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Abstract

This paper considers two distinct procedures to lexicographically compose
multiple criteria for social or individual decision making. The first procedure
composes M binary relations into one, and then selects its maximal elements.
The second procedure first selects the set of maximal elements of the first binary
relation, and then within that set, chooses the maximal elements of the second
binary relation, and iterates the procedure until the Mth binary relation. We
show several distinct sets of conditions for the choice functions representing
these two procedures to satisfy non-emptiness and choice-consistency condi-
tions such as contraction consistency (Chernoff, 1954) and path independence
(Arrow, 1963). We also examine the relationships between the outcomes of the
two procedures. Then, we investigate under what conditions the outcomes of
each procedure are independent of the order of lexicographic application of the
criteria. Examples for applications of the results in the economic environments
are also presented.
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1 Introduction

In the process of social decision making, people often advocate multiple criteria on

which the desirability of alternatives should be judged. A typical example is the

equity-efficiency trade-off. People say that economic growth is desirable because

the welfare of most individuals increases, while at the same time they insist that

an equitable distribution is essential for social stability. As often argued, however,

economic growth may give rise to an inequitable distribution of income and wealth.

Even a single individual’s decision may be based upon multiple criteria. As Sen

(1985) argues, an individual has not only material preferences over his own consump-

tions but also has value judgments based on, for instance, the sense of obligation,

which may contradict his material preferences. A family’s decision also typically in-

volves multiple criteria. Parents’ interest often conflicts with children’s interest on,

for example, video games.

When multiple criteria, each regarded as reasonable for itself, are in contradiction

with each other, one resolution would be to make a priority order for application

of the criteria. For such lexicographic applications of multiple criteria, however, we

can consider two distinct procedures of choice, which are described in the following.

Let us first postulate that each criterion is expressed by a binary relation on the

set X of all alternatives. In the first procedure, which we call procedure α, we

first compose lexicographically multiple binary relations R1, . . . , RM into one binary

relation P (R1, . . . , RM) in the following way: an alternative x is better than an

alternative y for P (R1, . . . , RM) if and only if (i) x is superior to y for R1 or (ii)

y is not superior to x for R1 and x is superior to y for R2, or · · · or (M) y is

not superior to x for R1, . . . , RM−1 and x is superior to y for RM . Then, for each

subset S of alternatives, we select the set CP (R1,,...,RM )(S) of maximal elements for

P (R1, , . . . , RM).

By contrast, in the second procedure, which we call procedure β, for each subset S

of alternatives, we first choose the set CP (R1)(S) of maximal elements in S for the first

criterion R1, and then select within the set CP (R1)(S), its subset CP (R2)[CP (R1)(S)]

of maximal elements for the second criterion R2, and iterate the procedure until the

Mth binary relation.

Indeed, the above two procedures provide different choices for many cases. As a

simple example, consider S = {x, y, z}, R1 = {(x, z)}, and R2 = {(z, y)}. Then, since

(x, z), (z, y) ∈ P (R1, R2), procedure α chooses {x} from S. However, because the set

of maximal elements in S for R1 is {x, y}, and neither x nor y strictly dominates
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the other according to R2, procedure β selects {x, y} from S. Procedure α has

been introduced and examined by Tadenuma (2002, 2005), while procedure β has

been introduced by Suzumura (1983b), Aizerman (1985) and Aizerman and Aleskerov

(1995), and studied more recently by Manzini and Mariotti (2005), Tadenuma (2005)

and Houy (2007).

When a decision-maker has multiple criteria, his behavior becomes much different

from a simple maximizer of a single binary relation. It is more difficult to have con-

sistent choices under multiple criteria than under a single criterion. In this paper, we

study under what conditions the choice correspondence derived from each procedure

to lexicographically compose multiple criteria satisfy non-emptiness and various prop-

erties of choice-consistency such as contraction consistency (Chernoff, 1954) and path

independence (Arrow, 1963). We also examine relationships between the outcomes of

procedures α and β.

Another interesting question would be whether the final outcome depends on the

order of application of the multiple criteria. When we evaluate allocations, which

criterion should we apply first, the efficiency criterion or the equity criterion? Such

a question is important if the order of application of the multiple criteria affects the

final outcome. But if the order is irrelevant, then we do not have to be concerned

about which criterion we should take first. We investigate under what conditions the

outcomes of the choice correspondence of each procedure are independent of the order

of lexicographic application of the multiple criteria.

All the results in this paper are derived without specific restrictions on the set

of alternatives, but we present applications of the results in the classical division

problem of infinitely divisible commodities.

There are many examples in which multiple criteria, each of which seems reason-

able for itself, contradict each other. In economics and social choice theory, the social

preference relation that has been most widely accepted is the Pareto domination.

However, the Pareto criterion is silent about the distributional equity of allocations

but concerns only efficient use of resources. On the other hand, several interesting

concepts of distributional equity have been introduced and extensively studied in eco-

nomics. Two of them are central: no-envy and egalitarian-equivalence.1 It was Kolm

(1972) and Feldman and Kirman (1974) who pointed out that there is a fundamental

conflict between the Pareto criterion and the equity-as-no-envy criterion: there often

exist two allocations x and y such that x Pareto dominates y whereas x is not envy-

1The concept of no-envy was introduced by Foley (1967) and Kolm (1972), and that of egalitarian-
equivalence by Pazner and Schmeidler (1978).
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free but y is. The same kind of conflict also arises between the Pareto criterion and

the equity-as-egalitarian-equivalence criterion.

Social choice theory on abstract domains has also been extended to take account of

intersituational comparisons of individuals.2 In this “extended sympathy” approach,

Suzumura (1981a, b) studied choice-consistency of social choice functions satisfying

some conditions concerning Pareto efficiency and equity-as-no-envy in the framework

of abstract social choice. Tadenuma (2002, 2005) introduced various lexicographic

compositions of the Pareto criterion and the no-envy criterion, and of Pareto and

egalitarian-equivalence, respectively, in the classical division problem, and examined

rationality of the social preference relations. Tadenuma (2005) also showed that the

set of allocations selected by procedure α with the Pareto criterion and the egalitarian-

equivalence criterion from the set of all feasible allocations is independent of the

order of lexicographic application of the two criteria, and that the essential reason

for this independence is because the set of allocation selected by procedure β is also

independent of the order of application.

The present paper generalizes the results in these works by showing general con-

ditions for non-emptiness, contraction consistency, and path independence of choice

functions representing procedures α and β, clarifying their relationships, and also

deriving conditions for independence of the order of application of multiple criteria.

The next section defines the basic notions and notation, and Section 3 introduces

the choice-consistency properties. In Sections 4 and 5, we investigate conditions for

non-emptiness and choice-consistency of procedure α and procedure β, respectively.

Section 6 examines order-independence of each of the two procedures. The final

section contains some concluding remarks.

2 Basic Definitions and Notation

Let X be a (finite or infinite) set of alternatives with |X| ≥ 3. Let X denote the

set of all finite subsets of X. A binary relation on X is a set R ⊆ X × X. The

set of all binary relations on X is denoted R. Given R ∈ R, define P (R) ∈ R by

(x, y) ∈ P (R) ⇔ [(x, y) ∈ R and (y, x) /∈ R], and I(R) ∈ R by (x, y) ∈ I(R) ⇔
[(x, y) ∈ R and (y, x) ∈ R]. Given R ∈ R, a sequence (x1, . . . , xK) ⊆ X, K ≥ 2, is a

cycle for R if (x1, x2), (x2, x3), . . . , (xK−1, xK), (xK , x1) ∈ R. A binary relation R ∈ R
is

2Notable earlier contributions in this line of research are Harsanyi (1955), Suppes (1966), Pat-
tanaik (1968), Sen (1970), Hammond (1976) and Arrow (1977).
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• complete if for all x, y ∈ X, (x, y) ∈ R or (y, x) ∈ R;

• transitive if for all x, y, z ∈ X, (x, y) ∈ R and (y, z) ∈ R imply (x, z) ∈ R;

• quasi-transitive if for all x, y, z ∈ X, (x, y) ∈ P (R) and (y, z) ∈ P (R) imply

(x, z) ∈ P (R);

• asymmetric if for all x, y ∈ X, (x, y) ∈ R implies (y, x) /∈ R;

• acyclic if there exists no cycle for R.

Note that acyclicity implies asymmetry by the above definitions.

In the rest of the paper, if (x1, . . . , xK) ⊆ X is a cycle, we abuse notation by

letting (K + 1) := 1 in order to simplify presentation of the results.

A choice function is a function C : X → X such that C(S) ⊆ S for all S ∈ X .

Given R ∈ R, we define the choice function CP (R) as the one selecting the set of

maximal elements for every S ∈ X , that is,

∀S ∈ X , CP (R)(S) = {x ∈ X | ∀y ∈ X, (y, x) /∈ P (R)}.

We say that a choice function C is rationalizable by a binary relation R ∈ R if

C = CP (R).

In the following, we often consider the classical division problem with n agents and

m infinitely divisible commodities defined as follows. Let N = {1, . . . , n} be the set

of agents. The consumption set of each agent is Rm
+ . Let RE be the set of complete,

transitive and strictly monotonic3 relations on Rm
+ . Each agent i ∈ N is endowed

with a preference relation %i ∈ RE. The associated strict preference relation and the

indifference relation are defined as above, and denoted Âi and ∼i, respectively. An

allocation is a vector x = (x1, . . . , xn) ∈ Rmn
+ where each xi = (xi1, . . . , xim) ∈ Rm

+

is the consumption bundle of agent i ∈ N . The set of alternatives in this division

problem is defined as X = Rmn
+ .

3 Choice-Consistency Properties

In this section, we introduce some desirable properties of choice functions. A very

basic requirement is that at least one alternative should be chosen from any set.

Non-Emptiness: For all S ∈ X , C(S) 6= ∅.
3A preference relation % is strictly monotonic if for all a, b ∈ Rm

+ , a > b implies a Â b, where
a > b is defined as a ≥ b and a 6= b.
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Our next three properties require “consistency” of choices in related situations.

The first choice-consistency property means that if the set of available alternatives

“shrinks” but previously chosen alternatives are still available, then those alternatives

should remain chosen. This is a fundamental requirement of choice-consistency, and

it is satisfied by any choice function that is rationalizable by some binary relation.

Contraction Consistency (Chernoff, 1954): For all S, T ∈ X with T ⊆ S, T ∩
C(S) ⊆ C(T ).

The second property requires “the independence of the final choice from the path

to it” (Arrow, 1963, p.120). In real choice situations, we often divide the set of

alternatives into several parts in the first round, and make final choices from the

alternatives that have survived in the first round. This property requires that the

final choices should not depend on the way we divide the set of alternatives in the

first round. It is an important property especially for social choice rules. Were it

violated, some arbitrary agenda controls could affect the final choice, which is clearly

undesirable.

Path Independence: For all S, T ∈ X , C(C(S) ∪ C(T )) = C(S ∪ T ).

It is well-known that Path Independence implies Contraction Consistency, but not

vice versa.

The third choice-consistency property says that if an alternative is chosen from

every pair containing it in the set S, then it should be chosen from S.

Condorcet Consistency: For all S ∈ X and all x ∈ S, if x ∈ C({x, y}) for all

y ∈ S, then x ∈ C(S).

The choice-consistency properties are related with rationalizability of the choice

functions. The following results are well-established.4

Proposition 1 (Blair et al., 1976) A choice function C satisfies Non-Emptiness,

Contraction Consistency and Condorcet Consistency if and only if it is rationalizable

by a binary relation R such that P (R) is acyclic.

Given a binary relation R ∈ R, CP (R) satisfies Condorcet Consistency by defini-

tion. As we have noted, any choice function that is rationalizable by a binary relation

satisfies Contraction Consistency. Hence, we have the following corollary.

4A good reference for these results is Suzumura (1983a, Ch.2).
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Corollary 1 Let R ∈ R be given. The choice function CP (R) satisfies Non-Emptiness

if and only if P (R) is acyclic.

Similar relations hold for Path Independence and rationalizability by a quasi-

transitive binary relation.

Proposition 2 (Plott, 1973) A choice function C satisfies Non-Emptiness, Path In-

dependence and Condorcet Consistency if and only if it is rationalizable by a quasi-

transitive binary relation.

Corollary 2 Let R ∈ R be given. The choice function CP (R) satisfies Non-Emptiness

and Path Independence if and only if R is quasi-transitive.

4 Lexicographic Composition of Multiple Binary

Relations

As we have mentioned in the introduction, we consider two distinct procedures to

compose multiple criteria for decision making. This section focuses on procedure α in

which we first compose M binary relations R1, . . . , RM into one, and then choose its

maximal elements. Formally, for all R1, . . . , RM ∈ R, we define P (R1, . . . , RM) ∈ R
by

P (R1, . . . , RM) = {(x, y) ∈ X ×X | [(x, y) ∈ P (R1)] or

[(y, x) 6∈ P (R1) and (x, y) ∈ P (R2)] or · · ·
[(y, x) 6∈ P (R1) ∪ · · · ∪ P (RM) and (x, y) ∈ P (RM)]}.

We call P (R1, . . . , RM) the lexicographic composition of R1, . . . , RM . Notice that

P (R1, . . . , RM) is asymmetric and hence P (P (R1, . . . , RM)) = P (R1, . . . , RM).

We examine under what conditions the choice function CP (R1,...,RM ) satisfies Non-

Emptiness and Path Independence. By Corollaries 1 and 2, our examination reduces

to checking acyclicity and quasi-transitivity of P (R1, . . . , RM). We also present ex-

amples for applications of the results in economic environments.

Our first result gives a necessary and sufficient condition for P (R1, . . . , RM) to be

acyclic, and equivalently, for CP (R1,...,RM ) to be non-empty.

Proposition 3 Let R1, . . . , RM ∈ R. The lexicographic composition P (R1, . . . , RM)

is acyclic if and only if for every cycle (x1, . . . , xK) ⊆ X for P (R1)∪· · ·∪P (RM), there

exists k ∈ {1, . . . , K} such that for every m ∈ {1, . . . , M} with (xk, xk+1) ∈ P (Rm),

there exists m′ ∈ {1, . . . , M}, m′ < m, such that (xk+1, xk) ∈ P (Rm′
).
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Proof. Necessity. Assume that there exists a cycle (x1, . . . , xK) ⊆ X for P (R1) ∪
· · · ∪ P (RM) such that for every k ∈ {1, . . . , K}, there exists m ∈ {1, . . . , M} such

that (xk, xk+1) ∈ P (Rm) and (xk+1, xk) /∈ P (Rm′
) for all m′ < m. Then, by definition,

(xk, xk+1) ∈ P (R1, · · · , RM) for every k ∈ {1, . . . , K}, and (x1, . . . , xK) ⊆ X is a cycle

for P (R1, · · · , RM).

Sufficiency. Assume that for every cycle (x1, . . . , xK) ⊆ X for P (R1) ∪ · · · ∪
P (RM), there exists k ∈ {1, . . . , K} such that for every m ∈ {1, . . . , M} with

(xk, xk+1) ∈ P (Rm), there exists m′ ∈ {1, . . . ,M}, m′ < m such that (xk+1, xk) ∈
P (Rm′

). Suppose, on the contrary, that P (R1, . . . , RM) has a cycle (y1, . . . , yL) ⊆ X.

Then, (y1, . . . , yL) is also a cycle for P (R1)∪ · · · ∪P (RM). By the assumption, there

exists ` ∈ {1, . . . , L} such that for every m ∈ {1, . . . , M} with (y`, y`+1) ∈ P (Rm),

there exists m′ ∈ {1, . . . , M}, m′ < m such that (y`+1, y`) ∈ P (Rm′
). Then, by defi-

nition, (y`, y`+1) /∈ P (R1, . . . , RM), contradicting the fact that (y1, . . . , yL) ⊆ X is a

cycle for P (R1, . . . , RM).

In many economic problems, a trade-off arises between two criteria such as effi-

ciency vs. equity, growth vs. environmental quality, efficiency vs. liberty, and so on.

In such cases, we can obtain simpler conditions for acyclicity or quasi-transitivity of

the lexicographic compositions of two binary relations. Next, we provide several suf-

ficient conditions for P (R1, R2) to be acyclic or quasi-transitive, which may be useful

in various contexts.

Proposition 4 Let R1, R2 ∈ R. If R1 is complete and transitive, and R2 is quasi-

transitive, then P (R1, R2) is quasi-transitive.

Proof. Let x, y, z ∈ X. Assume that (x, y) ∈ P (R1, R2) and (y, z) ∈ P (R1, R2).

From (x, y) ∈ P (R1, R2), we have (1) (x, y) ∈ P (R1) or (2) (x, y) /∈ P (R1), (y, x) /∈
P (R1) and (x, y) ∈ P (R2). By completeness of R1, (x, y) /∈ P (R1) and (y, x) /∈ P (R1)

if and only if (x, y) ∈ I(R1). Similarly, it follows from (y, z) ∈ P (R1, R2) that (3)

(y, z) ∈ P (R1) or (4) (y, z) ∈ I(R1) and (y, z) ∈ P (R2). If (1) and [(3) or (4)] hold

true, then by transitivity of R1, we have (x, z) ∈ P (R1), and hence (x, z) ∈ P (R1, R2).

Similarly, (2) and (3) together imply (x, z) ∈ P (R1) and (x, z) ∈ P (R1, R2). Finally,

if (2) and (4) hold, then (x, z) ∈ I(R1) follows from transitivity of R1, and (x, z) ∈
P (R2) from quasi-transitivity of R2. Hence, we have (x, z) ∈ P (R1, R2).

There are many examples in allocation problems to which the above result can be

applied.
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Example 1 Envy-free allocations. An allocation x ∈ Rmn
+ is envy-free if for all

i, j ∈ N , (xi, xj) ∈%i. Let F ⊂ Rmn
+ be the set of envy-free allocations. Define

RF ∈ R as follows: for all x, y ∈ Rmn
+ , (x, y) ∈ RF if and only if x ∈ F or y /∈ F .

Define RP ∈ R as follows: for all x, y ∈ Rmn
+ , (x, y) ∈ RP if and only if for all

i ∈ N , (xi, yi) ∈%i. The social preference relation RP is called the weak Pareto

domination, and the associated strict social preference relation P (RP ) the Pareto

domination. Since RF is complete and transitive, and RP is quasi-transitive, it follows

from Proposition 4 that P (RF , RP ) is quasi-transitive. Hence, the choice function

CP (RF ,RP ) is not empty and satisfies the Path Independence condition.

Example 2 Ranking by the number of envy instances. For each x ∈ Rmn
+ ,

define the set H(x) ⊂ N ×N by

H(x) = {(i, j) ∈ N ×N | (xj, xi) ∈Âi}.

The set H(x) is the set of all instances of envy at x. Following Feldman and Kirman

(1974), define RH ∈ R as follows: for all x, y ∈ Rmn
+ , (x, y) ∈ RH if and only if

#H(x) ≤ #H(y). Then, RH is complete and transitive. By Proposition 4, P (RH , RP )

is quasi-transitive (Tadenuma, 2002).

Example 3 Egalitarian-equivalent allocations. An allocation x ∈ Rmn
+ is

egalitarian-equivalent if there exists a ∈ Rm
+ such that for all i ∈ N , (xi, a) ∈∼i.

Let E ⊂ Rmn
+ be the set of egalitarian-equivalent allocations. Define RE ∈ R as

follows: for all x, y ∈ Rmn
+ , (x, y) ∈ RE if and only if x ∈ E or y /∈ E. Then, RE is

complete and transitive. By Proposition 4, P (RE, RP ) is quasi-transitive (Tadenuma,

2005).

A similar result can be obtained for acyclicity of P (R1, R2).

Proposition 5 Let R1, R2 ∈ R. If R1 is complete and transitive, and P (R2) is

acyclic, then P (R1, R2) is acyclic.

Proof. Assume that R1 is complete and transitive, and P (R2) is acyclic. Suppose,

on the contrary, that there exists a cycle (x1, . . . , xK) ∈ X for P (R1, R2). Because

R1 is complete, for all x, y ∈ X, (x, y) ∈ P (R1, R2) implies that (x, y) ∈ R1. Hence,

we have (xk, xk+1) ∈ R1 for all k ∈ {1, . . . , K}. Therefore, by transitivity of R1, for

all k, k′ ∈ {1, . . . , K}, (xk, xk′) ∈ I(R1). Then, since (x1, . . . , xK) ∈ X is a cycle for

P (R1, R2), we must have (xk, xk+1) ∈ P (R2) for all k ∈ {1, . . . , K}. This contradicts

the acyclicity of P (R2).
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If R1 ∈ R is only quasi-transitive, then even if R1 is complete and R2 ∈ R is

complete and transitive, P (R1, R2) may have a cycle.

Example 4 Define RP̂ ∈ R as follows: for all x, y ∈ Rmn
+ , (x, y) ∈ RP̂ if and

only if (y, x) /∈ P (RP ). Sen (1970) called RP̂ the Pareto extension. Notice that

P (RP̂ ) = P (RP ), and RP̂ is complete and quasi-transitive. As we noted, RF , RH ,

and RE are all complete and transitive. However, none of P (RP̂ , RF ), P (RP̂ , RH) and

P (RP̂ , RE) is acyclic (Tadenuma, 2002, 2005). Notice that, since P (RP̂ ) = P (RP ),

none of P (RP , RF ), P (RP , RH) and P (RP , RE) is acyclic either.

The Pareto principle plays a central role in economics, but it says nothing about

distributional equity. On the other hand, many binary relations based on some con-

cepts of equity are complete and transitive. Suppose that we would like to socially

rank allocations firstly by the Pareto principle, and secondly by an equity principle.

When does such lexicographic applications of the Pareto and an equity principles

generate an acyclic social preference relation? To answer the question, it is of special

interest to investigate under what conditions P (R1, R2) shows no cycle when R1 ∈ R
is only quasi-transitive and R2 ∈ R is complete and transitive. Our next result gives

an answer to this question.

To present the result, we define the following binary relation: for all x, y ∈ X,

(x, y) ∈ Γ ⇔ [(x, y) /∈ P (R1), (y, x) /∈ P (R1) and (x, y) ∈ P (R2)].

That is, (x, y) ∈ Γ if and only if x and y are non-comparable or indifferent by

the first criterion, and x is superior to y by the second criterion. Note that P (R1)

and Γ decompose P (R1, R2), that is, P (R1, R2) = P (R1) ∪ Γ and P (R1) ∩ Γ = ∅.
The relationships among any three alternatives in terms of these two components of

P (R1, R2) are the key to acyclicity of P (R1, R2).

Proposition 6 Let R1, R2 ∈ R. Suppose that R1 is quasi-transitive, and that R2 is

complete and transitive. Suppose further that the following two conditions hold:

(A) for all x, y, z ∈ X, if (x, y) ∈ Γ, (y, z) ∈ P (R1) and (z, y) ∈ P (R2), then

(x, z) ∈ P (R1).

(B) for all x, y, z ∈ X, if (x, y) ∈ Γ and (y, z) ∈ Γ, then (z, x) /∈ P (R1).

Then, the lexicographic composition P (R1, R2) is acyclic.

Proof. Assume that R1 is quasi-transitive, that R2 is complete and transitive,

and that conditions (A) and (B) are satisfied. Suppose, on the contrary, that that
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P (R1, R2) has a cycle. Let (x1, ..., xk) be a cycle of the smallest cardinality for

P (R1, R2). Since P (R1, R2) is asymmetric, k ≥ 3.

Assume that (x1, x2), (x2, x3) ∈ P (R1). Then, by quasi-transitivity of R1,

(x1, x3) ∈ P (R1) and then (x1, x3, ..., xk) is a cycle for P (R1, R2) which contradicts

the fact that (x1, ..., xk) is a cycle of the smallest cardinality for P (R1, R2).

Assume that (x1, x2), (x2, x3) ∈ Γ. Then, by definition, (x1, x2), (x2, x3) ∈ P (R2),

and by transitivity of R2, (x1, x3) ∈ P (R2). Moreover, by condition (B), (x3, x1) /∈
P (R1) which implies that (x1, x3) ∈ P (R1, R2). Then (x1, x3, ..., xk) is a cycle for

P (R1, R2) which contradicts the fact that (x1, ..., xk) is a cycle of the smallest cardi-

nality for P (R1, R2).

Let (x1, ..., xk) be one of the smallest cycles for P (R1, R2) with k ≥ 3. From

what we have shown above, with no loss of generality, we can set (x1, x2) ∈ Γ and

(x2, x3) ∈ P (R1). We distinguish two cases.

(1) If (x3, x2) ∈ P (R2), then by condition (A), (x1, x3) ∈ P (R1). Hence, (x1, x3, ..., xk)

is a cycle for P (R1, R2), which contradicts the fact that (x1, ..., xk) is a cycle of the

smallest cardinality for P (R1, R2).

(2) If (x3, x2) /∈ P (R2), then by completeness of R2, (x2, x3) ∈ R2. Together with

(x1, x2) ∈ Γ and transitivity of R2, we have (x1, x3) ∈ P (R2). If (x3, x1) ∈ P (R1),

then by quasi-transitivity of R1, (x2, x1) ∈ P (R1), which contradicts (x1, x2) ∈ Γ.

Hence, (x3, x1) /∈ P (R1). But then, (x1, x3) ∈ P (R1, R2), and (x1, x3, ..., xk) is a cycle

for P (R1, R2), which contradicts the fact that (x1, ..., xk) is a cycle of the smallest

cardinality for P (R1, R2).

The usefulness of the above result may be illustrated by the following example.

Example 5 For each i ∈ N , let ai ∈ Rm
+ be the reference bundle for agent i. (Exam-

ples of reference bundles are (i) the equal division bundle for all agents under a social

resource constraint, (ii) initial endowment bundles in a private ownership economy,

(iii) minimum bundles to meet some basic functionings.) Define RB ∈ R as follows:

for all x, y ∈ Rmn
+ , (x, y) ∈ RB if and only if #{i ∈ N | (xi, ai) ∈%i} ≥ #{i ∈ N |

(yi, ai) ∈%i}. Clearly, RB is complete and transitive. Notice that if (x, y) ∈ P (RP )

where RP is the weak Pareto domination defined above, then it never occurs that

(y, x) ∈ P (RB). Hence, condition (A) in Proposition 6 is vacuously satisfied. Fur-

thermore, if (x, y) ∈ Γ and (y, z) ∈ Γ, then (x, z) ∈ P (RB) by transitivity of RB,

and hence (z, x) /∈ P (RP ). Therefore, condition (B) in Proposition 6 is also met. We

can conclude that the the lexicographic composition P (RP , RB) is acyclic. The same

result holds for P (RP̂ , RB).
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Often an equity criterion dichotomizes allocations into equitable and non-equitable

ones. In such a case, we can define a complete and transitive binary relation R2 as

follows: for all x, y ∈ Rmn
+ , (x, y) ∈ R2 if and only if x is equitable or y is not equitable.

Note that from this definition, (x, y) ∈ P (R2) if and only if x is equitable and y is not

equitable. Moreover, in this case, R2 has at most two indifference classes. Hence, the

condition (B) in Proposition 6 is irrelevant because for all x, y, z ∈ Rmn
+ , (x, y) ∈ Γ

and (y, z) ∈ Γ cannot occur together. Therefore, we have the following corollary.

Corollary 3 Let R1, R2 ∈ R. Suppose that R1 is quasi-transitive, and that R2 is

complete and transitive, and has at most two indifference classes. Suppose further

that for all x, y, z ∈ X, if (x, y) ∈ Γ, (y, z) ∈ P (R1) and (z, y) ∈ P (R2), then

(x, z) ∈ P (R1). Then, the lexicographic composition P (R1, R2) is acyclic.

As an example of application of the above corollary, we present the lexicographic

composition of the Pareto domination and the binary relation based on egalitarian-

equivalence that was studied in Tadenuma (2005).

Let A ⊂ Rmn
+ be such that for all a, b ∈ A, a ≥ b or b ≥ a. An allocation

x ∈ Rmn
+ is A-egalitarian-equivalent if there exists a ∈ A such that (xi, a) ∈ ∼i for all

i ∈ N . Let EA ⊂ Rmn
+ be the set of A-egalitarian-equivalent allocations. Define REA

as follows: for all x, y ∈ Rmn
+ , (x, y) ∈ REA if and only if x ∈ EA or y /∈ EA. Notice

that (x, y) ∈ P (REA) if and only if x ∈ EA and y /∈ EA. One can check that REA is

complete and transitive.

Corollary 4 Let REA be defined as above. Let RP be the weak Pareto domination.

Then, the lexicographic composition P (RP , REA) is acyclic.

Proof. As noted above, REA is complete and transitive, and RP is quasi-transitive.

In view of Corollary 3, it is enough to show that for all x, y, z ∈ Rmn
+ , if (x, y) ∈ Γ,

(y, z) ∈ P (RP ) and (z, y) ∈ P (REA), then (x, z) ∈ P (RP ).

Suppose that (x, y) ∈ Γ, (y, z) ∈ P (RP ) and (z, y) ∈ P (REA). Because (x, y) ∈
P (REA), we have x ∈ EA and y /∈ EA. Thus, there exists a ∈ A such that (xi, a) ∈∼i

for all i ∈ N . Since (z, y) ∈ P (REA), we have z ∈ EA and y /∈ EA. Hence, there

exists b ∈ A such that (zi, b) ∈ ∼i for all i ∈ N . If (yi, xi) ∈ ∼i for all i ∈ N , then

(yi, a) ∈ ∼i for all i ∈ N , which contradicts y /∈ EA. Therefore, (y, x) /∈ P (RP ) holds

only if there exists i∗ ∈ N such that (xi∗ , yi∗) ∈ Âi∗ . Since (y, z) ∈ P (RP ), we have

(yi, zi) ∈ %i for all i ∈ N , and in particular, for agent i∗. Hence, (xi∗ , zi∗) ∈ Âi∗ . We

also have (a, xi∗) ∈ ∼i∗ and (zi∗ , b) ∈ ∼i∗ . By transitivity of %i∗ , (a, b) ∈ Âi∗ . Since
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a, b ∈ A, either a > b or b > a. By strict monotonicity of %i∗ , we have a > b. Then,

for all i ∈ N , (xi, a) ∈∼i, (a, b) ∈ Âi and (b, zi) ∈ ∼i. It follows from transitivity of

%i that (xi, zi) ∈ Âi. Thus, we have (x, z) ∈ P (RP ).

5 Lexicographic Composition of Multiple Choice

Functions

In this section, we study the procedure β to compose multiple criteria, namely, we

first choose the set of maximal elements for the first binary relation R1, and then from

this set we select its subset of maximal elements for the second binary relation R2, and

iterate this procedure until the last binary relation RM . Formally, the procedure is

represented by the choice function CP (RM ) · · ·CP (R1) defined recursively as, for every

S ∈ X ,

C0(S) = S

Cm(S) = CP (Rm)(C
m−1(S)) for each m = 1, . . . , M

and CP (RM ) · · ·CP (R1)(S) = CM(S).

In contrast to procedure α, procedure β provides non-empty outcomes under very

mild conditions. Indeed, if each of the original criteria, P (R1), . . . , P (RM), does not

have a cycle, then CP (RM ) · · ·CP (R1)(S) 6= ∅ for every S ∈ X . However, even if there

exists a cycle S for P (R2), CP (R2)CP (R1)(S) 6= ∅ holds as long as P (R1) is acyclic

and P (R1) ranks at least one pair in S, and eliminate at least one alternative from

CP (R1)(S). A similar observation holds for every Rm, m = 3, . . . , M . The following

result, which was shown in Houy (2007), provides a necessary and sufficient condition

for CP (RM ) · · ·CP (R1) to satisfy non-emptiness.

Proposition 7 Let R1, . . . , RM ∈ R be given. The choice function CP (RM ) · · ·CP (R1)

satisfies Non-Emptiness if and only if for every m ∈ {1, . . . ,M}, and for every cycle

(x1, . . . , xK) ⊆ X for P (Rm), there exist m′ < m and k, ` ∈ {1, . . . , K} such that

(xk, x`) ∈ P (Rm′
).

Proof. See Houy (2007, Theorem 2).

Comparing Propositions 3 and 7, we can see that if CP (R1,...,RM ) satisfies non-

emptiness (or equivalently, P (R1, . . . , RM) is acyclic), then CP (RM ) · · ·CP (R1) satisfies

non-emptiness as well. In other words, when we compose lexicographically two cri-

teria for decision making, it is more difficult to guarantee non-empty choices under

procedure α than under procedure β.
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Corollary 5 Let R1, . . . , RM ∈ R be given. If the choice function CP (R1,...,RM ) satis-

fies non-emptiness, then CP (RM ) · · ·CP (R1) also satisfies non-emptiness.

The following example shows that the converse of Corollary 5 does not hold true.

Example 6 Let RP be the weak Pareto domination, and let RF be defined as in

Example 1. As noted above, RP is quasi-transitive and RF is transitive. Hence,

for every finite set S ∈ Rm
+ , CP (RP )(S) 6= ∅, and CP (RF )(CP (RP )(S)) 6= ∅. However,

there exists a cycle for P (RP , RF ) (Tadenuma, 2002), and hence CP (RP ,RF ) does not

satisfy non-emptiness. The same result holds for the other criteria given in Example

4, namely CP (RH)CP (RP ) and CP (RE)CP (RP ) satisfy non-emptiness whereas CP (RH ,RP )

and CP (RE ,RP ) do not.

We now examine the choice consistency properties of the lexicographic compo-

sition of multiple choice functions. First, we show a basic relationship between the

choice functions derived from procedures α and β. It also implies Corollary 5 above.

Lemma 1 For every S ∈ X , CP (R1)(S) ∩ · · · ∩ CP (RM )(S) ⊆ CP (R1,...,RM )(S) ⊆
CP (RM ) · · ·CP (R1)(S).

Proof. To show that CP (R1)(S)∩· · ·∩CP (RM )(S) ⊆ CP (R1,...,RM )(S), let S ∈ X , x ∈ S

and x /∈ CP (R1,...,RM )(S). Then, there exists y ∈ S with (y, x) ∈ P (R1, . . . , RM). By

definition, (y, x) ∈ P (Rm) for some m ∈ {1, . . . M}. Hence, x /∈ CP (Rm)(S), and

x /∈ CP (R1)(S) ∩ · · · ∩ CP (RM )(S).

To prove that CP (R1,...,RM )(S) ⊆ CP (RM ) · · ·CP (R1)(S), let S ∈ X , x ∈ S and x /∈
CP (RM ) · · ·CP (R1)(S). Then, either (i) x /∈ CP (R1)(S) or (ii) there exist m ∈ {1, ..., M−
1} and y ∈ S such that x, y ∈ CP (Rm) · · ·CP (R1)(S) and (y, x) ∈ P (Rm+1). In case

(i), there exists z ∈ X such that (z, x) ∈ P (R1), and hence (z, x) ∈ P (R1, . . . , RM).

Therefore, x /∈ CP (R1,...,RM )(S). In case (ii), it follows that (x, y) /∈ P (R1)∪· · ·∪P (Rm)

and (y, x) ∈ P (Rn+1). By definition, (y, x) ∈ P (R1, . . . , RM), which implies x /∈
CP (R1,...,RM )(S).

Our next proposition shows a necessary and sufficient condition for

CP (RM ) · · ·CP (R1) to satisfy Contraction Consistency. It is interesting to see that

the condition requires a certain relationship among any three alternatives in terms of

the decompositions of P (R1, . . . , RM) defined below.

Let R1, . . . , RM be given. Define Γ1, . . . , ΓM ∈ R as follows: Γ1 = P (R1), and for

each m ∈ {2, . . . , M}, and for all x, y ∈ X, (x, y) ∈ Γm if and only if (x, y), (y, x) /∈
P (Rm′

) for all m′ < m and (x, y) ∈ P (Rm). Note that P (R1, . . . , RM) = Γ1 ∪ Γ2 ∪
· · · ∪ ΓM and for all m,m′ ∈ {1, . . . ,M} with m 6= m′, Γm ∩ Γm′

= ∅.
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Proposition 8 Assume that CP (RM ) · · ·CP (R1) satisfies Non-Emptiness. Then,

CP (RM ) · · ·CP (R1) satisfies Contraction Consistency if and only if for all x, y, z ∈ X,

and for all m,m′ ∈ {1, . . . , M} with m < m′, [(x, y) ∈ Γm and (y, z) ∈ Γm′
] im-

plies (x, z) ∈ Γm′′
for some m′′ ∈ {1, . . . , M}. Moreover, if CP (RM ) · · ·CP (R1) satisfies

Non-Emptiness and Contraction Consistency, then CP (RM ) · · ·CP (R1) = CP (R1,...,RM ).

Proof. Sufficiency. Assume that CP (RM ) · · ·CP (R1) satisfies Non-Emptiness, and

that for all x, y, z ∈ X, and for all m,m′ ∈ {1, . . . ,M} with m < m′, [(x, y) ∈ Γm

and (y, z) ∈ Γm′
] implies (x, z) ∈ Γm′′

for some m′′ ∈ {1, . . . , M}.
First, we show that P (R1, . . . , RM) is acyclic. Suppose, on the contrary, that

P (R1, . . . , RM) has a cycle. Let Y = (x1, ..., xK) ⊆ X be one of the cycles with the

smallest cardinality. Since P (R1, . . . , RM) is asymmetric, K ≥ 3. By Proposition

7 and since CP (RM ) · · ·CP (R1) satisfies Non-Emptiness, it follows that for no m ∈
{1, . . . ,M}, Y is a cycle for Γm. Hence, there exist m,m′ ∈ {1, . . . , M} with m < m′

and k ∈ {1, . . . , K} such that (xk, xk+1) ∈ Γm and (xk+1, xk+2) ∈ Γm′
, where we

abuse notation by letting (K + 1) := 1 and (K + 2) := 2. By the assumption, we

have (xk, xk+2) ∈ Γm′′
for some m′′ ∈ {1, . . . , M}. Then, (x1, . . . , xk, xk+2, . . . , xK) is

a cycle for P (R1, . . . , RM), which contradicts the fact that Y is one of the cycles with

the smallest cardinality. Thus, P (R1, . . . , RM) is acyclic.

Now we show that CP (RM ) · · ·CP (R1) satisfies Contraction Consistency. Suppose,

on the contrary, that CP (RM ) · · ·CP (R1) violates Contraction Consistency. Then, there

exist S, T ∈ X with S ⊆ T and x ∈ S such that x ∈ CP (RM ) · · ·CP (R1)(T ) but

x /∈ CP (RM ) · · ·CP (R1)(S).

Since x ∈ CP (R1)(T ) and S ⊆ T , we have x ∈ CP (R1)(S). However, because x /∈
CP (RM ) · · ·CP (R1)(S), there exist n1 ∈ {2, . . . , M} and y1 ∈ CP (Rn1−1) · · ·CP (R1)(S)

such that (y1, x) ∈ Γn1 . Then, since x ∈ CP (RM ) · · ·CP (R1)(T ), it must be true that

y1 /∈ CP (Rn1−1) · · ·CP (R1)(T ).

Then there exist m1 < n1 and y2 ∈ CP (Rm1−1) · · ·CP (R1)(T ) with (y2, y1) ∈ Γm1 .

By the assumption, we have (y2, x) ∈ Γn2 for some n2 ∈ {2, . . . , M}. (Note that

(y2, x) /∈ Γ1 = P (R1) since x ∈ CP (R1)(T ).)

Because x ∈ CP (RM ) · · ·CP (R1)(T ), it must be true that y2 /∈
CP (Rn2−1) · · ·CP (R1)(T ). Then, a similar argument shows that there exist y3 ∈ T and

m2 ∈ {1, . . . , M} such that (y3, y2) ∈ Γm2 and (y3, x) ∈ Γn3 for some n3 ∈ {2, . . . , M}.
Repeating the above argument, we obtain a sequence (y1, y2, y3, . . .) ∈ T×T... such

that for every k, (yk+1, yk) ∈ Γmk ⊂ P (R1, . . . , RM). Since T is finite, there exists `

such that y` = yk for some k < `. This contradicts the acyclicity of P (R1, . . . , RM).

15



Necessity. Suppose that there exist x, y, z ∈ X and m,m′ ∈ {1, . . . , M}
with m < m′ such that (x, y) ∈ Γm, (y, z) ∈ Γm′

, and for all m′′ ∈ {1, . . . , M},
(x, z) /∈ Γm′′

. Let T = {x, y, z} and S = {y, z}. Then, z ∈ CP (RM ) · · ·CP (R1)(T )

but z /∈ CP (RM ) · · ·CP (R1)(S). Thus, CP (RM ) · · ·CP (R1) does not satisfy Contraction

Consistency.

Now let us prove that if CP (RM ) · · ·CP (R1) satisfies Non-Emptiness and Contraction

Consistency, then, CP (RM ) · · ·CP (R1) = CP (R1,...,RM ). By Lemma 1, CP (R1,...,RM )(S) ⊆
CP (RM ) · · ·CP (R1)(S) for every S ∈ X . To show the converse inclusion relation,

let x ∈ S and x /∈ CP (R1,...,RM )(S). Then, there exists y ∈ S such that (y, x) ∈
P (R1, . . . , RM). Hence, for some m ∈ {1, . . . , M}, (y, x) ∈ Γm. This implies that

x /∈ CP (Rm) · · ·CP (R1)({x, y}) and thus x /∈ CP (RM ) · · ·CP (R1)({x, y}). It follows from

Contraction Consistency of CP (RM ) · · ·CP (R1) that x /∈ CP (RM ) · · ·CP (R1)(S).

The following example shows that even if CP (R1,...,RM ) satisfies Non-Emptiness and

Contraction Consistency, or equivalently, P (R1, . . . , RM) is acyclic, then it is possi-

ble that CP (RM ) · · ·CP (R1) 6= CP (R1,...,RM ) and CP (RM ) · · ·CP (R1) violates Contraction

Consistency.

Example 7 Let S = {x, y, z}. Assume that P (R1) = {(z, y)} and P (R2) = {(y, x)}.
Then, P (R1, R2) is acyclic and CP (R1,R2) satisfies Non-Emptiness and Contraction

Consistency. However, CP (R2)CP (R1)(S) = CP (R2)({x, z}) = {x, z} and CP (R1,R2)(S) =

{z}. Hence, CP (R2)CP (R1) 6= CP (R1,R2). Let T = {x, y} ⊂ S. Then, although x ∈
T ∩ CP (R2)CP (R1)(S), CP (R2)CP (R1)(T ) = {y}. This is a violation of Contraction

Consistency.

Corollary 6 Let R1, . . . , RM ∈ R be given. If CP (RM ) · · ·CP (R1) satisfies Non-

Emptiness and Contraction Consistency, then CP (R1,...,RM ) satisfies Non-Emptiness

and Contraction Consistency, or equivalently, P (R1, . . . , RM) is acyclic. However,

the converse does not hold true.

In contrast to the results on Contraction Consistency, requiring Non-Emptiness

and Path Independence for CP (RM ) · · ·CP (R1) is equivalent to requiring the same con-

ditions for CP (R1,...,RM ) as the following proposition shows.

Proposition 9 The following three statements are equivalent.

1. P (R1, . . . , RM) is quasi-transitive.

2. CP (R1,...,RM ) satisfies Non-Emptiness and Path Independence.
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3. CP (RM ) · · ·CP (R1) satisfies Non-Emptiness and Path Independence.

Proof.

1 ⇔ 2:

This has already been shown in Corollary 2.

1 ⇒ 3:

Assume that P (R1, . . . , RM) is quasi transitive. Then, it is acyclic, and by Corollary 1,

CP (R1,...,RM ) satisfies Non-Emptiness. It follows from Lemma 1 that CP (RM ) · · ·CP (R1)

satisfies Non-Emptiness as well. Notice that if P (R1, . . . , RM) is quasi transitive, then

the necessary and sufficient condition for Contraction Consistency of CP (RM ) · · ·CP (R1)

in Proposition 8 is met. Hence, by Proposition 8, CP (RM ) · · ·CP (R1) = CP (R1,...,RM ). It

follows from the equivalence of 1 with 2 that CP (R1,...,RM ) satisfies Path Independence.

Thus, CP (RM ) · · ·CP (R1) satisfies Path Independence.

3 ⇒ 2:

Assume that CP (RM ) · · ·CP (R1) satisfies Non-Emptiness and Path Independence. Since

Path Independence implies Contraction Consistency, it follows from Proposition 8

that CP (RM ) · · ·CP (R1) = CP (R1,...,RM ). Hence, CP (R1,...,RM ) satisfies Non-Emptiness

and Path Independence.

To illustrate this result, let us go back to Examples 1, 2 and 3. We have shown

that CP (RF ,RP ), CP (RH ,RP ), and CP (RE ,RP ) satisfy Non-Emptiness and Path Indepen-

dent. Then, by Proposition 9, we can conclude that CP (RP )CP (RF ), CP (RP )CP (RH),

and CP (RP )CP (RE) also satisfy Non-Emptiness and Path Independent.

6 Order Independence of Lexicographic Composi-

tions

This section investigates under what conditions the outcomes of each choice procedure

are independent of the order of lexicographic applications of multiple criteria.

The next result, which is based on Lemma 1, shows that if procedure α satisfies

order independence, then it always chooses the set of alternatives that are maximal

for every criterion.

Define the choice function CP (R1) ∩ · · · ∩ CP (RM ) : X → X as [CP (R1) ∩ · · · ∩
CP (RM )](S) = CP (R1)(S) ∩ · · · ∩ CP (RM )(S) for every S ∈ X .

Proposition 10 If CP (R1,...,RM ) = CP (Rπ(1),...,Rπ(M)) for every permutation π on

{1, . . . ,M}, then CP (R1,...,RM ) = CP (R1) ∩ · · · ∩ CP (RM ).
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Proof. Assume that CP (R1,...,RM )(S) = CP (Rπ(1),...,Rπ(M))(S) for every permutation π

on {1, . . . , M}. Let S ∈ X . By Lemma 1, it is enough to show that CP (R1,...,RM )(S) ⊆
CP (R1)(S) ∩ · · · ∩ CP (RM )(S). Let x ∈ S and x /∈ CP (R1)(S) ∩ · · · ∩ CP (RM )(S).

Then, there exists i ∈ {1, ..., M} and y ∈ S such that (y, x) ∈ P (Ri). Consider a

permutation π on {1, . . . ,M} such that π(1) = i. Then, (y, x) ∈ P (Rπ(1)). Hence,

by the definition of P (Rπ(1), . . . , Rπ(M)), (y, x) ∈ P (Rπ(1), . . . , Rπ(M)). Thus, x /∈
CP (Rπ(1),...,Rπ(M))(S) = CP (R1,...,RM )(S).

As in the case of the efficiency-equity trade-off, if x is superior to y according to

one criterion where as y is better than x by another criterion, then the best choice

from {x, y} must depend on which criterion we should take first. Hence, in order for

the final choice to be independent of the order of application of the two criteria, such

conflict cannot arise. The following result formalizes this observation.

Proposition 11 CP (R1,...,RM ) = CP (Rπ(1),...,Rπ(M)) for every permutation π on

{1, . . . ,M} if and only if P (R1) ∪ · · · ∪ P (RM) is asymmetric. Moreover, if

CP (R1,...,RM ) = CP (Rπ(1),...,Rπ(M)) for every permutation π on {1, . . . , M}, then

CP (R1,...,RM ) = CP (R1)∪···∪P (RM ) = CP (R1) ∩ · · · ∩ CP (RM ).

Proof. Necessity. Suppose that P (R1) ∪ · · · ∪ P (RM) is symmetric. Since each of

the M binary relations, P (R1), . . . , P (RM), is asymmetric by definition, there exist

x, y ∈ X such that x 6= y, (x, y) ∈ P (Ri) and (y, x) ∈ P (Rj) for some i, j ∈ {1, ...M}
with i 6= j. Let π and σ be two permutations on {1, . . . ,M} such that π(1) = i and

σ(1) = j. Then, by the definition of P (Rπ(1), . . . , Rπ(M)), (x, y) ∈ P (Rπ(1), . . . , Rπ(M))

whereas by the definition of P (Rσ(1), . . . , Rσ(M)), (y, x) ∈ P (Rσ(1), . . . , Rσ(M)). Hence,

CP (Rπ(1),...,Rπ(M))({x, y}) = {x} 6= {y} = CP (Rσ(1),...,Rσ(M))({x, y}).
Sufficiency. Assume that P (R1) ∪ · · · ∪ P (RM) is asymmetric. It is clear that

generally P (R1, . . . , RM) ⊆ P (R1) ∪ · · · ∪ P (RM). Let x, y ∈ X and (x, y) ∈
P (R1) ∪ · · · ∪ P (RM). Then, (x, y) ∈ P (Ri) for some i ∈ {1, . . . , M}. By the

assumption, (y, x) /∈ P (Rj) for all j ∈ {1, . . . , M}. Thus, from the definition

of P (R1, . . . , RM), we have (x, y) ∈ P (R1, . . . , RM). Then, we have shown that

P (R1, . . . , RM) = P (R1)∪· · ·∪P (RM). By the same argument, it can be shown that

for every permutation π on {1, . . . , M}, CP (Rπ(1),...,Rπ(M))(S) = CP (R1)∪···∪P (RM )(S).

Thus, CP (R1,...,RM )(S) = CP (Rπ(1),...,Rπ(M))(S) = CP (R1)∪···∪P (RM )(S). Together with

Proposition 10, this completes the proof.

If we also require non-emptiness as well as order independence, a further stronger

condition must be called for.
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Corollary 7 CP (R1,...,RM ) = CP (Rπ(1),...,Rπ(M)) for every permutation π on {1, . . . , M}
and CP (R1,...,RM ) satisfies Non Emptiness if and only if P (R1)∪· · ·∪P (RM) is acyclic.

Proof. Necessity. Assume that CP (R1,...,RM ) = CP (Rπ(1),...,Rπ(M)) for every permu-

tation π on {1, . . . , M} and CP (R1,...,RM ) satisfies Non-Emptiness. By Proposition

11, P (R1) ∪ · · · ∪ P (RM) is asymmetric and CP (R1,...,RM ) = CP (R1)∪···∪P (RM ). Then,

CP (R1)∪···∪P (RM ) satisfies Non-Emptiness. By Corollary 1, P (R1) ∪ · · · ∪ P (RM) is

acyclic.

Sufficiency. Assume that P (R1) ∪ · · · ∪ P (RM) is acyclic. Then, P (R1) ∪
· · · ∪ P (RM) is asymmetric by definition, and it follows from Proposition 11 that

CP (Rπ(1),...,Rπ(M)) = CP (R1)∪···∪P (RM ) = CP (R1)(S) ∩ · · · ∩ CP (RM ) for every permutation

π on {1, . . . , M}. Moreover, by Corollary 1, CP (R1)∪···∪P (RM ) satisfies Non-Emptiness.

Notice that acyclicity of P (R1)∪· · ·∪P (RM) is sufficient but not necessary for non-

emptiness of CP (R1,...,RM ). It is necessary for CP (R1,...,RM ) to satisfy order independence

as well as non-emptiness.

Asymmetry of P (R1) ∪ · · · ∪ P (RM) is very demanding in economic allocation

problems. It implies that any two criteria are never in contradiction. This requirement

is rarely met when we are concerned with the efficiency and equity criteria.

The acyclicity of P (R1) ∪ · · · ∪ P (RM) is also necessary for procedure β to be

order independent. In fact, requiring order independence of procedure β is even more

demanding than procedure α.

Proposition 12 If CP (RM ) · · ·CP (R1) = CP (Rπ(M)) · · ·CP (Rπ(1)) for every permutation

π on {1, . . . , M}, then CP (RM ) · · ·CP (R1) = CP (R1)(S) ∩ · · · ∩ CP (RM ).

Proof. By Lemma 1, CP (R1) ∩ · · · ∩ CP (RM ) ⊆ CP (RM ) · · ·CP (R1). Let S ∈ X . Let

x ∈ S and x /∈ CP (R1)(S) ∩ · · · ∩ CP (RM )(S). Then, there exists i ∈ {1, ..., M} and

y ∈ S such that (y, x) ∈ P (Ri). Consider a permutation π on {1, . . . , M} such that

π(1) = i. By assumption, (y, x) ∈ P (Rπ(1)), and hence x /∈ CP (Rπ(1))(S). Then,

x /∈ CP (Rπ(M)) · · ·CP (Rπ(1))(S) = CP (RM ) · · ·CP (R1)(S). Therefore, CP (RM ) · · ·CP (R1) ⊆
CP (R1) ∩ · · · ∩ CP (RM ).

A necessary and sufficient condition for procedure β to satisfy order independence

as well as Non-Emptiness was given in Houy (2007).

Proposition 13 CP (RM ) · · ·CP (R1) = CP (Rπ(M)) · · ·CP (Rπ(1)) for every permutation π

on {1, . . . , M} and CP (RM ) · · ·CP (R1) satisfies Non-Emptiness if and only if (i) P (R1)∪
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· · · ∪ P (RM) is acyclic, and (ii) for all x, y, z ∈ X, if (x, y), (y, z) ∈ P (R1) ∪ · · · ∪
P (RM), (x, y) ∈ P (Ri) and (y, z) /∈ P (Ri) for some i ∈ {1, · · · ,M}, then (x, z) ∈
P (R1) ∪ · · · ∪ P (RM).

Proof. See Houy (2007, Theorem 5)

From Propositions 11, 12, and 13, we have the following corollary.

Corollary 8 If CP (RM ) · · ·CP (R1) = CP (Rπ(M)) · · ·CP (Rπ(1)) for every permutation π

on {1, . . . , M} and CP (RM ) · · ·CP (R1) satisfies Non-Emptiness, then CP (R1,...,RM ) =

CP (Rπ(1),...,Rπ(M)) = CP (RM ) · · ·CP (R1) = CP (Rπ(M)) · · ·CP (Rπ(1)) = CP (R1)∪···∪P (RM ) =

CP (R1) ∩ · · · ∩ CP (RM ) for every permutation π on {1, . . . ,M}

The following example shows that order independence and non-emptiness of pro-

cedure β is strictly more demanding than those of procedure α. Let X = {x, y, z},
R1 = {(x, y)}, and R2 = {(y, z)}. Then, P (R1, R2) = P (R2, R1) = {(x, y), (y, z)},
and hence, CP (R1,R2) = CP (R2,R1). However, CP (R2)CP (R1)({x, y, z}) = {x, z} whereas

CP (R1)CP (R2)({x, y, z}) = {x}.

7 Conclusion

Social or individual decision making often involves multiple criteria. Lexicographic

applications of the multiple criteria seem natural and reasonable ways to make de-

cisions in such contexts. However, there are at least two distinct procedures to lexi-

cographically apply two (social or individual) preference relations, as studied in this

paper. Procedure α constructs the lexicographic composition of multiple binary re-

lations, and then selects its maximal elements while procedure β first selects the set

of maximal elements for the first binary relation, and then chooses from that set its

maximal elements for the second binary relation, and iterates the procedure until the

Mth binary relation.

There are indeed essential differences between these two procedures. First, pro-

cedure α, being a more deliberate way, often ends up with empty choices, whereas

procedure β, being simpler and more intuitive, provides final choices as long as each

of the two original criteria itself does not have inconsistency. For instance, acyclicity

of the original binary relations is sufficient for procedure β to be non-empty, but it is

not so for procedure α. Precise necessary and sufficient conditions for non-emptiness

have been given in Sections 4 and 5 of this paper.
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Second, although procedure β scarcely becomes empty, it may fail a minimum

requirement of choice-consistency, namely contraction consistency, even in the case

where procedure α satisfies non-emptiness and this consistency property. In fact,

procedure β satisfies contraction consistency only when it coincides with procedure

α. Exactly when this happens has also been shown in Section 5. However, turning

to path independence, which is stronger than contraction consistency, procedure β

satisfies non-emptiness and this condition when and only when procedure α satisfies

the same conditions. This requires that the lexicographic composition of multiple

binary relations is quasi-transitive.

Third, the outcomes of procedure α are non-empty and independent of the order

of applications of the multiple criteria if and only if the union of the original binary

relations is acyclic. This is already a very strong requirement because it implies that

there is no conflict between any two criteria. Still, it is not sufficient for procedure β

to satisfy the same condition. We need an additional condition given in Section 6.

In reality, there are many observations of inconsistent social or individual choices.

Such observations may be explained by the “gap” between procedures β and α. People

may actually use the simpler approach, namely procedure β, which always gives some

answers as long as the original criteria themselves do not contain contradiction, but

which quite easily fails a very basic condition of choice-consistency. In order to

avoid inconsistent choices, they need to take the more deliberate approach, namely

procedure α. But then, it often fails to provide optimal choices. This is a fundamental

dilemma between non-emptiness and choice-consistency.

We also observe cases of disagreement among individuals who respect the same

list of criteria. They may be explained by differences in order of application of the

multiple criteria by the individuals.

We hope that the present paper contributes in clarifying the “gap” between the

two procedures of decision making by showing several distinct sets of conditions for

non-emptiness, contraction consistency, path independence, or order independence of

each procedure. It would be interesting to use these conditions to examine how the

choice procedures with multiple criteria can explain social or individual choices in

concrete problems.
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