 0.088 | 0.846 0.289 0.098
0.5 | 0.353 0.083 0.047 | 0.376 0.092 0.048
0.2 | 0.111 0.047 0.033 | 0.122 0.052 0.039
w=09| 0 |003 0032 0.031 0045 0.040 0.035
-0.2 | 0.008 0.022 0.024 | 0.010 0.030 0.032
-0.5 | 0.000 0.014 0.019 | 0.001 0.017 0.028
-0.8 | 0.000 0.001 0.008 | 0.000 0.003 0.017

0.8 1 0.763 0.113 0.010 | 0.866 0.203 0.055
0.5 | 0.377 0.058 0.051 | 0.449 0.092 0.067
0.2 | 0.138 0.057 0.084 | 0.165 0.064 0.077
PS 0 |0.056 0.057 0.099 | 0.054 0.058 0.084
-0.2 1 0.013 0.054 0.114 | 0.012 0.048 0.083
-0.5 1 0.000 0.046 0.143 | 0.000 0.029 0.083
-0.8 | 0.000 0.021 0.187 | 0.000 0.006 0.078
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Table 3b. The Size of the Case 1

T =100
£0 24

212

£0

T =200
4

212

w=20.1

0.8
0.5
0.2

-0.2
-0.5
-0.8

0.964 0.377
0.541 0.139
0.190 0.078
0.058 0.061
0.011 0.042
0.000 0.021
0.000 0.003

0.140
0.085
0.074
0.064
0.061
0.052
0.031

0.978
0.565
0.146
0.047
0.011
0.000
0.000

0.395
0.103
0.060
0.044
0.034
0.019
0.003

0.120
0.056
0.047
0.044
0.040
0.033
0.024

0.8
0.5
0.2

-0.2
-0.5
-0.8

0.968 0.358
0.611 0.120
0.197 0.069
0.067 0.053
0.008 0.040
0.000 0.028
0.000 0.001

0.126
0.079
0.077
0.073
0.069
0.071
0.053

0.989
0.617
0.161
0.039
0.008
0.000
0.000

0.413
0.111
0.054
0.041
0.027
0.017
0.001

0.113
0.066
0.051
0.043
0.038
0.031
0.018

0.8
0.5
0.2

-0.2
-0.5
-0.8

0.978 0.364
0.634 0.115
0.205 0.063
0.061 0.048
0.011 0.039
0.000 0.023
0.000 0.004

0.102
0.081
0.080
0.080
0.084
0.077
0.067

0.993
0.636
0.153
0.039
0.008
0.000
0.000

0.445
0.103
0.050
0.038
0.032
0.015
0.003

0.100
0.053
0.048
0.043
0.041
0.031
0.017

w=04

0.8
0.5
0.2

-0.2
-0.5
-0.8

0.951 0.322
0.552 0.107
0.160 0.058
0.056 0.046
0.014 0.038
0.002 0.019
0.000 0.006

0.126
0.091
0.076
0.074
0.063
0.062
0.034

0.982
0.568
0.154
0.036
0.008
0.000
0.000

0.378
0.103
0.056
0.037
0.031
0.015
0.001

0.123
0.067
0.049
0.047
0.041
0.034
0.020

0.8
0.5
0.2

-0.2
-0.5
-0.8

0.940 0.341
0.501 0.136
0.165 0.078
0.057 0.058
0.013 0.040
0.002 0.021
0.000 0.007

0.175
0.104
0.086
0.078
0.067
0.055
0.026

104

0.959
0.499
0.130
0.045
0.008
0.000
0.000

0.339
0.097
0.058
0.044
0.033
0.017
0.003

0.120
0.070
0.053
0.047
0.044
0.031
0.015



Table 3b. The Size of the Case 1 (continued)

T =100 T =200
a £0 24 212 £0 44 £12

0.8 {0952 0.359 0.178 | 0.979 0.353 0.115
0.5 | 0.543 0.127 0.092 | 0.529 0.088 0.053
0.2 | 0.168 0.076 0.081 | 0.129 0.053 0.048
w=06| 0 |005 0.057 0.077 | 0.041 0.041 0.045
-0.2 | 0.015 0.044 0.075 | 0.008 0.033 0.045
-0.5 { 0.000 0.033 0.061 | 0.000 0.016 0.034
-0.8 | 0.000 0.006 0.043 | 0.000 0.000 0.019

0.8 10974 0.367 0.111 | 0.991 0.431 0.109
0.5 | 0.603 0.108 0.083 | 0.651 0.098 0.045
0.2 | 0.181 0.049 0.077 | 0.172 0.049 0.033
w=07] 0 |0052 0.038 0.074|0.038 0.034 0.032
-0.2 1 0.010 0.027 0.070 | 0.005 0.028 0.031
-0.5 | 0.000 0.018 0.070 | 0.000 0.013 0.028
-0.8 1 0.000 0.001 0.067 | 0.000 0.001 0.019

0.8 | 0.970 0.341 0.121 | 0.992 0.436 0.117
0.5 | 0.599 0.109 0.092 | 0.642 0.121 0.067
0.2 | 0.166 0.055 0.088 | 0.172 0.060 0.057
w=08] 0 |0.045 0.042 0.086 | 0.053 0.048 0.051
-0.2 |1 0.013 0.031 0.084 | 0.010 0.036 0.050
-0.5 | 0.000 0.017 0.076 | 0.000 0.018 0.043
-0.8 1 0.000 0.001 0.058 | 0.000 0.001 0.023

0.8 | 0.952 0.345 0.107 | 0.982 0.427 0.127
0.5 | 0.546 0.110 0.073 | 0.587 0.116 0.073
0.2 | 0.161 0.065 0.063 | 0.163 0.054 0.064
w=09| 0 |0.058 0.046 0.059 | 0.042 0.043 0.057
-0.2 | 0.016 0.036 0.058 | 0.008 0.033 0.049
-0.5 | 0.000 0.018 0.045 | 0.000 0.018 0.038
-0.8 | 0.000 0.004 0.025 | 0.000 0.000 0.017
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Table 3c. The Size of the Case 2

£0

T =100
4

212

£0

T = 200
24

£12

0.8
0.5
0.2

-0.2
-0.5
-0.8

0.961
0.557
0.183
0.065
0.009
0.000
0.000

0.394
0.136
0.075
0.058
0.043
0.022
0.001

0.131
0.077
0.062
0.059
0.051
0.039
0.016

0.981
0.560
0.144
0.049
0.011
0.000
0.000

0.391
0.109
0.061
0.045
0.034
0.018
0.003

0.111
0.061
0.047
0.044
0.039
0.031
0.015

0.8
0.5
0.2

-0.2
-0.5
-0.8

0.968
0.558
0.182
0.068
0.012
0.000
0.000

0.378
0.134
0.075
0.056
0.043
0.021
0.001

0.163
0.091
0.084
0.076
0.066
0.049
0.019

0.986
0.569
0.146
0.051
0.012
0.000
0.000

0.407
0.104
0.059
0.047
0.036
0.017
0.001

0.124
0.065
0.057
0.051
0.042
0.039

10.020

0.8
0.5
0.2

-0.2
-0.5
-0.8

0.964
0.598
0.178
0.057
0.009
0.000
0.000

0.368
0.127
0.067
0.047
0.032
0.021
0.002

0.157
0.092
0.074
0.064
0.057
0.053
0.032

0.988
0.600
0.157
0.045
0.009
0.000
0.000

0.420
0.103
0.052
0.038
0.029
0.017
0.003

0.123
0.062
0.049
0.045
0.038
0.029
0.016

0.8
0.5
0.2

-0.2
-0.5
-0.8

0.974
0.629
0.180
0.052
0.009
0.000
0.000

0.376
0.105
0.053
0.040
0.034
0.017
0.002

0.137
0.080
0.070
0.068
0.061
0.055
0.041

0.994
0.651
0.169
0.046
0.005
0.000
0.000

0.441
0.103
0.050
0.034
0.025
0.015
0.001

0.102
0.057
0.049
0.043
0.042
0.029
0.017

0.8
0.5
0.2

-0.2
-0.5
-0.8

0.976
0.633
0.175
0.052
0.006
0.000
0.000

0.359
0.093
0.053
0.041
0.029
0.012
0.001

0.120
0.074
0.066
0.056
0.056
0.052
0.041

106

0.994
0.672
0.175
0.049
0.003
0.000
0.000

0.463
0.102
0.048
0.038
0.027
0.013
0.001

0.114
0.059
0.047
0.041
0.040
0.032
0.011



Table 3c. The Size of the Case 2 (continued)

T =100
£0 24

212

20

T =200
24

£12

0.8
0.5
0.2

-0.2
-0.5
-0.8

0.974 0.338
0.614 0.095
0.172  0.053
0.048 0.043
0.011 0.033
0.000 0.012
0.000 0.002

0.108
0.077
0.069
0.063
0.058
0.051
0.036

0.992
0.654
0.179
0.043
0.006
0.000
0.000

0.449
0.118
0.051
0.039
0.022
0.010
0.002

0.125
0.070
0.058
0.053
0.045
0.030
0.010

0.8
0.5
0.2

-0.2
-0.5
-0.8

0.965 0.332
0.571 0.094
0.140 0.053
0.045 0.036
0.012  0.030
0.000 0.014
0.000 0.002

0.115
0.077
0.063
0.061
0.056
0.051
0.025

0.990
0.632
0.178
0.053
0.008
0.000
0.000

0.432
0.116
0.062
0.042
0.029
0.014
0.001

0.129
0.062
0.033
0.050
0.048
0.043
0.016

0.8
0.5
0.2

-0.2
-0.5
-0.8

0.957 0.333
0.557 0.113
0.155 0.055
0.049 0.042
0.015 0.034
0.000 0.016
0.000 0.002

0.113
0.072
0.067
0.061
0.057
0.046
0.016

0.982
0.579
0.169
0.054
0.011
0.000
0.000

0.433
0.118
0.060
0.047
0.030
0.016
0.001

0.133
0.072
0.052
0.046
0.042
0.035
0.013

0.8
0.5
0.2

-0.2
-0.5
-0.8

0.955 0.347
0.547 0.114
0.159 0.065
0.057 0.045
0.014 0.036
0.001 0.018
0.000 0.002

0.108
0.064
0.053
0.047
0.043
0.029
0.013
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0.982
0.576
0.152
0.042
0.010
0.000
0.000

0.425
0.113
0.050
0.039
0.033
0.020
0.001

0.130
0.062
0.048
0.041
0.036
0.025
0.012



Table 3d. The Size of the Case 3

£0

T =100

¢4

£12

20

T =200

24

212

0.8
0.5
0.2

-0.2
-0.5
-0.8

0.965
0.546
0.197
0.062
0.014
0.000
0.000

0.393
0.152
0.085
0.070
0.048
0.023
0.002

0.150
0.090
0.087
0.072
0.066
0.054
0.032

0.977
0.566
0.150
0.047
0.011
0.000
0.000

0.415
0.109
0.061
0.047
0.036
0.021
0.003

0.126
0.061
0.053
0.049
0.044
0.035
0.022

0.8
0.5
0.2

-0.2
-0.5
-0.8

0.957
0.562
0.181
0.064
0.008
0.000
0.000

0.393
0.145
0.088
0.062
0.048
0.029
0.004

0.196
0.128
0.107
0.101
0.095
0.083
0.057

0.980
0.563
0.153
0.042
0.009
0.000
0.000

0.421
0.115
0.056
0.039
0.030
0.018
0.002

0.155
0.082
0.066
0.060
0.051
0.045
0.024

0.8
0.5
0.2

-0.2
-0.5
-0.8

0.969
0.606
0.185
0.063
0.016
0.000
0.000

0.390
0.140
0.084
0.070
0.059
0.035
0.005

0.235
0.171
0.160
0.142
0.136
0.143
0.132

0.993
0.623
0.176
0.040
0.009
0.000
0.000

0.422
0.120
0.053
0.038
0.030
0.016
0.001

0.150
0.075
0.065
0.065
0.058
0.053
0.027

0.8
0.5
0.2

-0.2
-0.5
-0.8

0.984
0.692
0.201
0.059
0.012
0.000
0.000

0.396
0.133
0.075
0.052
0.041
0.025
0.007

0.248
0.228
0.245
0.258
0.256
0.270
0.292

0.999
0.731
0.202
0.045
0.010
0.000
0.000

0.491
0.136
0.063
0.043
0.032
0.020
0.002

-0.140

0.091
0.072
0.070
0.066
0.057
0.038

0.8
0.5
0.2

-0.2
-0.5
-0.8

0.991
0.735
0.221
0.056
0.007
0.000
0.000

0.402
0.125
0.056
0.045
0.033
0.011
0.001
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0.225
0.278
0.321
0.341
0.366
0.393
0.450

0.999
0.773
0.234
0.054
0.008
0.000
0.000

0.548
0.150
0.067
0.041
0.030
0.016
0.000

0.143
0.087
0.072
0.069
0.065
0.056
0.036



Table 3d. The Size of the Case 3 (continued)

20

T =100
24 212

20

T =200
¢4

212

0.8
0.5
0.2

-0.2
-0.5
-0.8

0.982
0.704
0.204
0.047
0.009
0.000
0.000

0.391 0.244
0.137 0.221
0.072 0.245
0.054 0.251
0.038 0.256
0.019 0.267
0.001 0.268

0.998
0.745
0.208
0.043
0.008
0.000
0.000

0.503
0.130
0.065
0.045
0.028
0.013
0.000

0.147
0.079
0.071
0.066
0.061
0.050
0.023

0.8
C.5
0.2

-0.2
-0.5
-0.8

0.958
0.600
0.169
0.050
0.014
0.000
0.000

0.367 0.206
0.139 0.165
0.075 0.160
0.052 0.162
0.036 0.156
0.020 0.137
0.002 0.120

0.995
0.651
0.164
0.045
0.009
0.000
0.000

0.437
0.117
0.055
0.039
0.032
0.015
0.001

0.143
0.089
0.080
0.071
0.064
0.045
0.029

0.8
0.5
0.2

-0.2
-0.5
-0.8

0.956
0.558
0.165
0.049
0.014
0.000
0.000

0.391 0.182
0.129 0.128
0.071 0.117
0.055 0.116
0.042 0.108
0.023 0.084
0.001 0.056

0.988
0.602
0.163
0.055
0.010
0.000
0.000

0.437
0.135
0.075
0.055
0.042
0.019
0.002

0.160
0.089
0.079
0.074
0.066
0.052
0.024

.w=10.9

0.8
0.5
0.2

-0.2
-0.5
-0.8

0.955
0.550
0.168
0.059
0.018
0.000
0.000

0.366 0.124
0.126  0.081
0.073 0.068
0.051 0.060
0.040 0.053
0.020 0.043
0.005 0.021

0.981
0.583
0.167
0.045
0.008
0.000
0.000

0.453
0.127
0.061
0.045
0.035
0.018
0.000

0.147
0.081
0.067
0.062
0.051
0.039
0.014

PS

0.8
0.5
0.2

-0.2
-0.5
-0.8

0.909
0.452
0.175
0.060
0.018
0.001
0.000

0.123 0.010
0.054 0.056
0.077 0.144
0.094 0.216
0.118 0.334
0.183 0.518
0.194 0.668
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0.959
0.601
0.180
0.054
0.006
0.000
0.000

0.212
0.079
0.064
0.058
0.053
0.049
0.023

0.024
0.074
0.118
0.149
0.176
0.257
0.400



Table 4a. The Power of the LM Test: the Case 0

T =100 T =200

a 144 4 {12 £0 ¢4 €12
RW. | 0996 0.838 0.607 | 0.999 0.947 0.704
0.8 |0.849 0.334 0.157 | 0.893 0.504 0.287
0.5 |0.643 0.331 0.234 | 0.827 0.588 0.476
0.2 10567 0421 0.327 | 0.808 0.699 0.582
p=001| 00 {0532 0474 0.382 | 0.795 0.749 0.621
-0.2 | 0511 0.512 0416 | 0.783 0.772 0.642
-0.5 | 0.428 0.550 0.440 | 0.732 0.804 0.660
-0.8 | 0.247 0.504 0.443 | 0.587 0.770 0.662
0.8 |0.982 0.777 0.542 | 0.996 0.922 0.704
0.5 {0987 0.799 0.584 | 0.998 0.930 0.706
0.2 ] 0985 0.816 0.587 | 0.999 0.934 0.707
w=01 p=1 0.0 | 0985 0.824 0.592 | 0.999 0.936 0.705
-0.2 | 0984 0.826 0.593 | 0.999 0.937 0.705
-0.5 | 0979 0.826 0.597 | 0.999 0.937 0.705
-0.8 10962 0.825 0.603 | 0.996 0.937 0.706
0.8 1 0.996 0.835 0.606 | 1.000 0.943 0.704
0.5 10.996 0.836 0.606 ) 0.999 0.945 0.704
0.2 |0.996 0.837 0.607 | 0.999 0.946 0.703
p=100 | 0.0 | 0.996 0.837 0.608 | 0.999 0.946 0.703
-0.2 | 0.996 0.836 0.607 { 0.999 0.946 0.703
-0.5 | 0.996 0.836 0.607 | 0.999 0.946 0.703
-0.8 | 0.996 0.837 0.607 | 0.999 0.946 0.704
R.W. 10996 0.802 0.589 [ 1.000 0.926 0.712
0.8 | 0.852 0.347 0.171 | 0.919 0.470 0.263
0.5 |0.589 0.294 0.218 | 0.817 0.566 0.458
0.2 }0.525 0.369 0.295 | 0.797 0.665 0.572
p=001| 0.0 | 0477 0.431 0.342 | 0.780 0.709 0.605
-0.2 | 0.445 0475 0.378 | 0.758 0.749 0.632
-0.5 | 0.367 0.505 0.412 | 0.690 0.778 0.662
-0.8 1 0.196 0.454 0.426 | 0.525 0.743 0.657
0.8 | 0974 0.753 0.540 | 1.000 0.915 0.703
05 |0979 0.780 0.572 | 1.000 0.917 0.709
0.2 |0981 0.789 0.588 | 1.000 0.923 0.711
w=02 p=1 0.0 | 0.980 0.797 0.592 | 1.000 0.923 0.710
-0.2 {1 0.981 0.803 0.592 | 1.000 0.923 0.711
-0.5 | 0.976 0.800 0.589 | 0.999 0.925 0.710

-0.8 | 0.953 0.794 0.587 | 0.997 0.922 0.711
0.8 10994 0.807 0.591 | 1.000 0.927 0.710
0.5 | 0.995 0.804 0.588 | 1.000 0.926 0.713
0.2 | 0996 0.803 0.588 | 1.000 0.926 0.712
p=100 { 0.0 | 0.996 0.803 0.587 | 1.000 0.926 0.712
-0.2 | 0.996 0.803 0.587 | 1.000 0.926 0.712
-0.5 | 0996 0.803 0.588 | 1.000 0.926 0.712
-0.8 | 0.996 0.803 0.588 | 1.000 0.926 0.711
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Table 4a. The Power of the LM Test:

the Case 0 (continued)

T =100 T = 200

a £0 24 £12 £0 4 £12
R.W. | 0996 0.767 0.530 | 1.000 0.945 0.688
0.8 | 0903 0326 0.154 | 0949 0450 0.221
0.5 | 0.620 0.261 0.179 | 0.815 0.512 0.388
0.2 | 0479 0316 0.249 | 0.774 0.629 0.497
p=001] 00 {0434 0.365 0.2910.762 0.678 0.558
-0.2 | 0391 0418 03251 0.735 0.715 0.587
-0.5 | 0.301 0465 0.359 | 0.648 0.761 0.618
-0.8 | 0.123 0.402 0.366 | 0.469 0.717 0.621
0.8 | 0988 0.722 0.484 | 0.999 0914 0.675
0.5 | 098 0.742 0.519 | 1.000 0.937 0.682
0.2 | 098 0.748 0.528 | 1.000 0.939 0.689
w=03 p=1 0.0 {0987 0.751 0.533 | 1.000 0.939 0.689
-0.2 1 0.985 0.755 0.537 | 1.000 0.939 0.689
-0.5 | 0.982 0.759 0.534 | 1.000 0.941 0.689
-0.8 | 0.962 0.758 0.535 | 0.997 0.939 0.692
0.8 | 0996 0.765 0.534 | 1.000 0.944 0.687
0.5 |0.99 0.765 0.531 | 1.000 0.947 0.688
0.2 | 0996 0766 0.530 | 1.000 0.946 0.688
p=100 | 0.0 | 0996 0.768 0.530 | 1.000 0.946 0.688
-0.2 | 0996 0.768 0.530 | 1.000 0.946 0.689
-0.5 | 0996 0.768 0.530 | 1.000 0.946 0.689
-0.8 10996 0.768 0.530 | 1.000 0.946 0.689
R.W. 0998 0.821 0.483 | 1.000 0.961 0.712
0.8 10929 0313 0.120 | 0.963 0.462 0.191
0.5 |0.655 0.234 0.126 | 0.827 0472 0.334
0.2 ]0.480 0.263 0.187 | 0.795 0.600 0.450
p=0.01, 00 | 0404 0305 0.233 |0.764 0.669 0.505
-0.2 | 0.342 0.351 0.270 | 0.728 0.723 0.552
-0.5 | 0.225 0.402 0.301 | 0.637 0.770 0.588
-0.8 | 0.080 0.339 0.305| 0.405 0.725 0.597
0.8 | 0996 0.742 0.424 | 1.000 0.940 0.671
0.5 10997 0.776 0.465 | 1.000 0.957 0.703
0.2 0996 0.793 0.468 | 1.000 0.958 0.704
w=04 p=1 0.0 |0.995 0.799 0.472 | 1.000 0.959 0.706
-0.2 | 0.995 0.803 0.475 | 1.000 0.960 0.710
-0.5 | 0.991 0.806 0.475 | 1.000 0.959 0.712
-0.8 | 0.977 0.802 0.477 | 1.000 0.961 0.711
0.8 | 0999 0.813 0.478 | 1.000 0.964 0.712
0.5 | 0999 0.815 0.484 | 1.000 0.963 0.712
0.2 | 0998 0.817 0.484 | 1.000 0.962 0.713
p=100 | 0.0 | 0.998 0.818 0.484 | 1.000 0.962 0.713
-0.2 | 0.998 0.818 0.484 | 1.000 0.962 0.714
-0.5 10.998 0.820 0.484 | 1.000 0962 0.714
-0.8 | 0.998 0.820 0.484 | 1.000 0.962 0.714
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Table 4a. The Power of the LM Test:

the Case 0 (continued)

T =100 T =200

a £0 4 £12 20 £4 £12
RW. 0999 0862 0.508 | 1.000 0.979 0.763
0.8 | 0.950 0.343 0.069 | 0.973 0.485 0.164
0.5 {0671 0.205 0.093 | 0.840 0.513 0.314
0.2 10484 0.265 0.130 | 0.788 0.649 0.474
p=001] 00 | 0413 0322 0.164 | 0.773 0.713 0.547
-0.2 10339 0375 0.199 | 0.745 0.747 0.600
-0.5 | 0.203 0412 0.242 | 0.659 0.795 0.630
-0.8 | 0.041 0.311 0.241 | 0.396 0.757 0.638
08 |0996 0794 0427 ] 1.000 0.954 0.726
0.5 | 0995 0.830 0483 | 1.000 0.961 0.763
0.2 | 0995 0.843 0.498 | 1.000 0.966 0.768
w=05 p=1 00 {0995 0.850 0.499 | 1.000 0.966 0.769
-0.2 | 0996 0.850 0.497 | 1.000 0.968 0.770
-0.5 | 0993 0.855 0.497 | 1.000 0.971 0.768
-0.8 | 0.979 0.852 0.496 | 1.000 0.971 0.768
0.8 | 1.000 0.858 0.504 | 1.000 0.974 0.769
0.5 {0999 0860 0.503 | 1.000 0.976 0.765
0.2 | 0999 0862 0.504 | 1.000 0.976 0.764
p=100 | 0.0 {0999 0.863 0.507 | 1.000 0.976 0.764
-0.2 | 0.999 0.863 0.507 | 1.000 0.976 0.764
-0.5 | 0.999 0.863 0.507 | 1.000 0.976 0.764
-0.8 |1 0.999 0.862 0.507 | 1.000 0.976 0.763
R.W. | 1.000 0.847 0.493 | 1.000 0.963 0.695
0.8 | 0921 0320 0.089 | 0.957 0.486 0.174
0.5 10649 0.229 0.111 | 0.838 0.495 0.321
0.2 | 0473 0285 0.186 | 0.779 0.626 0.462
p=0.01] 0.0 | 0409 0325 0.227 | 0.763 0.692 0.532
-0.2 1 0.350 0.370 0.263 | 0.734 0.736 0.553
-0.5 | 0.239 0405 0.302 | 0.650 0.771 0.591
-0.8 | 0.072 0.340 0.294 | 0.407 0.730 0.601
0.8 |0.996 0.766 0.426 | 1.000 0.940 0.673
0.5 | 0.995 0.804 0.466 | 1.000 0.953 0.687
0.2 | 0996 0.821 0.483 | 1.000 0.958 0.691
w=06 p=1 0.0 | 0995 0827 0.488 | 1.000 0.959 0.691
-0.2 | 0.994 0.828 0.489 | 1.000 0.959 0.694
-0.5 | 0.992 0.828 0.491 | 0.999 0.958 0.693
-0.8 |1 0.978 0.827 0.489 | 0.997 0.958 0.693
0.8 | 1.000 0.845 0.492 | 1.000 0.962 0.697
0.5 | 1.000 0.847 0.491 | 1.000 0.962 0.693
0.2 | 1.000 0.849 0.489 | 1.000 0.963 0.694
=100 | 0.0 | 1.000 0.849 0.489 | 1.000 0.963 0.694
-0.2 | 1.000 0.849 0.489 | 1.000 0.963 0.694
-0.5 | 1.000 0.848 0.490 | 1.000 0.963 0.694
-0.8 | 1.000 0.848 0.490 | 1.000 0.963 0.694
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Table 4a. The Power of the LM Test: the Case 0 (continued)

T =100 T =200

a £0 4 212 20 17 €12
R.W. | 0997 0.791 0.558 | 1.000 0.949 0.681
0.8 |0.8%6 0313 0.119 ] 0.938 0.444 0.224
0.5 | 0.610 0.259 0.160 | 0.800 0.511 0.380
0.2 }0483 0325 0.237|0.766 0.621 0.502
p=001| 0.0 | 0435 0366 0.292 | 0.745 0.672 0.540
-0.2 | 0396 0413 0338 | 0.720 0.710 0.567
-0.5 | 0.295 0.453 0.377 | 0.642 0.738 0.593
-0.8 10.130 0.398 0.373 | 0.450 0.709 0.609
0.8 |0.988 0.729 0.499 | 1.000 0.920 0.658
0.5 | 0993 0.749 0.534 | 0.999 0.937 0.671
0.2 {0993 0.768 0.543 ) 0.999 0.946 0.677
w=07 p=1 0.0 | 0994 0.770 0.546 | 0.999 0.947 0.680
-0.2 | 0.992 0.773 0.550 | 0.999 0.947 0.683
-0.5 | 0.989 0.777 0.550 | 0.999 0.946 0.680
-0.8 | 0.976 0.774 0.550 | 0.997 0.947 0.683
0.8 ]0.996 0.788 0.550 | 1.000 0.949 0.682
0.5 10.997 0.793 0.555 | 1.000 0.950 0.682
0.2 | 0997 0791 0.555 | 1.000 0.949 0.681
p=100{ 0.0 | 0997 0.790 0.556 | 1.000 0.949 0.681
-0.2 | 0997 0.790 0.556 | 1.000 0.949 0.681
-0.5 | 0.997 0.790 0.556 | 1.000 0.949 0.681
-0.8 | 0.997 0.790 0.556 | 1.000 0.949 0.681
R.W. 10992 0796 0.595 [ 1.000 0.933 0.715
0.8 | 0.854 0.333 0.145 | 0.907 0.454 0.255
0.5 | 0.602 0.287 0.189 | 0.812 0.561 0.441
0.2 10.525 0.379 0.292 | 0.803 0.669 0.547
p=001| 0.0 |0491 0432 0.346 | 0.788 0.704 0.585
-0.2 | 0.460 0.466 ~0.395 | 0.756 0.749 0.617
-0.5 | 0.365 0.496 0.427 | 0.702 0.781 0.645
-0.8 ] 0.188 0.458 0.428 | 0.507 0.751 0.654
0.8 {0973 0.762 0.558 | 0.999 0.914 0.699
0.5 | 0981 0.770 0.588 | 0.999 0.925 0.716
0.2 | 0983 0.777 0.594 | 0.999 0.930 0.710
w=08 p=1 0.0 | 0983 0.782 0.602 | 0.999 0.930 0.714
-0.2 10.983 0.780 0.603 | 0.999 0.930 0.714
-0.5 | 0.977 0.783 0.600 | 0.998 0.931 0.714
-0.8 | 0.961 0.786 0.598 | 0.996 0.931 0.715
0.8 [0.98 0.796 0.595 [ 1.000 0.934 0.714
0.5 | 0991 0798 0.593 | 1.000 0.933 0.713
0.2 | 0991 0.796 0.594 | 1.000 0.932 0.713
p=100 | 0.0 | 0991 0.796 0.594 | 1.000 0.932 0.713
-0.2 | 0991 0.796 0.594 | 1.000 0.932 0.714
-0.5 10991 0.799 0.593 | 1.000 0.932 0.715
-0.8 | 0.991 0.799 0.593 | 1.000 0.932 0.715

113



Table 4a. The Power of the LM Test: the Case 0 (continued)

T =100 T =200

a 20 4 £12 £0 {4 212
R.W. [ 0993 0.828 0.603 | 0.999 0.937 0.710
0.8 | 0.847 0.361 0.144 | 0.893 0.496 0.273
0.5 | 0.621 0.349 0.225 | 0.838 0.597 0.477
0.2 | 0.551 0434 0331 0.816 0.682 0.571
p=001| 0.0 |0.533 0.487 0.387 | 0.803 0.731 0.622
-0.2 | 0.505 0.521 0.430 | 0.781 0.775 0.637
-0.5 | 0.429 0.551 0.461 | 0.738 0.801 0.658
-0.8 | 0.242 0.511 0.461 j 0.558 0.776 0.659
0.8 | 0.980 0.778 0.559 | 0.996 0.913 0.697
0.5 | 0984 0.804 0.586 | 0.997 0.934 0.713
0.2 |0.988 0.813 0.597 | 0.996 0.936 0.712
w=09 p=1 0.0 | 0988 0.813 0.601 | 0.997 0.935 0.714
-0.2 | 0.988 0.814 0.602 | 0.997 0.937 0.715
-0.5 | 0.988 0.814 0.602 | 0.997 0.937 0.715
-0.8 10965 0.814 0.602 | 0.995 0.937 0.715
0.8 | 0993 0.821 0.604 [ 0.999 0.938 0.715
0.5 | 0992 0.824 0.605 ] 0.999 0.936 0.712
0.2 0992 0.825 0.602 0999 0935 0.712
p=100 | 0.0 | 0992 0.825 0.602 | 0.999 0.935 0.712
-0.2 10992 0.825 0.602 | 0.999 0.935 0.712
-0.5 ] 0.992 0.827 0.602 | 0.999 0.936 0.712
-0.8 |1 0992 0.828 0.602 | 0.999 0.936 0.712
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Table 4b. The Power of the PS Test: the Case 0

T =100 T = 200

a £0 4 {12 20 4 £12
RW. | 0.989 0.712 0.249 | 0.998 0.886 0.570
0.8 | 0.803 0.195 0.018 | 0.915 0.405 0.135
0.5 {0625 0.232 0.073 | 0.832 0.519 0.346
0.2 | 0534 0.332 0.130 | 0.783 0.618 0.456
p=001] 00 | 0485 0391 0.157 | 0.760 0.661 0.489
-0.2 | 0.432 0436 0.178 | 0.731 0.692 0.512
-0.5 | 0.326 0.462 0.204 | 0.660 0.724 0.529
-0.8 | 0.149 0.407 0.229 | 0481 0.689 0.534
0.8 10977 0648 0.194 | 0.998 0.859 0.561
0.5 | 0973 0.688 0.233 | 0.997 0.875 0.570
0.2 | 0975 0.699 0.243 | 0.997 0.879 0.568
w=01 p=1 0.0 | 0972 0.706 0.242 | 0.997 0.878 0.567
-0.2 |'0.970 0.706 0.242 | 0.997 0.882 0.567
-0.5 | 0.965 0.705 0.244 | 0.997 0.883 0.568
-0.8 | 0.943 0.705 0.246 | 0.995 0.882 0.568
0.8 10985 0.712 0.246 | 0.998 0.888 0.568
0.5 | 0.987 0.711 0.248 | 0.998 0.887 0.568
0.2 |0.987 0.710 0.249 | 0.998 0.886 0.570
p=100 | 0.0 | 0988 0.710 0.249 | 0.998 0.887 0.570
-0.2 | 0.989 0.710 0.249 | 0.998 0.887 0.570
-0.5 | 0.989 0.710 0.249 | 0.998 0.887 0.570
-0.8 10989 0.710 0.249 | 0.998 0.887 0.570
RW. 10995 0.767 0.331 [ 1.000 0.934 0.646
0.8 | 0.885 0.275 0.055 | 0.966 0.452 0.157
0.5 | 0.670 0.253 0.096 | 0.867 0.524 0.344
0.2 |0.535 0305 0.168 | 0.817 0.651 0.444
p=001| 0.0 | 0455 0360 0.190 | 0.787 0.693 0.505
-0.2 |1 0.388 0404 0.213 | 0.753 0.737 0.533
-0.5 | 0.286 0436 0.239 | 0.657 0.770 0.562
-0.8 | 0.112 0.373 0.241 | 0.442 0.724 0.569
0.8 (0982 0.710 0.297 | 1.000 0916 0.619
0.5 | 0987 0.731 0.334 | 1.000 0.928 0.641
0.2 | 0988 0740 0.338 | 1.000 0.934 0.652
w=02 p=1 0.0 | 0.988 0.748 0.339 | 1.000 0.937 0.650
-0.2 | 0.988 0.749 0.338 | 1.000 0.935 0.648
-0.5 | 0.986 0.752 0.338 | 0.999 0.936 0.646
-0.8 1 0964 0751 0.334 | 0.997 0.935 0.646
0.8 | 0994 0.764 0.329 | 1.000 0.935 0.644
0.5 |0.994 0.767 0.330 | 1.000 0.935 0.646
0.2 10994 0.766 0.331 | 1.000 0.933 0.647
p=100 | 0.0 | 0994 0.766 0.331 | 1.000 0.933 0.646
-0.2 1 0994 0.766 0.331 | 1.000 0.933 0.646
-0.5 | 0.994 0.765 0.331 | 1.000 0.934 0.645
-0.8 | 0.994 0.766 0.331 | 1.000 0.934 0.645
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Table 4b. The Power of the PS Test: the Case 0 (continued)

T =100 T =200

a £0 24 £12 20 24 212
R.W. | 0.997 0.812 (.428 | 1.000 0.955 0.712
0.8 10943 0.324 0.052 | 0.963 0.480 0.174
0.5 |0.688 0.231 0.091 | 0.851 0.511 0.320
0.2 | 0518 0.282 0.142 | 0.809 0.641 0.468
p=001| 0.0 | 0448 0.339 0.181 | 0.772 0.701 0.527
-0.2 10361 0.383 0.212 | 0.741 0.738 0.571
-0.5 | 0.229 0.422 0.246 | 0.659 0.769 0.610
-0.8 | 0.080 0.332 0.239 | 0.402 0.734 0.618
0.8 10992 0.761 0.363 | 1.000 0.924 0.678
0.5 | 098 0.786 0.398 | 1.000 0.945 0.700
0.2 |0.988 0.799 0.408 | 1.000 0953 0.701
w=03 p=1 0.0 | 0989 0.802 0.413 | 1.000 0.953 0.706
-0.2 |} 0.988 0.803 0.415 | 1.000 0.954 0.706
-0.5 | 0.985 0.803 0.416 | 0.999 0.953 0.706
-0.8 10964 0.801 0.416 | 0.998 0.952 0.705
0.8 | 0997 0.810 0.426 | 1.000 0.955 0.708
0.5 | 0997 0.815 0.428 | 1.000 0.955 0.708
0.2 | 0997 0.814 0.426 | 1.000 0.955 0.709
p =100 0.0 {0997 0.813 0.427 | 1.000 0.956 0.711
-0.2 | 0,997 0.812 0427 | 1.000 0.956 0.711
-0.5 {0997 0.812 0427 | 1.000 0.955 0.711
-0.8 | 0997 0.812 0.426 | 1.000 0.955 0.711
RW. | 0999 0.832 0482 | 1.000 0.968 0.766
0.8 |0.945 0.348 0.067 | 0.962 0.478 0.174
0.5 |0.665 0.213 0.074 | 0.833 0.492 0.324
0.2 | 0492 0271 0.127|0.78 0.612 0.460
p=001] 00 | 0413 0315 0.167 | 0.764 0.689 0.516
-0.2 | 0328 0.365 0.202 | 0.732 0.742 0.570
-0.5 | 0.207 0.406 0.241 | 0.644 0.784 0.611
-0.8 | 0.046 0.309 0.242 | 0.388 0.733 0.620
0.8 10995 0.769 0.421 | 1.000 0941 0.710
0.5 | 0998 0.798 0.449 | 1.000 0.961 0.753
0.2 |0.997 0.811 0468 | 1.000 0.964 0.758
w=04 p=1 0.0 ;0996 0818 0.474 | 1.000 0.963 0.758
-0.2 1 0.995 0.824 0.474 ] 1.000 0.963 0.759
-0.5 | 0.991 0.825 0.479 | 1.000 0.967 0.760
-0.8 | 0.979 0.823 0.477 | 1.000 0.967 0.763
0.8 | 1.000 0.829 0.481 | 1.000 0.968 0.762
0.5 | 1.000 0.828 0.481 | 1.000 0.968 0.764
0.2 |0.999 0.829 0.481 | 1.000 0.967 0.765
p =100 0.0 | 0.999 0.830 0.482 | 1.000 0.968 0.765
-0.2 1 0.999 0.831 0.482 | 1.000 0.968 0.765
-0.5 | 0.999 0.831 0.482 | 1.000 0.968 0.765
-0.8 | 0.999 0.830 0.483 | 1.000 0.968 0.766
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Table 4b. The Power of the PS Test: the Case 0 (continued)

T =100 T =200

a £0 24 12 20 4 {12
RW. | 0.999 0.862 0.508 | 1.000 0.979 0.763
0.8 | 0950 0.343 0.069 | 0.973 0485 0.164
0.5 | 0.671 0.205 0.093 | 0.840 0.513 0.314
0.2 | 0484 0.265 0.130 | 0.788 0.649 0.474
p=001] 0.0 | 0413 0322 0.164 | 0.773 0.713 0.547
-0.2 10339 0375 0.199 | 0.745 0.747 0.600
-0.5 | 0.203 0412 0.242 | 0.659 0.795 0.630
-0.8 ] 0.041 0.311 0.241 | 0.396 0.757 0.638
0.8 10996 0.794 0.427 | 1.000 0.954 0.726
0.5 | 0995 0.830 0.483 | 1.000 0.961 0.763
0.2 | 0995 0.843 0.498 | 1.000 0.966 0.768
w=05 p=1 0.0 |0995 0.850 0.499 | 1.000 0.966 0.769
-0.2 | 0.996 0.850 0.497 | 1.000 0.968 *0.770
-0.5 | 0.993 0.855 0.497 | 1.000 0.971 0.768
-0.8 | 0.979 0.852 0.496 | 1.000 0.971 0.768
0.8 | 1000 0.858 0.504 | 1.000 0.974 0.769
0.5 |]0.999 0.860 0.503 | 1.000 0.976 0.765
0.2 10999 0.862 0.504 | 1.000 0.976 0.764
p=100 | 0.0 | 0999 0.863 0.507 | 1.000 0.976 0.764
-0.2 | 0,999 0.863 0.507 | 1.000 0.976 0.764
-0.5 | 0.999 0.863 0.507 | 1.000 0.976 0.764
-0.8 | 0.999 0.862 0.507 | 1.000 0.976 0.763
R.W. | 1.000 0.860 0.478 | 1.000 0.961 0.752
0.8 | 0930 0.361 0.065 | 0.967 0.504 0.167
0.5 | 0.677 0.219 0.080 | 0.856 0.517 0.313
0.2 | 0.509 0.276 0.133 | 0.809 0.654 0.478
p=001| 0.0 | 0417 0.328 0.176 | 0.788 0.717 0.558
-0.2 | 0.352 0.373 0.213 | 0.748 0.753 0.608
-0.5 | 0.210 0.409 0.248 | 0.669 0.781 0.653
-0.8 | 0.050 0.326 0.258 | 0.407 0.750 0.660
0.8 | 0.998 0.800 0.413 ;1.000 0.939 0.708
0.5 | 0.993 0.828 0.460 | 1.000 0.954 0.737
0.2 | 0992 0.839 0.468 | 1.000 0.958 0.741
w=06 p=1 0.0 | 0.993 0.844 0.468 | 1.000 0.958 0.743
-0.2 | 0.993 0.848 0.471 | 1.000 0.959 0.744
-0.5 | 0.993 0.851 0.472 | 1.000 0.960 0.746
-0.8 | 0.982 0.849 0.473 | 0.999 0.961 0.749
0.8 | 1.000 0.861 0.481 | 1.000 0.964 0.750
0.5 | 1.000 0.858 0:478 | 1.000 0.962 0.753
0.2 | 1.000 0.858 0.479 | 1.000 0.962 0.753
p=100 | 0.0 | 1.000 0.858 0.479 | 1.000 0.962 0.752
-0.2 | 1.000 0.859 0.479 | 1.000 0.962 0.752
-0.5 | 1.000 0.859 0.479 | 1.000 0.962 0.752
-0.8 | 1.000 0.859 0.480 | 1.000 0.962 0.752
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Table 4b. The Power of the PS Test: the Case 0 (continued)

T =100 T =200

a 20 4 712 20 4 {12
RW. | 0998 0.814 0.420 | 1.000 0.958 0.684
0.8 |0.927 0.330 0.085 | 0.959 0.492 0.168
0.5 | 0.666 0.244 0.090 | 0.856 0.512 0.327
0.2 | 0500 0.291 0.141 | 0.809 0.636 0.456
p=001} 0.0 | 0.429 0.340 0.164 ) 0.775 0.693 0.509
-0.2 | 0.362 0.372 0.196 | 0.736 0.727 0.542
-0.5 10.239 0.407 0.230 | 0.651 0.767 0.578
-0.8 | 0.066 0.338 0.221 | 0.398 0.726 0.597
0.8 | 0998 0.747 0.373 | 1.000 0.938 0.664
05 | 0994 0771 0410 | 1.000 0.943 0.678
0.2 1099 0791 0.419 ;| 0.999 0.952 0.681
w=07 p=1 0.0 | 0994 0792 0.420 | 0.999 0.953 0.683
-0.2 | 0.894 0.797 0.424 | 0.999 0.955 0.688
-0.5 | 0.993 0.800 0.423 | 0.999 0.958 0.688
-0.8 {0978 0.798 0.417 | 0.998 0.955 0.688
0.8 |0998 0.815 0.419 | 1.000 0.958 0.686
0.5 0998 0816 0419 | 1.000 0.958 0.687
0.2 | 0998 0.816 0.420 | 1.000 0.958 0.686
p=100 | 0.0 | 0998 0816 0.419 | 1.000 0.958 0.686
-0.2 | 0,998 0.815 0.420 | 1.000 0.958 0.686
-0.5 | 0.998 0.815 0.420 | 1.000 0.958 0.686
-0.8 | 0.998 0.814 0.420 | 1.000 0.958 0.685
R.W. 1 0.995 0.761 0.329 | 1.000 0.933 0.616
0.8 10.895 0.288 0.069 | 0.952 0.455 0.176
0.5 | 0.677 0.236 0.100 | 0.858 0.521 0.324
0.2 | 0.519 0.303 0.153 | 0.802 0.617 0.441
p=0.01| 0.0 | 0457 0351 0.176 | 0.770 0.669 0.477
-0.2 ;1 0.381 0.396 0.189 | 0.736 0.718 0.506
-0.5 | 0.269 0.434 0.217 | 0.653 0.749 0.536
-0.8 1 0.109 0.374 0.226 | 0.420 0.705 0.543
0.8 10981 0.713 0.291 | 1.000 0.908 0.590
0.5 | 0982 0.731 0.317 | 1.000 0.922 0.609
0.2 | 0.984 0.753 0.317 | 0.998 0.923 0.612
w=08 p=1 0.0 |0.98 0.755 0.319 | 0.998 0.925 0.612
-0.2 | 0.985 0.755 0.320 | 0.998 0.928 0.612
-0.5 | 0979 0.753 0.322 | 0.997 0.928 0.612
-0.8 1 0.963 0.750 0.324 | 0.996 0.927 0.614
0.8 | 0996 0.759 0.328 | 0.999 0.932 0.613
0.5 | 0996 0763 0.327 | 1.000 0.932 0.616
0.2 10996 0.760 0.325 | 1.000 0.932 0.616
p=100 | 0.0 |0.996 0.760 0.325 | 1.000 0.932 0.616
-0.2 1 0.996 0.759 0.326 | 1.000 0.932 0.616
-0.5 1 0.996 0.759 0.327 | 1.000 0.932 0.616
-0.8 | 0.995 0.759 0.327 | 1.000 0.932 0.616
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Table 4b. The Power of the PS Test: the Case 0 (continued)

T =100 T =200

a 20 1z 212 20 4 £12
RW. 0991 0.715 0.238 | 0.999 0.876 0.567
0.8 |0.836 0.200 0.026 | 0.914 0.403 0.142
0.5 | 0635 0.228 0.065 | 0.859 0.517 0.330
0.2 |0539 0337 0.113 | 0.798 0.612 0.434
p=001| 0.0 | 0489 0389 0.145 | 0.766 0.661 0.470
-0.2 | 0.441 0431 0.174 | 0.739 0.696 0.487
-0.5 | 0.340 0.482 0.210 | 0.650 0.719 0.514
-0.8 | 0.141 0471 0.278 | 0.454 0.681 0.532
08 10973 0654 0.196 | 0.998 0.860 0.549
0.5 | 0979 0.689 0.230 | 0.997 0.874 0.558
0.2 {0981 0.707 0.237 | 0.998 0.872 0.562

w=09 p=1 0.0 | 0981 0.710 0.241 | 0.998 0.870 0.563
-0.2 | 0977 0.710 0.243 | 0.996 0.872 0.562

-0.5 | 0970 0.708 0.241 | 0.996 0.872 0.561
-0.8 10949 0.706 0.244 | 0.995 0.870 0.562
0.8 | 0989 0.711 0.238 | 0.998 0.873 0.560
0.5 {0990 0.712 0.238 | 0.998 0.876 0.563
02 10990 0713 0.240 | 0.999 0.876 0.563
p =100 0.0 0990 0.714 0.241 | 0999 0.876 0.564
-0.2 | 0990 0.715 0.240 | 0.999 0.876 0.564

-0.5 | 0990 0.715 0.238 | 0.999 0.876 0.565

-0.8 | 0.990 0.715 0.240 | 0.999 0.876 0.565
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Table 4c. The Power of the LM Test: the Case 1

T =100 T =200

a £0 4 £12 £0 44 £12
R.W. | 0998 0.834 0.441 | 1.000 0.957 0.654
0.8 | 0958 0.393 0.130 | 0.992 0.445 0.176
0.5 | 0.660 0.197 0.109 | 0.809 0.382 0.249
0.2 | 0.418 0.205 0.144 | 0.704 0.511 0.375
p=001] 00 | 0307 0231 0.169 | 0.649 0.573 0.432
-0.2 {0218 0.260 0.197 | 0.596 0.631 0.467
-0.5 | 0.098 0.286 0.217 | 0.481 0.682 0.507
-0.8 | 0.014 0.198 0.211 | 0.234 0.617 0.510
0.8 | 0993 0.742 0.360 | 1.000 0.914 0.615
0.5 | 0995 0.768 0412 | 1.000 0.937 0.639
0.2 | 0993 0.787 0.421 | 1.000 0.943 0.649
w=01 p=1 0.0 | 0.992 0.803 0.427 | 1.000 0.946 0.650
-0.2 10990 0.807 0.427 | 1.000 0.946 0.649
-0.5 | 0.986 0.813 0.428 | 0.999 0.948 0.651
-0.8 | 0.967 0.807 0.430 | 0.999 0.948 0.650
0.8 | 0998 0.829 0.432 | 1.000 0.954 0.652
0.5 | 0.998 0.830° 0.441 ) 1.000 0.958 0.651
0.2 | 0998 0.833 0.442 | 1.000 0.958 0.652
p=100 | 0.0 | 0.998 0.836 0.442 | 1.000 0.958 0.652
-0.2 | 0.998 0.837 0.443 | 1.000 0.958 0.652
-0.5 | 0.998 0.837 0.443 | 1.000 0.957 0.652
-0.8 | 0.998 0.837 0.443 | 1.000 0.957 0.652
RW. | 0998 0816 0.419 { 1.000 0.976 0.630
0.8 | 0.964 0.366 0.137 | 0.994 0.484 0.154
0.5 | 0.680 0.161 0.130 | 0.842 0.354 0.204
0.2 | 0369 0.173 0.150 | 0.694 0.463 0.320
p=001} 0.0 | 0.247 0199 0.171 | 0.643 0.548 0.389
-0.2 | 0.160 0.217 0.195 | 0.577 0.613 0.442
-0.5 | 0.066 0.242 0.216 | 0.435 0.655 0.491
-0.8 1 0.010 0.151 0.211 | 0.149 0.581 0.489
0.8 | 0994 0722 0.355 | 1.000 0.937 0.581
0.5 |0.996 0.744 0.390 | 1.000 0.960 0.615
0.2 | 0995 0.780 0.405 | 1.000 0.971 0.618
w=02 p=1 0.0 [099 0.791 0.408 | 1.000 0.972 0.621
-0.2 | 0.996 0.799 0.414 | 1.000 0974 0.625
-0.5 | 0.994 0.800 0.418 | 1.000 0.972 0.623
-0.8 | 0.965 0.793 0.415 | 0.998 0.970 0.624
0.8 | 0998 0.819 0.421]1.000 0975 0.628
0.5 | 0998 0.818 0.416 | 1.000 0.976 0.631
0.2 | 0998 0.817 0.418 | 1.000 0.976 0.631
p=100 | 0.0 | 0998 0816 0.418 | 1.000 0.976 0.631
-0.2 | 0.998 0.816 0.418 | 1.000 0.976 0.629
-0.5 | 0.998 0.816 0.418 | 1.000 0.976 0.629
-0.8 | 0.998 0.816 0.418 | 1.000 0.976 0.629
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Table 4c. The Power of the LM Test: the Case 1 {continued)

T =100 T =200

a £0 4 212 20 /4 212
R.W. | 1.000 0.851 0.450 | 1.000 0.974 0.705
0.8 ]0.973 0.396 0.102 | 0.990 0.534 0.136
0.5 | 0706 0.176 0.098 | 0.851 0.385 0.203
0.2 | 0380 0176 0.123 | 0.715 0.487 0.326
p=001] 00 | 0261 0.196 0.154 | 0.640 0.569 0.407
-0.2 | 0.166 0.216 0.182 | 0.585 0.625 0.450
-0.5 | 0.059 0.239 0.212 | 0.445 0.674 0.508
-0.8 | 0.005 0.160 0.187 | 0.133 0.608 0.526
0.8 |0.999 0.756 0.365 | 1.000 0.934 0.643
0.5 |0.997 0.799 0.425 | 1.000 0.960 0.691
0.2 0998 0.821 0.431 | 1.000 0.968 0.706
w=03 p=1 0.0 {0.998 0.830 0.433 | 1.000 0.968 0.708
-0.2 | 0,998 0.834 0.440 | 1.000 0.969 0.706
-0.5 | 0.997 0.839 0439 | 1.000 0.972 0.706
-0.8 | 0974 0.834 0.446 | 0.999 0971 0.706
0.8 | 1.000 0.848 0.445 | 1.000 0.975 0.708
0.5 | 1.000 0.847 0.453 | 1.000 0973 0.709
0.2 | 1.000 0.846 0.451 | 1.000 0.973 0.706
p=100 | 0.0 | 1.000 0.847 0.451 | 1.000 0.973 0.705
-0.2 | 1.000 0.848 0.451 | 1.000 0.973 0.705
-0.5 | 1.000 0.849 0.451 | 1.000 0.973 0.705
-0.8 | 1.000 0.850 0.451 | 1.000 0.973 0.705
RW. 10.999 0796 0.476 | 1.000 0.946 0.640
0.8 10.961 0.347 0.154 | 0.979 0.453 0.172
0.5 | 0.631 0.197 0.144 | 0.795 0.373 0.239
0.2 |0.392 0.217 0.183 | 0.688 0.481 0.344
p=001| 0.0 |0.302 0.237 0.210 | 0.635 0.553 0.402
-0.2 | 0.221 0.269 0.229 | 0.577 0.603 0.446
-0.5 | 0.111 0.302 0.257 | 0.447 0.642 0.487
-0.8 | 0.021 0.226 0.248 | 0.216 0.576 0.497
0.8 {0.992 0.699 0.418 | 1.000 0.903 0.588
0.5 |0.994 0744 0461 | 0.999 0.933 0.614
0.2 |0.992 0.763 0471} 1.000 0.942 0.625
w=04 p=1 0.0 {0.992 0.774 0.471 | 1.000 0.943 0.626
-0.2 10991 0.777 0.469 | 1.000 0.945 0.629
-0.5 | 0.983 0.782 0.471 | 1.000 0.945 0.632
-0.8 | 0.957 0.782 0468 | 1.000 0.945 0.632
0.8 | 1.000 0.796 0.471 | 1.000 0.947 0.634
- 0.5 10999 0.795 0.472 | 1.000 0.946 0.639
0.2 |0.999 0796 0473 | 1.000 0.946 0.640
p=100 | 0.0 | 0.999 0.796 0.474 | 1.000 0.946 0.640
-0.2 1 0.999 0.797 0.474 | 1.000 0.946 0.639
-0.5 | 0.999 0.797 0.474 | 1.000 0.946 0.639
-0.8 | 0.999 0.797 0.475 | 1.000 0.946 0.640

121



Table 4c. The Power of the LM Test: the Case 1 (continued)

T =100 T =200

a £0 24 £12 £0 24 212
R.W. [ 0998 0.758 0.507 | 1.000 0.944 0.641
0.8 | 0938 0.344 0.194 | 0.969 0.425 0.196
0.5 | 0.610 0.201 0.159 | 0.786 0.394 0.278
0.2 | 0.407 0.225 0.203 | 0.666 0.495 0.404
p=001] 00 | 0.318 0.254 0.242 | 0.614 0.553 0.445
-0.2 | 0.243 0.291 0.274 | 0.574 0.590 0.484
-0.5 |} 0.137 0.323 0.300 | 0.480 0.633 0.512
-0.8 | 0.033 0.258 0.286 | 0.270 0.579 0.518
0.8 |0.990 0.685 0.461 | 1.000 0.893 0.586
0.5 |0.990 0.710 0.483 | 1.000 0.920 0.618
0.2 10992 0.73¢ 0.495 | 1.000 0.929 0.629
w=05 p=1 0.0 | 0.990 0.747 0.501 | 1.000 0.931 0.636
-0.2 ] 0.989 0.748 0.503 | 1.000 0.933 0.641
-0.5 | 0.984 0.752 0.505 | 1.000 0.934 0.641
-0.8 | 0.955 0.749 0.504 | 0.999 0.936 0.640
0.8 10999 0.761 0.508 | 1.000 0.942 0.641
0.5 10.999 0.764 0.512 | 1.000 0.944 0.641
0.2 0998 0.762 0.508 | 1.000 0.945 0.640
p =100 0.0 |0.998 0.760 0.508 | 1.000 0.945 0.640
-0.2 | 0998 0.758 0.507 | 1.000 0.945 0.640
-0.5 1 0.998 0.758 0.507 | 1.000 0.945 0.641
-0.8 1 0.998 0.758 0.507 | 1.000 0.945 0.641
R.W. 10998 0.803 0.470 | 1.000 0.946 0.651
0.8 |0.953 0357 0.179 | 0.985 0.451 0.181
0.5 | 0.635 0.188 0.135 | 0.816 0.398 0.257
0.2 | 0390 0.206 0.182 | 0.690 0.511 0.380
p=001| 0.0 |0.286 0225 0.209 | 0.654 0.575 0.436
-0.2 | 0.200 0.263 0.230 | 0.602 0.631 0.468
-0.5 | 0.107 0.291 0.256 | 0.471 0.674 0.493
-0.8 10.017 0.212 0.248 | 0.223 0.596 0.499
0.8 |0.997 0.708 0.417 | 1.000 0.911 0.601
0.5 | 0990 0.752 0.447 | 1.000 0.925 0.626
0.2 10992 0.782 0.458 | 1.000 0.934 0.639
w=06 p=1 0.0 [0991 0.789 0.460 | 1.000 0.940 0.643
' -0.2 | 0.991 0.795 0.468 | 1.000 0.942 0.643
-0.5 | 0.987 0.796 0.470 | 1.000 0.941 0.648
-0.8 | 0.950 0.786 0.468 | 0.998 0.941 0.648
0.8 {0998 0.809 0.473 | 1.000 0.946 0.649
0.5 10998 0.809 0.472 | 1.000 0.944 0.651
0.2 | 0998 0.806 0.471 | 1.000 0.945 0.650
p =100 0.0 | 0998 0.804 0.470 | 1.000 0.945 0.650
-0.2 1 0998 0.804 0.468 | 1.000 0.945 0.650
-0.5 | 0.998 0.803 0.469 | 1.000 0.946 0.650
-0.8 | 0.998 0.803 0.469 | 1.000 0.946 0.650
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Table 4c. The Power of the LM Test: the Case 1 (continued)

T = 100 T = 200
a 20 7 212 0 4 212
RW. 0999 0851 0.455 | 1.000 0.074 0.689
0.8 | 0972 0412 0.124 | 0.990 0.490 0.131
0.5 | 0717 0.179 0.111 | 0.864 0.370 0.195
0.2 |0.405 0.174 0.146 | 0.719 0.480 0.322
p=0.01] 0.0 |0.262 0199 0.180 | 0.651 0.560 0.400
-0.2 | 0170 0.224 0.203 | 0.591 0.629 0.452
-0.5 | 0.059 0.252 0.218 | 0.427 0.692 0.503
-0.8 | 0.003 0.167 0.220 | 0.144 0.601 0.518
0.8 | 0.998 0.759 0.381 | 1.000 0.942 0.632
0.5 | 0994 0.806 0.425 | 1.000 0.964 0.671
0.2 {0994 0828 0.436 | 1.000 0.965 0.681
w=07 p=1 0.0 |0.994 0.835 0.441 | 1.000 0.965 0.681
-0.2 | 0991 0.839 0.445 | 1.000 0.966 0.683
-0.5 | 0.988 0.841 0.446 | 1.000 0.967 0.684
-0.8 | 0.968 0.839 0.444 | 0.999 0.966 0.681
0.8 [ 0999 0.854 0.454 | 1.000 0.971 0.682
0.5 |0.999 0.853 0.456 | 1.000 0.972 0.684
0.2 | 0999 0.852 0.456 | 1.000 0.973 0.685
p=100 | 0.0 | 0.999 0.852 0.458 | 1.000 0.974 0.686
-0.2 | 0.999 0.853 0.458 | 1.000 0.974 0.688
-0.5 | 0.999 0.852 0.457 | 1.000 0.974 0.688
-0.8 | 0999 0.852 0.457 | 1.000 0.974 0.688
RW. {1000 0.814 0.436 | 1.000 0.969 0.637
0.8 10.976 0.360 0.133 | 0.988 0.485 0.149
0.5 | 0.650 0.183 0.126 | 0.829 0.366 0.204
0.2 | 0376 0.190 0.162 | 0.680 0.468 0.338
p=001| 0.0 |0.271 0.209 0.186 | 0.610 0.530 0.373
-0.2 1 0.177 0.231 0.204 | 0.549 0.586 0.414
-0.5 | 0.071 0.251 0.220 | 0.403 0.635 0.463
-0.8 | 0.007 0.162 0.213 | 0.161 0.556 0.474
0.8 [0.995 0.711 0.372 | 1.000 0.925 0572
0.5 | 0.990 0.740 0.406 | 1.000 0.953 0.618
0.2 |0.991 0.767 0.420 | 1.000 0.957 0.626
w=08 p=1 0.0 {0.991 0.778 0.424 | 1.000 0.959 0.627
-0.2 | 0.993 0.789 0.426 | 1.000 0.960 0.631
-0.5 [ 0990 0.793 0.431 | 1.000 0.964 0.632
-0.8 | 0.961 0.789 0.434 | 0.998 0.961 0.633
0.8 ]0.999 0.803 0.431 | 1.000 0.969 0.634
0.5 | 1.000 0.811 0.437 | 1.000 0.968 0.638
0.2 | 1.000 0.811 0.439 | 1.000 0.968 0.638
p=100 | 0.0 | 1.000 0.811 0.437 | 1.000 0.968 0.638
-0.2 | 1.000 0.811 0.437 | 1.000 0.968 0.638
-0.5 | 1.000 0.812 0.437 | 1.000 0.968 0.638
-0.8 | 1.000 0.812 0.438 | 1.000 0.968 0.638
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Table 4c. The Power of the LM Test: the Case 1 (continued)

T =100 T =200

a £0 24 212 20 24 £12
R.W. | 0999 0.815 0.454 | 1.000 0.953 0.648
0.8 | 0953 0370 0.132 | 0.985 0.474 0.167
0.5 | 0645 0.200 0.113 | 0.806 0.384 0.239
0.2 | 0410 0.211 0.142 | 0.685 0.489 0.344
p=001] 00 {0305 0239 0.177 | 0.638 0.554 0.399
-0.2 | 0.226 0.277 0.198 | 0.593 0.617 0.443
-0.5 | 0.100 0.302 0.238 | 0.467 0.655 0.491
-0.8 | 0.020 0.209 0.233 | 0.227 0.606 0.504
0.8 0993 0.734 0.386 | 1.000 0.911 0.589
0.5 | 0995 0.769 0.429 | 1.000 0.935 0.623
0.2 10994 0.793 0.439 | 1.000 0.946 0.635
w=09 p=1 0.0 |0.993 0.798 0.445 | 1.000 0.947 0.637
-0.2 | 0.991 0.807 0.449 | 1.000 0.949 0.638
-0.5 | 0.989 0.811 0.447 | 1.000 0.947 0.638
-0.8 | 0.966 0.804 0.448 | 0.998 0.946 0.639
0.8 | 0999 0.818 0452 | 1.000 0.955 0.643
0.5 | 0999 0.817 0.454 | 1.000 0.954 0.645
0.2 10999 0.818 0.454 | 1.000 0.954 0.646
p=100 | 0.0 | 0.999 0817 0.454 | 1.000 0.954 0.646
-0.2 | 0.999 0.818 0.455 | 1.000 0.954 0.647
-0.5 {0999 0.818 0.455 | 1.000 0.954 0.647
-0.8 | 0.999 0.816 0.455 | 1.000 0.954 0.649
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Table 4d. The Power of the LM Test: the Case 2

T =100 T = 200

a £0 4 212 Q0 4 /12
RW. | 0.999 0829 0.424 | 1.000 0.958 0.647
0.8 | 0960 0404 0.117 { 0.992 0470 0.172
0.5 |0675 0199 0.103 | 0.827 0.391 0.250
0.2 | 0.426 0212 0.138 | 0.706 0.526 0.373
p=0011 0.0 }0327 0.240 0.165 | 0.661 0.590 0.419
-0.2 10229 0.271 0.195 | 0.615 0.647 0.464
-0.5 | 0.113 0.306 0.217 | 0.496 0.689 0.502
-0.8 1 0.013 0.211 0.198 | 0.255 0.627 0.512
0.8 |0.993 0746 0.352 | 1.000 0.923 0.595
0.5 | 0996 0.778 0.399 | 1.000 0.945 0.641
0.2 10996 0802 0.409 | 1.000 0.952 0.651
w=01 p=1 0.0 |0.995 0.800 0.412|0.999 0.955 0.651
-0.2 | 0.994 0.809 0.413 { 0.999 0.953 0.651
-0.5 | 0992 0.816 0.421 | 0.999 0.954 0.652
-0.8 | 0.969 0.813 0.421 | 0.998 0.952 0.652
0.8 | 0999 0.827 0.425 | 1.000 0.957 0.648
0.5 | 0.999 0.830 0.425 | 1.000 0.958 0.649
0.2 | 0999 0.832 0.425 | 1.000 0.958 0.649
p=100 | 0.0 | 0999 0830 0425 1.000 0.959 0.648
-0.2 | 0.999 0.830 0.426 | 1.000 0.958 0.648
-0.5 {0999 0.829 0.425 | 1.000 0.958 0.647
-0.8 10999 0.828 0.425 | 1.000 0.958 0.648
R.W. | 0.997 0815 0435 | 1.000 0.956 0.654
0.8 | 0.955 0.392 0.151 | 0.988 0.453 0.171
0.5 | 0.643 0.190 0.123 | 0.808 0.363 0.229
0.2 | 0394 0199 0.134 | 0.679 0.487 0.359
p=001] 0.0 |0.279 0221 0.159 | 0.634¢ 0.559 0.424
-0.2 | 0.193 0.247 0.192 | 0.579 0.623 0.458
-0.5 | 0.086 0.267 0.221 | 0.459 0.657 0.496
-0.8 1 0.011 0.185 0.209 | 0.199 0.599 0.509
0.8 10992 0.727 0.372 | 1.000 0.915 0.604
0.5 |0.992 0.749 0.415 | 1.000 0.933 0.637
0.2 | 0.993 0.776 0.425 | 1.000 0.948 0.646

w=02 p=1 0.0 {0993 0.787 0.431 ] 1.000 0.953 0.651
-0.2 1 0.990 0.787 0.432 | 1.000 0.954 0.651
-0.5 | 0.980 0.793 0.434 | 1.000 0.954 0.649
-0.8 10.954 0.790 0.432 | 0.998 0.954 0.650

0.8 (0998 0.805 0.438 [ 1.000 0.957 0.653

0.5 | 0998 0.813 0.435 | 1.000 0.957 0.651
0.2 |0997 0.813 0.436 | 1.000 0.958 0.652
p =100 0.0 | 0997 0.812 0.435 | 1.000 0.957 0.652
-0.2 | 0.997 0.813 0.435 | 1.000 0.956 0.652
-0.5 | 0.997 0.813 0.435 | 1.000 0.956 0.652
-0.8 | 0.997 0.814 0.435 | 1.000 0.956 0.653
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Table 4d. The Power of the LM Test: the Case 2 (continued)

T =100 T =200
a 20 24 212 Q0 24 £12

R.W. [ 0.998 0.782 0.414 | 1.000 0.952 0.608

0.8 10965 0.373 0.156 | 0.992 0.464 0.162
0.5 {0652 0172 0.114 | 0.821 0.342 0.205
0.2 ]0.360 0.172 0.133 | 0.670 0.448 0.319
p=001; 00 |0.238 0193 0.156 | 0.613 0.526 0.388
-0.2 | 0.166 0.212 0.182 | 0.554 0.589 0.432
-0.5 | 0.064 0.232 0.210 | 0.417 0.633 0.483
-0.8 | 0.009 0.153 0.203 | 0.144 0.560 0.494

0.8 10993 0.700 0.348 | 1.000 0.907 0.576
0.5 | 0990 0.727 0.394 | 1.000 0.934 0.598
0.2 | 0989 0.761 0.406 | 1.000 0.941 0.605
w=03 p=1 0.0 |0989 0.762 0.409 | 1.000 0.946 0.604
-0.2 | 0.988 0.768 0.413 | 1.000 0.949 0.606
-0.5 | 0979 0.774 0414 | 1.000 0.949 0.610
-0.8 1 0.951 0.767 0.410 | 0.997 0.947 0.609

0.8 |0999 0.784 0.417 | 1.000 0.953 0.610
0.5 | 0998 0.78 0.416 | 1.000 0.953 0.608
0.2 | 0998 0.783 0.413 | 1.000 0.953 0.609
p =100 0.0 | 0998 0.782 0.414 | 1.000 0.953 0.609
-0.2 | 0.998 0.782 0.414 | 1.000 0.952 0.609
-0.5 | 0.998 0.782 0414 | 1.000 0.952 0.607
-0.8 | 0.998 0.782 0.414 | 1.000 0.952 0.608

R.W. [ 1.000 0.777 0.395 | 1.000 0.960 0.585

0.8 | 0.971 0.382 0.141 | 0.995 0.491 0.134
0.5 | 0711 0.171 0.105 | 0.833 0.330 0.184
0.2 | 0347 0.151 0.121 | 0.659 0423 0.290
p=0.01) 0.0 |0.220 0.166 0.157 | 0.580 0.500 0.349
-0.2 ] 0.136 0.184 0.179 | 0.511 0.565 0.391
-0.5 | 0.049 0.200 0.203 | 0.350 0.622 0.440
-0.8 | 0.007 0.125 0.204 | 0.105 0.528 0.453

0.8 10.996 0.675 0.329 | 1.000 0.914 0.545
0.5 | 0.994 0713 0.369 | 1.000 0.940 0.580
0.2 | 0992 0741 0.380 | 1.000 0.950 0.587
w=04 p=1 0.0 {0991 0.753 0.380 | 1.000 0.956 0.585
-0.2 1 0.990 0.759 0.384 | 1.000 0.957 0.587
-0.5 | 0.984 0.762 0.385 | 1.000 0.960 0.588
-0.8 | 0.946 0.755 0.384 | 0.999 0.959 0.587

0.8 10999 0.778 0.383 | 1.000 0.963 0.588
0.5 | 0999 0.777 0.387 | 1.000 0.961 0.586
0.2 | 1.000 0.778 0.391 | 1.000 0.961 0.585
p=100 { 0.0 | 1.000 0.778 0.392 | 1.000 0.961 0.585
-0.2 | 1.000 0.777 0.393 | 1.000 0.961 0.586
-0.5 | 1.000 0.777 0.393 | 1.000 0.961 0.586
-0.8 | 1.000 0.777 0.396 | 1.000 0.960 0.586
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Table 4d. The Power of the LM Test: the Case 2 (continued)

T =100 T =200
a £0 24 £12 £0 44 £12

RW. 10999 0.776 0.368 | 1.000 0.965 0.562

0.8 10985 0.383 0.133 | 0.995 0.507 0.126
0.5 | 0.730 0.158 0.105 | 0.847 0.324 0.170
0.2 |0.351 0.150 0.131 | 0.640 0.391 0.256
p=001] 00 | 0209 0159 0.150 | 0.564 0.475 0.296
-0.2 | 0125 0.174 0.174 | 0.486 0.539 0.343
-0.5 | 0.046 0.193 0.195 | 0.327 0.579 0.392
-0.8 | 0.002 0.121 0.192 | 0.097 0.482 0.393

0.8 10992 0.678 0.315 | 1.000 0.919 0.502
0.5 10992 0.719 0.343 | 1.000 0.947 0.536
0.2 0992 0.742 0.361 | 1.000 0.957 0.545
w=05 p=1 0.0 | 0990 0.754 0.357 | 1.000 0.959 0.551
-0.2 | 0.988 0.764 0.355 | 1.000 0.962 0.556
-0.5 | 0.983 0.765 0.360 | 1.000 0.964 0.559
-0.8 | 0.957 0.759 0.358 | 1.000 0.961 0.557

0.8 {0999 0.779 0.362 | 1.000 0.963 0.557
0.5 10999 0.779 0.362 | 1.000 0.965 0.560
0.2 10999 0.777 0.364 | 1.000 0.965 0.562
p=100 | 0.0 | 0999 0.776 0.364 | 1.000 0.964 0.561
-0.2 10999 0.777 0.363 | 1.000 0.964 0.561
-0.5 | 0999 0.777 0.363 | 1.000 0.965 0.561
-0.8 10999 0.776 0.365 | 1.000 0.964 0.561

RW. 10999 0771 0.355 | 1.000 0.955 0.568

0.8 |0.978 0.352 0.137 1 0.993 0487 0.124
0.5 | 0.696 0.160 0.109 | 0.830 0.321 0.169
0.2 10365 0.156 0.137 | 0.638 0.394 0.255
p=001, 00 |0.225 0.168 0.156 | 0.544 0.464 0.306
-0.2 | 0.137 0.197 0.172 | 0.472 0.529 0.353
-0.5 | 0.054 0.211 0.207 | 0.330 0.576 0.387
-0.8 | 0.003 0.132 0.187 ] 0.110 0.481 0.399

0.8 | 0998 0.672 0.331 | 1.000 0.917 0.501
0.5 10993 0.706 0.342 | 1.000 0.934 0.543
0.2 | 0995 0.731 0.359 | 1.000 0.945 0.555
w=06 p=1 0.0 0996 0.741 0.359 | 1.000 0.949 0.557
-0.2 | 0.993 0.747 0.360 | 1.000 0.950 0.557
-0.5 | 0.984 0.757 0.358 | 1.000 0.951 0.564
-0.8 1 0.944 0.747 0.356 | 1.000 0.948 0.562

0.8 10999 0.768 0.359 | 1.000 0.952 0.565
0.5 |0999 0.770 0.358 | 1.000 0.953 0.567
0.2 | 0999 0.769 0.357 | 1.000 0.954 0.566
p=100 | 0.0 |{0.999 0.770 0.358 | 1.000 0.954 0.569
-0.2 | 0.999 0.771 0.358 | 1.000 0.955 0.569
-0.5 | 0.999 0.768 0.356 | 1.000 0.955 0.568
-0.8 1 0.999 0.769 0.355 | 1.000 0.955 0.568
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Table 4d. The Power of the LM Test: the Case 2 (continued)

T =100 T =200
a 20 4 412 €0 24 £12

R.W. | 1.000 0.782 0.406 | 1.000 0.949 0.587

0.8 10965 0.353 0.144 | 0.985 0.454 0.148
05 |0662 0179 0.124 | 0.809 0.341 0.195
0.2 | 0362 0179 0.147 | 0.631 0.426 0.289
p=001] 00 | 0258 0.205 0.171 | 0.556 0.482 0.345
-0.2 | 0.166 0.235 0.190 | 0.496 0.534 0.382
-0.5 | 0.071 0.241 0.209 | 0.379 0.595 0.420
-0.8 1 0.005 0.151 0.204 | 0.145 0.513 0.432

0.8 | 099 0.699 0.349 | 1.000 0.907 0.536
0.5 {0990 0.729 0.385 | 1.000 0.927 0.569
0.2 |0.989 0.751 0.384 | 1.000 0.938 0.580
w=07 p=1 0.0 | 0989 0.759 0.393 | 1.000 0.942 0.581
-0.2 10988 0.765 0.401 | 1.000 0.942 0.581
-0.5 | 0.976 0.769 0.402 | 0.999 0.945 0.583
-0.8 | 0.942 0.762 0.402 | 0.997 0.944 0.582

0.8 | 1.000 0.780 0.404 | 1.000 0.950 0.587
0.5 | 1.000 0.779 0.404 | 1.000 0.951 0.586
0.2 | 1.000 0.780 0.404 | 1.000 0.949 0.588
p=100 | 0.0 | 1.000 0.781 0.405 | 1.000 0.949 0.587
-0.2 | 1.000 0.782 0407 | 1.000 0.950 0.587
-0.5 | 1.000 0.782 0.407 | 1.000 0.950 0.588
-0.8 | 1.000 0.782 0.407 | 1.000 0.950 0.588

R.W. | 1.000 0.806 0.428 [ 1.000 0.942 0.636

0.8 | 0.960 0.363 0.134 | 0.983 0.460 0.163
0.5 |0.634 0.191 0.119 | 0.797 0.371 0.220
0.2 | 0.390 0.204 0.149 | 0.642 0.461 0.335
p=0.01] 00 |0.28 0230 0.172 0589 0511 0.378
-0.2 | 0.197 0.242 0.192 | 0.538 0.571 0.407
-0.5 | 0.085 0.265 0.221 | 0.420 0.629 0.448
-0.8 | 0.013 0.190 0.211 | 0.194 0.562 0.467

0.8 10993 0.723 0.366 | 1.000 0.907 0.559
0.5 | 0.990 0.747 0.405 | 1.000 0.931 0.608
0.2 |0.990 0.769 0.417 | 1.000 0.935 0.626
w=08 p=1 0.0 0992 0.778 0.419 | 1.000 0.935 0.629
-0.2 1 0.990 0.781 0.424 | 1.000 0.936 0.633
-0.5 10984 0.785 0.424 | 1.000 0.938 0.633
-0.8 | 0.960 0.783 0.422 | 0.997 0.937 0.635

0.8 ]0.999 0.803 0.425 | 1.000 0.940 0.638
0.5 | 0999 0.808 0.427 | 1.000 0.942 0.639
0.2 | 1.000 0.809 0.427 | 1.000 0.941 0.639
=100 | 0.0 | 1.000 0.807 0.426 | 1.000 0.941 0.638
-0.2 | 1.000 0.807 0.425 | 1.000 0.941 0.638
-0.5 | 1.000 0.808 0.425 | 1.000 0.942 0.638
-0.8 | 0.999 0.808 0.425 | 1.000 0.942 0.638
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Table 4d. The Power of the LM Test: the Case 2 (continued)

T =100 T =200
a £0 4 012 £0 44 £12

RW. | 0.998 0.816 0.425 | 1.000 0.957 0.639

0.8 | 0.957 0.379 0.128 | 0.981 0.470 0.168
0.5 |0.640 0202 0.099 | 0.811 0.393 0.244
0.2 | 0428 0.207 0.130 | 0.697 0.497 0.351
p=001| 00 | 0318 0245 0.163 | 0.6565 0.577 0.411
-0.2 | 0.229 0.277 0.202 | 0.607 0.632 0.454
-0.5 | 0.108 0.300 0.230 | 0.486 0.680 0.494
-0.8 | 0.023 0.220 0.220 | 0.234 0.621 0.508

0.8 (0991 0.724 0.368 | 1.000 0.917 0.574
0.5 | 0998 0.766 0412 | 0.999 0946 0.611
0.2 | 0995 0.793 0.424 | 0.999 0.953 0.624
w=09 p=1 0.0 10995 0.801 0424 1.000 0954 0.627
-0.2 ] 0.993 0.803 0.428 | 1.000 0.956 0.627
-0.5 | 0991 0.808 0.429 | 0.999 0.958 0.631
-0.8 | 0972 0.799 0.428 | 0.999 0.957 0.634

0.8 |0.998 0.818 0.427 | 1.000 0.961 0.637
0.5 | 0998 0.820 0.428 | 1.000 0.960 0.638
0.2 | 0998 0817 0.427 | 1.000 0.959 0.639
p=100 | 0.0 | 0998 0.817 0.427 | 1.000 0.959 0.640
-0.2 1 0.998 0.817 0.426 | 1.000 0.959 0.639
-0.5 | 0.998 0.817 0.426 | 1.000 0.959 0.639
-0.8 | 0,998 0.817 0.426 | 1.000 0.958 0.640
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Table 4e. The Power of the LM Test: the Case 3

T =100 T =200
a £0 4 €12 £0 4 €12

R.W. | 0.998 0.843 0.452 | 1.000 0.961 0.662
0.8 {0959 0418 0.147 ;0.991 0460 0.191
0.5 |0.669 0214 0.125 | 0.806 0.395 0.266
0.2 {0424 0222 0.1510.706 0.525 0.393
p=001] 00 | 0314 0.245 0.177 | 0.655 0.587 0.447
-0.2 | 0.223 0.274 0.206 | 0.598 0.639 0.476
-0.5 | 0.101 0.298 0.238 | 0.480 0.689 0.520
-0.8 | 0.014 0.203 0.216 | 0.236 0.624 0.521
0.8 10.994 0.760 0.365 | 1.000 0.918 0.627
0.5 | 0994 0786 0.418 | 1.000 0.942 0.653
0.2 |0.993 0.810 0.434 | 1.000 0.949 0.659
w=01 p=1 0.0 |0.992 0.821 0.437 | 1.000 0954 0.658
-0.2 | 0.990 0.824 0.438 | 1.000 0.954 0.661
-0.5 | 0.987 0.828 0.442 | 0.999 0.954 0.664
-0.8 | 0.967 0.827 0.445 | 0.999 0.954 0.664
0.8 | 0.998 0.835 0.443 | 1.000 0.959 0.664
0.5 | 0.998 0.841 0.450 | 1.000 0.961 0.665
0.2 | 0998 0.842 0.449 | 1.000 0.961 0.664
p=100 | 0.0 |0.998 0843 0450 | 1.000 0.961 0.662
-0.2 1 0.998 0.843 0.450 | 1.000 0.961 0.661
-0.5 | 0.998 0.842 0.451 | 1.000 0.961 0.661
-0.8 | 0.998 0.842 0.452 | 1.000 0.961 0.662
R.W. [ 0.997 0.820 0.485 [ 1.000 0.951 0.688
0.8 | 0951 0414 0.208 | 0.990 0.481 0.181
0.5 |0.633 0.194 0.167 | 0.799 0.355 0.244
0.2 |0.35 0.201 0.197 | 0.657 0.466 0.365
p=001} 0.0 |0.243 0209 0.219 | 0.603 0.543 0.441
-0.2 | 0.155 0.241 0.250 | 0.549 0.605 0.480
-0.5 | 0.072 0.253 0.272 | 0.427 0.642 0.523
-0.8 1 0.010 0.166 0.256 | 0.152 0.575 0.531
0.8 10990 0.739 0.420 | 1.000 0.909 0.618
0.5 | 0989 0.757 0.467 | 0.999 0.940 0.652
0.2 | 0985 0.785 0.477 | 0.999 0.948 0.665
w=02 p=1 0.0 |0.986 0.794 0.481 | 0.999 0.950 0.670
-0.2 | 0.982 0.807 0.480 | 0.999 0.951 0.670
-0.5 | 0979 0.815 0.483 | 0.999 0.952 0.674
-0.8 |1 0.949 0.805 0.478 | 0.997 0.948 0.674
0.8 [0997 0.819 0.485 | 1.000 0.954 0.678
0.5 10997 0.820 0.487 | 1.000 0.951 0.680
0.2 |0.997 0.820 0.487 | 1.000 0.951 0.685
p=100 | 0.0 | 0.997 0.820 0.485 | 1.000 0.952 0.685
-0.2 | 0.997 0.821 0.485 | 1.000 0.952 0.685
-0.5 | 0.997 0.821 0.484 | 1.000 0.952 0.688

-0.8 ] 0.997 0.822 0.484 | 1.000 0.952
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Table 4e. The Power of the LM Test: the Case 3 (continued)

T =100 T =200

a 20 24 £12 0 4 £12
RW. 10.998 0770 0.494 | 1.000 0.951 0.623
0.8 | 0977 0413 0.247 | 0.995 0.461 0.175
0.5 | 0681 0.179 0.210 | 0.809 0.327 0.217
0.2 | 0334 0.167 0.221 | 0.622 0.399 0.324
p=0.01| 0.0 ;0.209 0.175 0.241 | 0.528 0.469 0.387
-0.2 |} 0.117 0.195 0.263 | 0.459 0.526 0.423
-0.5 | 0.042 0.207 0.290 | 0.321 0.571 0.461
-0.8 | 0.006 0.129 0.293 | 0.087 0.487 0.483
0.8 | 0.997 0.693 0.431 | 1.000 0.897 0.573
0.5 |0995 0718 0.472 | 1.000 0.928 0.613
0.2 | 0990 0.735 0.488 | 1.000 0.943 0.613
w=0.3 p=1 0.0 |0989 0.750 0.492 | 1.000 0.945 0.617
-0.2 | 0984 0.757 0.494 | 1.000 0.945 0.620
-0.5 ] 0975 0.769 0.494 | 1.000 0.947 0.620
-0.8 10922 0.760 0.492 | 0.997 0.946 0.620
0.8 |0.998 0780 0.491 | 1.000 0.951 0.622
0.5 | 0997 0.777 0495 1.000 0.951 0.621
0.2 ;0997 0774 0.497 | 1.000 0.951 0.622
p =100 0.0 | 0997 0773 0.495 | 1.000 0.951 0.623
-0.2 | 0997 0.771 0.494 | 1.000 0.950 0.623
-0.5 | 0997 0.770 0.493 { 1.000 0.950 0.622
-0.8 | 0.997 0.770 0.495 | 1.000 0.950 0.623
RW. 0999 0.777 0.463 | 1.000 0.961 0.606
0.8 | 0.988 0.414 0.268 | 0.998 0.508 0.155
0.5 | 0.747 0.172 0.263 | 0.843 0.307 0.182
0.2 ] 0.351 0.133 0.294 | 0.627 0.357 0.257
p=001] 0.0 |0.180 0.153 0.314 | 0.498 0.411 0.301
-0.2 ] 0.090 0.165 0.329 | 0.401 0.472 0.340
-0.5 | 0.025 0.181 0.361 | 0.222 0.532 0.379
-0.8 | 0.000 0.101 0.373 | 0.039 0.410 0.398
0.8 |0.998 0662 0.407 | 1.000 0.921 0.522
0.5 | 0.993 068 0.437 | 1.000 0.938 0.570
0.2 |0.988 0.718 0.449 | 1.000 0.944 0.586
w=04 p=1 0.0 | 0.987 0.737 0.452 | 1.000 0.948 0.589
-0.2 | 0.985 0.745 0.455 | 1.000 0.949 0.590
-0.5 | 0.979 0.750 0.455 | 1.000 0.951 0.597
-0.8 10914 0735 0.456 | 1.000 0.948 0.602
0.8 {0999 0.781 0.464 | 1.000 0.961 0.597
0.5 | 0.999 0777 0.462 | 1.000 0.961 0.603
0.2 10999 0.778 0.460 | 1.000 0.961 0.605
p =100 0.0 |0.999 0.777 0.460 | 1.000 0.960 0.607
-0.2 | 0.999 0.776 0.459 | 1.000 0.959 0.607
-0.5 | 0999 0.776 0.459 | 1.000 0.959 0.607
-0.8 | 0.999 0.777 0.459 | 1.000 0.959 0.607
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Table 4e. The Power of the LM Test: the Case 3 (continued)

T =100 T =200

a 20 4 212 £0 7 {12
R.W. |0.998 0.790 0.454 | 1.000 0.980 0.629
0.8 | 0994 0411 0.236 | 0.998 0.564 0.150
0.5 | 0.758 0.152 0.300 | 0.874 0.284 0.163
0.2 | 0351 0.120 0.345 | 0.635 0.327 0.222
p=001] 0.0 {0171 0.123 0.374 | 0.488 0.389 0.281
-0.2 | 0.069 0.139 0.390 | 0.358 0.453 0.328
-0.5 | 0.006 0.146 0.425 | 0.173 0.517 0.379
-0.8 | 0.000 0.062 0.473 | 0.026 0.368 0.394
0.8 | 1.000 0.688 0.397 | 1.000 0.948 0.538
0.5 | 0993 0709 0.435 | 1.000 0.966 0.591
0.2 | 0983 0.739 0.449 | 1.000 0.969 0.609
w=05 p=1 0.0 | 0990 0.755 0.454 | 1.000 0.972 0.612
-0.2 10988 0.771 0.460 | 1.000 0.978 0.617
-0.5 | 0977 0.774 0.460 | 1.000 0.977 0.617
-0.8 10926 0.761 0.461 | 0.999 0.974 0.618
0.8 10.999 0.792 0.454 | 1.000 0.980 0.628
0.5 |0.999 0.791 0.453 | 1.000 0.981 0.630
0.2 10999 0.791 0.455 1.000 0.981 0.632
p=100 | 0.0 | 0999 0.790 0.455 | 1.000 0.981 0.632
-0.2 | 0999 0.789 0455 | 1.000 0.981 0.631
-0.5 | 0.999 0.789 0.455 | 1.000 0.981 0.628
-0.8 10.998 0.790 0.457 | 1.000 0.981 0.628
R.W. | 1.000 0.761 0.470 [ 1.000 0.957 0.576
0.8 1098 0.396 0.246 | 0.998 0.515 0.166
0.5 | 0.754 0.165 0.264 | 0.855 0.296 0.187
0.2 |0.363 0.152 0.299 | 0.621 0.344 0.262
p=001] 0.0 |0.201 0.168 0.318 | 0.492 0.399 0.309
-0.2 | 0.098 0.182 0.333 | 0.381 0.463 0.356
-0.5 | 0.018 0.184 0.369 | 0.229 0.516 0.401
-0.8 | 0.000 0.098 0.374 | 0.042 0.417 0.407
0.8 10998 0.679 0.434 | 1.000 0.933 0.519
0.5 10990 0.707 0.458 | 1.000 0.944 0.547
0.2 10990 0.724 0.462 | 1.000 0.952 0.558
w=06 p=1 0.0 | 099 0.731 0.465 | 1.000 0.955 0.560
-0.2 1 0987 0.733 0.468 | 1.000 0.957 0.562
-0.5 | 0.981 0.744 0.466 | 1.000 0.958 0.564
-0.8 | 0.923 0.728 0.468 | 1.000 0.952 0.564
0.8 | 1.000 0.769 0.470 | 1.000 0.958 0.570
05 | 1000 0.764 0.472 | 1.000 0.959 0.575
0.2 | 1.000 0764 0.468 [ 1.000 0.958 0.574
p=100 | 0.0 | 1.000 0.764 0.470 | 1.000 0.957 0.574
-0.2 | 1.000 0.764 0.470 | 1.000 0.957 0.573
-0.5 | 1.000 0.762 0.469 | 1.000 0.957 0.574
-0.8 | 1.000 0.762 0.471 | 1.000 0.957 0.574
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Table 4e. The Power of the LM Test: the Case 3 (continued)

T =100 T = 200

a 20 £4 212 £0 24 212
RW. [ 0.997 0.780 0.504 | 1.000 0.954 0.628
0.8 10965 0.395 0.231 ] 0.996 0470 0.177
0.5 | 0.666 0.178 0.207 | 0.813 0.312 0.216
0.2 | 0.350 0.177 0.246 | 0.618 0.395 0.306
p=001| 0.0 | 0.228 0.191 0.258 | 0.533 0.461 0.351
-0.2 | 0.131 0.207 0.287 | 0.444 0.510 0.400
-0.5 | 0.039 0.233 0.318 | 0.304 0.554 0.446
-0.8 | 0.003 0.142 0.295 | 0.105 0.459 0.456
0.8 {0991 0.697 0.459 | 1.000 0.893 0.561
0.5 | 098 0722 0.482 | 1.000 0.919 0.605
0.2 | 0981 0.750 0.497 | 1.000 0.935 0.612
w=07 p=1 0.0 | 0982 0.759 0.498 | 1.000 0.939 0.621
-0.2 10979 0.767 0.497 | 1.000 0.943 0.621
-0.5 | 0.968 0.768 0.500 | 1.000 0.943 0.622
-0.8 | 0.909 0.767 0.494 | 0.998 0.943 0.623
0.8 |0.998 0.778 0.506 | 1.000 0.949 0.627
0.5 | 0.997 0.778 0.507 | 1.000 0.954 0.630
0.2 ;0997 0.777 0.507 | 1.000 0.953 0.628
=100 | 0.0 |0.997 0.778 0.505 | 1.000 0.953 0.628
-0.2 | 0.997 0.779 0.504 | 1.000 0.953 0.628
-0.5 | 0.997 0.779 0.504 | 1.000 0.953 0.628
-0.8 | 0.997 0.779 0.504 | 1.000 0.953 0.628
R.W. 1 1.000 0.819 0.487 | 1.000 0.950 0.675
0.8 10.962 0.396 0.212 | 0.987 0.478 0.188
0.5 | 0.624 0.209 0.193 | 0.785 0.379 0.250
0.2 | 0.369 0.213 0.215 | 0.639 0.466 0.372
p=001] 00 | 0258 0.227 0.242 | 0.576 0.527 0.417
-0.2 10179 0260 0.256 | 0.535 0.585 0.453
-0.5 | 0.077 0.278 0.286 | 0.394 0.624 (.489
-0.8 | 0.010 0.184 0.264 | 0.171 0.554 0.496
0.8 {0989 0.734 0.426 | 1.000 0.900 0.622
0.5 | 0983 0.762 0.465 | 1.000 0.930 0.653
0.2 | 0984 0.785 0.481 | 1.000 0.938 0.660
w=08 p=1 0.0 | 098 0.793 0.488 | 1.000 0.944 0.666
-0.2 | 0.986 0.801 0.4838 | 1.000 0.946 0.669
-0.5 | 0978 0.806 0.490 | 0.999 0.944 0.670
-0.8 |1 0.938 0.795 0.490 | 0.996 0.944 0.670
0.8 0998 0.822 0.489 | 1.000 0.948 0.675
0.5 | 1.000 0.822 0.493 | 1.000 0.950 0.674
0.2 | 1.000 0.822 0.493 | 1.000 0.950 0.673
.p=100 | 0.0 | 1.000 0.821 0.492 | 1.000 0.949 0.673
-0.2 1 1.000 0.822 0.491 | 1.000 0.949 0.673
-0.5 | 1.000 0.820 0.489 | 1.000 0.949 0.673
-0.8 | 1.000 0.820 0.489 | 1.000 0.949 0.674
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Table 4e. The Power of the LM Test: the Case 3 (continued)

T =100 T =200

a 20 12 712 40 24 {12
R.W. | 1.000 0.825 0.465 | 1.000 0.958 0.656
0.8 | 0959 0.397 0.148 | 0.983 0.490 0.186
0.5 | 0.654 0.216 0.122 | 0.808 0.399 0.253
0.2 {0415 0225 0.158 | 0.686 0.502 0.367
p=001] 00 | 0311 0260 0.192 | 0.643 0.565 0.416
-0.2 | 0.226 0.294 0.224 | 0.594 0.620 0.463
-0.5 | 0.100 0.316 0.249 | 0.469 0.665 0.504
-0.8 | 0.020 0.216 0.245 | 0.230 0.612 0.517
0.8 |0.993 0.750 0.395 | 1.000 0.915 0.605
0.5 |0995 0781 0.437 | 1.000 0.944 0.635
0.2 | 0994 0.805 0.445 | 1.000 0.952 0.650
w=09 p=1 0.0 10993 0.812 0452 | 1.000 0.954 0.652
-0.2 | 0992 0.821 0.454 | 1.000 0.956 0.655
-0.5 | 0.989 0.823 0.453 { 1.000 0.956 0.655
-0.8 | 0970 0.812 0.455 | 0.998 0.953 0.656
0.8 10999 0.828 0.462 | 1.000 0.961 0.656
0.5 0999 0.827 0.461 | 1.000 0.957 0.657
0.2 10999 0.826 0.466 | 1.000 0.957 0.657
p=100 | 0.0 | 0.999 0.826 0.465 | 1.000 0.957 0.657
-0.2 10999 0.827 0.464 | 1.000 0.957 0.657
-0.5 | 0899 0.826 0.464 | 1.000 0.957 0.657
-0.8 | 0999 0.826 0.463 | 1.000 0.958 0.657
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Table 4f. The Power of the PS Test: the Case 3

T =100 T =200

a £0 4 £12 £0 4 12
R.W. | 0994 0.514 0.000 | 1.000 0.849 0.306
0.8 10913 0.119 0.006 | 0.962 0.264 0.036
0.5 | 0555 0.08 0.047 | 0.810 0.265 0.114
02 |0331 0125 0.106 | 0.663 0.398 0.183
p=001] 00 0219 0162 0.152 | 0.587 0465 0.218
-0.2 | 0.139 0.221 0.193 | 0.495 0.536 0.249
-0.5 | 0.048 0.300 0.280 | 0.331 0.589 0.281
-0.8 | 0.005 0.274 0.430 | 0.125 0.510 0.325
0.8 | 0.980 0.428 0.002 | 1.000 0.802 0.267
0.5 |0.979 0470 0.002 | 1.000 0.831 0.296
0.2 | 0.980 0.497 0.001 | 1.000 0.846 0.304
w=01 p=1 0.0 | 0979 0.499 0.000 | 1.000 0.849 0.303
-0.2 1 0.975 0.505 0.000 | 1.000 0.849 0.305
-0.5 | 0.964 0.510 0.000 | 0.999 0.851 0.305
-0.8 10916 0.507 0.000 | 0.995 0.848 0.304
0.8 | 0.995 0.521 0.000 | 1.000 0.850 0.303
0.5 |} 0995 0.517 0.000 | 1.000 0.848 0.304
0.2 10995 0516 0.000 | 1.000 0.849 0.304
p=100 | 0.0 | 0994 0.515 0.000 | 1.000 0.848 0.304
-0.2 | 0.994 0.515 0.000 { 1.000 0.848 0.304
-0.5 1 0.993 0.515 0.000 | 1.000 0.849 0.304
-0.8 10993 0.515 0.000 | 1.000 0.849 0.305
R.W. | 1.000 0.608 0.040 | 1.000 0.907 0.389
0.8 |0.963 0224 0.067 | 0.994 0.397 0.090
0.5 |0.686 0.137 0.183 | 0.859 0.279 0.150
0.2 | 0362 0149 0.232 | 0.668 0.366 0.219
p=001| 0.0 | 0207 0.166 0.256 | 0.556 0.448 0.247
-0.2 | 0.105 0.186 0.263 | 0.464 0506 0.275
-0.5 | 0.028 0.207 0.295 | 0.286 0.555 0.296
-0.8 |1 0.003 0.129 0.385 | 0.076 0.449 0.319
0.8 |{0.992 0514 0.061 | 1.000 0.863 0.349
0.5 |0.992 0544 0.051 | 1.000 0.886 0.375
0.2 | 0990 0.578 0.041 | 1.000 0.900 0.383
w=02 p=1 0.0 | 0.987 0.585 0.045 | 1.000 0.901 0.383
-0.2 |1 0.984 0.590 0.043 | 1.000 0.900 0.385
-0.5 | 0975 0.595 0.042 | 1.000 0.901 0.384
-0.8 | 0916 0.589 0.043 | 0.997 0.899 0.384
0.8 | 1.000 0.607 0.045 | 1.000 0.905 0.383
0.5 | 1.000 0.604 0.041 | 1.000 0.905 0.387
0.2 | 1.000 0.605 0.041 | 1.000 0.905 0.389
p=100 { 0.0 | 1.000 0.605 0.040 | 1.000 0.905 0.389
-0.2 | 1.000 0.606 0.041 | 1.000 0.906 0.389
-0.5 | 1.000 0.605 0.040 | 1.000 0.907 0.389
-0.8 | 1.000 0.608 0.040 | 1.000 0.907 0.389
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Table 4f. The Power of the PS Test: the Case 3 (continued)

T = 100 T = 200
a 0 4 12 | M 012
RW. [ 0999 0.700 0.205 | 1.000 0.943 0.483
08 | 0982 0350 0.188 | 0.096 0.486 0.124
0.5 | 0737 0154 0.276 | 0.869 0.286 0.155
0.2 | 0373 0134 0317 | 0.651 0.356 0.236
p=001] 00 |0.192 0139 0.328 | 0.526 0.421 0.279
0.2 | 0.079 0.153 0.326 | 0.411 0.485 0.306
0.5 | 0.022 0.153 0.357 | 0.228 0.526 0.348
0.8 | 0.002 0.074 0.420 | 0.042 0.417 0.360
0.8 | 0098 0606 0.183 | 1.000 0002 0.442
0.5 | 0995 0632 0205|1000 0924 0471
0.2 | 0994 0675 0.203|1.000 0932 0.478
w=03 p=1 | 00 [0992 0.68 0.198 | 1.000 0.933 0.480
0.2 | 0.990 0.686 0.200 | 1.000 0.935 0.480
-0.5 | 0.982 0.687 0.203 | 1.000 0.935 0.483
-0.8 | 0.922 0.675 0.208 | 0.999 0.934 0.486
0.8 | 0.999 0.698 0.203 | 1.000 0041 0.483
0.5 | 0999 0702 0.204 | 1.000 0.941 0.484
0.2 | 0999 0701 0202 |1.000 0943 0.484
p=100 | 0.0 |0.999 0.700 0.203 | 1.000 0.942 0.486
0.2 0999 0701 0.204 | 1.000 0.942 0.486
0.5 {0999 0701 0.206 | 1.000 0.942 0.485
0.8 | 0.999 0.701 0.208 | 1.000 0.942 0.484
R.W. [ 0.999 0.762 0.375 | 1.000 0.956 0.595
0.8 | 00992 0419 0.233 | 0.999 0523 0.145
0.5 | 0.772 0.146 0.297 | 0.870 0.302 0.163
0.2 |0362 0127 0.341 | 0.634 0.358 0.235
p=001| 00 |0.173 0.139 0.359 | 0.502 0.418 0.283
0.2 | 0.082 0.159 0.376 | 0.397 0.477 0.331
0.5 | 0.011 0.167 0.404 | 0.187 0.525 0.365
-0.8 | 0.000 0.069 0.446 | 0.025 0.399 0.371
0.8 | 0998 0661 0335 | 1.000 0927 0530
0.5 | 0.994 0.666 0.355|1.000 00943 0576
0.2 10995 0710 0.362 | 1.000 0955 0.590
w=04 p=1 | 00 |0994 0721 0.366 | 1.000 0.956 0.591
-0.2 | 0991 0.730 0.371 | 1.000 0.957 0.597
0.5 | 0978 0.738 0.377 | 1.000 0.957 0.599
-0.8 | 0929 0718 0.380 | 1.000 0.956 0.597
0.8 [ 0999 0.57 0.371 | 1.000 0961 0.599
0.5 10999 0759 0.368 | 1.000 0.959 0.598
0.2 | 0999 0763 0.367 | 1.000 0.958 0.598
p=100 | 0.0 |0.999 0764 0.369 | 1.000 0.957 0.597
-0.2 | 0.999 0.765 0.371 | 1.000 0.958 0.597
0.5 | 0.999 0.765 0.373 | 1.000 0.956 0.597
0.8 0999 0763 0.374 | 1.000 0.956 0.597
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Table 4f. The Power of the PS Test: the Case 3 (continued)

T =100 T =200

a £0 44 £12 £0 24 212
RW.  0.998 0.790 0.454 | 1.000 0.980 0.629
0.8 | 0994 0411 0.236 | 0.998 0.564 0.150
0.5 ]0.758 0.152 0.300 | 0.874 0.284 0.163
0.2 |0351 0.120 0.345 | 0.635 0.327 0.222
p=001] 00 |0.171 0.123 0.374 | 0.488 0.389 0.281
-0.2 | 0.069 0.139 0.390 | 0.358 0.453 0.328
-0.5 | 0.006 0.146 04251 0.173 0.517 0.379
-0.8 | 0.000 0.062 0.473 | 0.026 0.368 0.394
0.8 | 1.000 0.688 0.397 | 1.000 0.948 0.538
0.5 | 0993 0709 0435 1.000 0.966 0.591
0.2 10989 0.739 0.449 { 1.000 0.969 0.609
w=085 p=1 0.0 [ 0990 0.755 0.454 | 1.000 0.972 0.612
-0.2 |1 0.988 0.771 0.460 | 1.000 0.978 0.617
-0.5 {0977 0.774 0460 | 1.000 0.977 0.617
-0.8 | 0926 0.761 0.461 | 0.999 0.974 0.618
0.8 {0.999 0.792 0.454 | 1.000 0.980 0.628
0.5 |0.999 0791 0453 | 1.000 0.981 0.630
0.2 |0.999 0.791 0.455 | 1.000 0.981 0.632
p=100 | 0.0 | 0999 0.790 0.455 | 1.000 0.981 0.632
-0.2 1 0.999 0.789 0.455 | 1.000 0.981 0.631
-0.5 | 0.999 0.789 0.455 | 1.000 0.981 0.628
-0.8 | 0.998 0.790 0.457 | 1.000 0.981 0.628
R.W. [ 1.000 0769 0.376 | 1.000 0.967 0.575
0.8 |0.988 0.435 0.268 | 0.998 0.553 0.159
0.5 |0.78 0.184 0.327 | 0.885 0.283 0.172
0.2 ;0.384 0.141 0.371 | 0.643 0.335 0.231
p=0.01| 0.0 | 0.194 0.150 0.389 | 0.494 0.407 0.273
-0.2 | 0.078 0.165 0.402 | 0.377 0.475 0.307
-0.5 | 0.006 0.165 0.431 | 0.190 0.513 0.351
-0.8 | 0.000 0.069 0.486 | 0.025 0.386 0.358
0.8 10.998 0.687 0.358 | 1.000 0.941 0.501
0.5 | 0992 0.704 0.380 | 1.000 0.948 0.543
0.2 | 0990 0.737 0.385 | 1.000 0.959 0.556
w=06 p=1 0.0 10989 0.745 0.381 ] 1.000 0.961 0.564
-0.2 | 0.987 0.753 0.376 | 1.000 0.962 0.563
-0.5 | 0.981 0.753 0.376 | 1.000 0.963 0.567
-0.8 10930 0.741 0.379 | 1.000 0.962 0.567
0.8 11000 0.774 0.368 | 1.000 0.967 0.569
0.5 | 1.000 0.770 0.371 | 1.000 0.966 0.574
0.2 | 1.000 0.770 0.370 | 1.000 0.965 0.575
p=100 | 0.0 | 1.000 0.769 0.369 | 1.000 0.965 0.575
-0.2 | 1.000 0.769 0.371 | 1.000 0.965 0.575
-0.5 | 1.000 0.769 0.372 | 1.000 0.965 0.575
-0.8 | 1.000 0.770 0.374 | 1.000 0.966 0.574
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Table 4f. The Power of the PS Test: the Case 3 (continued)

T =100 T =200

a £0 24 212 20 4 212
RW. 0999 0708 0.206 | 1.000 0.954 0.468
0.8 10977 0.340 0.194 | 0.996 0.504 0.158
05 {0745 0.158 0.297 | 0.865 0.311 0.168
0.2 | 0379 0146 0.323 | 0.646 0.361 0.234
p=001) 0.0 | 0.188 0.157 0.342 | 0.524 0.414 0.265
-0.2 | 0.089 0.175 0.359 | 0.401 0472 0.294
-0.5 | 0.021 0.183 0.391 | 0.229 0.514 0.326
-0.8 | 0.001 0.093 0.462 | 0.048 0.400 0.343
0.8 | 0992 0.620 0.209 | 1.000 0.906 0.417
0.5 | 0991 0634 0.210 | 1.000 0.930 0.457
0.2 | 0990 0669 0.210 | 1.000 0.942 0.461
w=07 p=1 0.0 10991 0.677 0.208 | 1.000 0.942 0.465
-0.2 | 0.987 0.681 0.205 | 1.000 0.946 0.466
-0.5 | 0974 0.686 0.204 | 1.000 0.948 0.468
-0.8 |1 0.923 0.671 0.204 | 0.996 0.945 0.469
0.8 {0999 0.711 0.202 | 1.000 0.953 0.465
0.5 |0.999 0.707 0.201 { 1.000 0.953 0.470
0.2 10.999 0.706 0.200 | 1.000 0.954 0.470
p=100 | 0.0 | 0999 0705 0.200 | 1.000 0.955 0.471
-0.2 1 0.999 0.706 0.200 | 1.000 0.955 0.472
-0.5 1 0.999 0.706 0.200 | 1.000 0.955 0.471
-0.8 1 0.999 0.705 0.203 | 1.000 0.955 0.470
R.W. 10998 0.606 0.050 | 1.000 0.899 0.372
0.8 10.958 0.246 0.088 | 0.994 0.425 0.109
0.5 |0.683 0.155 0.185 | 0.835 0.313 0.156
0.2 | 0378 0.152 0.231 | 0.645 0.387 0.212
p=001| 0.0 | 0211 0.172 0.251 | 0.552 0.440 0.249
-0.2 | 0.120 0.202 0.269 | 0.447 0.491 0.272
-0.5 | 0.033 0224 0.331 | 0.285 0.536 0.298
-0.8 10.002 0.160 0.473 | 0.070 0.442 0.320
0.8 0992 0519 0.064 | 1.000 0.856 0.318
0.5 | 0.989 0.553 0.068 | 1.000 0.874 0.350
0.2 | 0984 0576 0.058 | 1.000 0.890 0.358
w=08 p=1 0.0 | 0980 0.581 0.056 | 1.000 0.896 0.363
-0.2 1 0977 0.587 0.054 | 1.000 0.899 0.364
-0.5 | 0.969 0.595 0.054 | 1.000 0.898 0.367
-0.8 10924 0.584 0.055 | 0.997 0.897 0.370
0.8 | 0.998 0.600 0.047 [ 1.000 0.905 0.371
0.5 | 0.998 0.604 0.051 | 1.000 0.903 0.372
0.2 10998 0.603 0.051 | 1.000 0.902 0.372
p=100 | 0.0 | 0998 0.605 0.052 | 1.000 0.901 0.371
-0.2 | 0.998 0.606 0.051 | 1.000 0.900 0.372
-0.5 | 0.998 0.606 0.050 | 1.000 0.900 0.372
-0.8 | 0.998 0.606 0.051 | 1.000 0.901 0.372
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Table 4f. The Power of the PS Test: the Case 3 (continued)

T =100 T = 200

a £0 4 212 Q0 44 £12
R.W. | 0.995 0.530 0.000 | 1.000 0.854 0.307
0.8 {0.886 0.117 0.002 | 0.965 0.286 0.045
0.5 | 0.576 0.081 0.044 | 0.797 0.291 0.122
0.2 | 0352 0.138 0.119 | 0.642 0.391 0.187
p=001] 00 |0.243 0.181 0.156 | 0.570 0.452 0.213
-0.2 | 0.151 0.235 0.205 | 0.488 0.497 0.238
-0.5 | 0.059 0.340 0.313 | 0.336 0.564 0.269
-0.8 | 0.004 0.420 0.530 | 0.113 0.516 0.341
0.8 | 0.979 0441 0.003 | 1.000 0.784 0.251
0.5 | 0.986 0.485 0.003 | 0.999 0.818 0.292
0.2 | 0.985 0.508 0.003 | 0.999 0.836 0.297
w=20.9 p=1 0.0 {0985 0.515 0.002 | 0.999 0.838 0.298
-0.2 10982 0.517 0.002 | 0.999 0.844 0.302
-0.5 | 0.977 0.530 0.000 | 0.998 0.849 0.303
-0.8 | 0.920 0.528 0.000 | 0.994 0.849 0.304
0.8 {0995 0.525 0.001 | 1.000 0.856 0.303
0.5 | 0995 0.524 0.000 | 1.000 0.855 0.302
0.2 10995 0.528 0.000 | 1.000 0.855 0.303
p =100 0.0 | 0995 0.528 0.000 | 1.000 0.854 0.305
-0.2 | 0995 0.528 0.000 | 1.000 0.854 0.305
-0.5 [ 0995 0.529 0.000 | 1.000 0.854 0.305
-0.8 10995 0.529 0.000 | 1.000 0.854 0.305
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Table 5. Test for Stationarity

Series T Tg w 4 £12

Real GNP 62 1929 0.339 0.11842**  0.09202*
Nominal GNP 62 1929 0.339 0.10164* 0.07659
Real per capita GNP 62 1940 0.516 0.18685**  0.15879**
Industrial Production 111 1941 0.739 0.22738*** (.13382**
Unemployment 81 1929 0.494 0.07498 0.06684
Nominal Wages 71 1930 0.437 0.12002* 0.09013
Common-stock Prices 100 1939 0.690 0.03514 0.05237
Common-stock Prices (the PS test) 0.11146 0.16611
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Figure la. The Limiting Powers (Case 0)
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Figure lc. The Limiting Powers (Case 2)
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Figure 2a. The Limiting Powers (w = 0.1)
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Figure 2b. The Limiting Powers (w = 0.2)
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Figure 2d. The Limiting Powers (w = 0.4)
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Figure 3a. The Limiting Powers (Case 0:PS)
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Figure 4a. The Limiting Powers (Case 0: w = 0.1)
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Figure 4c. The Limiting Powers (Case 0: w = 0.3)
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] T T T |
40

147



Figure 5a. The Limiting Powers (Case 3: w = 0.1)
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