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Abstract
We consider the problem of the tragedy of commons in coopera-

tive production economies, and propose a mechanism to resolve the
tragedy, taking seriously non-negligible aspects of that problem and
the real application of mechanisms. The mechanism permits agents to
choose their own labor time freely, and to announce their labor skills
freely not only if they choose to understate them, but also if they over-
state them. It doubly implements the proportional solution [Roemer
and Silvestre (1989, 1993)] in Nash and strong equilibria when it is
played as a normal game form, while it triply implements the solution
in Nash, subgame-perfect, and strong equilibria when it is played as
a two-stage extensive game form.
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1 Introduction

It is well-known as the “tragedy of commons,” that in cooperative production
economies, the resource allocations under free access to technology result
in “overproduction” and inefficient Nash equilibria. This paper provides a
mechanism which can solve this tragedy problem. As a normative solution
for the tragedy, we adopt the proportional solution [Roemer and Silvestre
(1993)] under joint ownership of the technology, which assigns Pareto efficient
allocations where each agent’s output consumption is proportional to his
labor contribution. Then, we construct an incentive compatible mechanism
which implements the proportional solution.
There are some works on implementation of the proportional solution,

such as Suh (1995), Yoshihara (1999, 2000), and Tian (2000), as well as of
other social choice correspondences in production economies.1 However, in
most of the literature on implementation in production economies, a non-
negligible problem of asymmetric information involved in the production
process seems to be treated as a “black box.” Under any mechanism, each
agent is usually required to announce some information, and the outcome
function assigns an allocation to each profile of agents’ strategies. This im-
plicitly assumes, in the case of production economies with labor input, that
the mechanism coordinator is authorized to make agents supply their labor
hours to be consistent with the assigned allocation.2 This happens because
the original concern of implementation theory has been in adverse selection
problems, and such a focus is valid whenever we consider decentralized re-
source allocations in exchange economies and/or production economies with
no labor input. However, in production economies with labor input, such an
implicit assumption is not so realisitic.
In this paper, alternatively, we suppose that the coordinator is not au-

thorized to make agents work as he wants; he can monitor each agent’s labor
hour, but he cannot perfectly monitor each agent’s labor contribution mea-
sured in efficiency units, since he is incapable of observing each agent’s labor
skill or labor intensity exercised in the production process. Thus, there may
be an incentive for each agent to overstate as well as understate his own

1For example, Hurwicz et al. (1995), Hong (1995), Tian (1999) for private ownership
production economies with only private goods, Varian (1994) for production economies
with externality, and Kaplan and Wettstein (2000) and Corchón and Puy (2002) for co-
operative production economies.

2Roemer (1989) pointed out this implicit assumption explicitly.
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labor skill or labor intensity.3 Even under such a more realistic model of the
tragedy of commons, the incentive compatible mechanism in this paper can
implement the solution.
The mechanism we propose here is a type of sharing mechanism: each

agent can freely supply his labor hour,4 and he is asked to give some informa-
tion about his demand for the consumption good and his labor skill. After
that, the outcome function only distributes the produced output to agents,
according to the given information and the record of their supply of labor
hours done. Here, there is no restriction on strategy spaces which prohibits
agents from understating or overstating their labor skills. We will show in
this study that this mechanism triply implements the proportional solution
in Nash, strong Nash, and subgame perfect equilibria.
In the following discussion, a basic model of economies and sharing mech-

anisms is defined in Section 2. Section 3 provides a sharing mechanism which
implements the proportional solution. Concluding remarks are in Section 4.
All the proofs of the theorems here will be relegated to the Appendix.

2 The Basic Model

There are two goods, one of which is an input good (labor time) x ∈ R+
to be used to produce the other good y ∈ R+.5 The population in the
society is given by the set N = {1, . . . , n}, where 2 ≤ n < +∞. Each
agent i0s consumption vector is denoted by zi = (xi, yi), where xi denotes his
labor time, and yi denotes his assigned amount of output consumption. It is
assumed that all agents face a common upper bound of labor time x̄ , where
0 < x̄ < +∞, so that they have the same consumption set [0, x̄]×R+. Each

3Tian (2000) constructed a mechanism which implements the proportional solution
even if the coordinator does not know the agents’ endowment vectors of commodities
under the assumption that agents cannot overstate their endowments. As Tian (2000)
himself mentioned, such an assumption may be justified when endowments consist only of
material goods, since the coordinator can require agents to “place the claimed endowments
on the table” (Hurwicz et al. (1995)). In our setting where endowments are labor skills,
however, such a requirement is no longer forceful, since the coordinator may not inspect
the amount of labor skills in advance of production.

4Thus, our mechanism is labor sovereign (Kranich (1994); Yoshihara (2000a)) which
is not satisfied in the previous mechanisms (Suh (1995), Yoshihara (1999, 2000), Tian
(2000)).

5The symbol R+ denotes the set of non-negative real numbers.
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agent i0s preference is defined on [0, x̄] × R+ and represented by a utility
function ui : [0, x̄] × R+ → R which is continuous and quasi-concave on
[0, x̄]× R+, and strictly monotonic (decreasing in labor time and increasing
in the share of output) on [0, x) × R++.6 We denote by U the class of such
utility functions. Each agent i is also characterized by a labor skill which is
represented by a positive real number, sti ∈ R++. The superscript t on sti
indicates “true,” so that sti denotes agent i

0s true labor skill. The universal
set of labor skills for all agents is denoted by S = R++.7 The labor skill
sti ∈ S implies i0s labor endowment per unit of labor time, which is measured
in efficiency units. It can also be interpreted as i0s labor intensity which
would be exercised in the production process: that is, i0s labor input per
unit of labor time measured in efficiency units. Thus, if his supply of labor
time is xi ∈ [0, x̄] and his labor intensity is sti ∈ S, then it is stixi ∈ R+
which implies his labor contribution to the production process measured in
efficiency units. The production technology is described by a production
function f : R+ → R+ which is assumed to be continuous, strictly increasing,
concave, and f (0) = 0. For simplicity, we fix a production function f for all
economies. Thus, the economy is characterized by a pair of profiles e ≡ (u, st)
with u = (u1, . . . , un) ∈ Un and st = (st1, . . . , stn) ∈ Sn. Denote the class of
such economies by E ≡ Un × Sn.
Given st = (st1, . . . , s

t
n) ∈ Sn, an allocation z = (xi, yi)i∈N ∈ ([0, x̄]×R+)n

is feasible for st if
P
yi ≤ f (

P
stixi). We denote by Z (s

t) the set of feasi-
ble allocations for st ∈ Sn. An allocation z = (z1, . . . , zn) ∈ ([0, x̄]×R+)n
is Pareto efficient for e = (u, st) ∈ E if z ∈ Z (st) and there does not ex-
ist z0 = (z01, . . . , z

0
n) ∈ Z (st) such that for all i ∈ N , ui (z0i) ≥ ui (zi), and

for some i ∈ N , ui (z0i) > ui (zi). The proportional solution [Roemer and Sil-
vestre (1993)] is a correspondence PR : E ³ ([0, x̄]× R+)n such that for each
economy e = (u, st) ∈ E , any z =(xi, yi)i∈N ∈ PR (e) is a Pareto efficient
allocation for e, where for all i ∈ N , yi = stixiP

stjxj
f
¡P

stjxj
¢
.

A normal-form game form is a pair Γ = (M,h), where M = M1 × · · · ×
Mn, Mi being the strategy space of agent i ∈ N , and h :M → ([0, x̄]×R+)n
being the outcome function which associates each m ∈ M with a unique
element h(m) ∈ ([0, x̄]×R+)n. The i-th component of h(m) will be denoted
by hi(m) ≡ (hi1(m), hi2(m)), where hi1(m) ∈ [0, x] and hi2(m) ∈ R+. Given

6The symbol R++ denotes the set of positive real numbers.
7For any two sets X and Y , X ⊆ Y whenever any x ∈ X also belongs to Y , and X ( Y

if and only if X ⊆ Y and not (Y ⊆ X).
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m ∈M , let m−i = (m1, · · · ,mi−1,mi+1, · · · ,mn). A normal-form game form
Γ = (M,h) is labor sovereign if for every i ∈ N and every xi ∈ [0, x̄], there
exists a strategy mi ∈Mi such that for any m−i ∈M−i, hi1(mi,m−i) = xi.

2.1 Sharing mechanisms

We are interested in labor sovereign game forms, and focus on sharing mech-
anisms that only distribute output among the agents according to their
announcements on their private information (s,w) ∈ Sn × Rn+ and their
supplied labor time x ∈ [0, x̄]n. A sharing mechanism is a function g :
Sn × [0, x̄]n × Rn+ → Rn+ satisfying the following property: for any s ∈ Sn,
any x ∈ [0, x̄]n, and any w ∈ Rn+, g (s,x,w) = y, where s = (s1, . . . , sn) de-
notes the agents’ reported skills and w = (w1, . . . , wn) their desired amounts
of output consumption. A sharing mechanism g is feasible if for any st ∈ Sn,
any s ∈ Sn, any x ∈ [0, x̄]n, and anyw ∈ Rn+, (x, g (s,x,w)) ∈ Z (st). Note in
feasible sharing mechanisms, even without the true information of labor skills
st, the total amount of output f (

P
stkxk) is observable after the production

process, since the coordinator can hold all of the produced output. Note also
that any feasible sharing mechanism is a labor sovereign normal-form game
form.8 We denote by G the class of such feasible sharing mechanisms.
Given a feasible sharing mechanism g ∈ G, a feasible sharing game is de-

fined for each economy e ∈ E as a non-cooperative game (N, (S × [0, x̄]×R+)n , g, e).
Fixing the set of players N and their strategy sets (S × [0, x̄]×R+)n, we sim-
ply denote a feasible sharing game (N, (S × [0, x̄]× R+)n , g, e) by (g, e).
Given a strategy profile (s,x,w) ∈ Sn× [0, x̄]n×Rn+, let

¡
ss0i ,xx0i ,ww0i

¢ ∈
Sn × [0, x̄]n × Rn+ be another strategy profile which is obtained by replacing
the i-th component (si, xi, wi) of (s,x,w) with (s0i, x

0
i, w

0
i). A strategy profile

(s∗,x∗,w∗) ∈ Sn × [0, x̄]n × Rn+ is a (pure-strategy) Nash equilibrium of the
feasible sharing game (g, e) if, for any i ∈ N and any (si, xi, wi) ∈ S× [0, x̄]×
R+,

ui (x
∗
i , gi (s

∗,x∗,w∗)) ≥ ui
¡
xi, gi

¡
s∗si ,x

∗
xi
,w∗wi

¢¢
.

Denote by NE (g, e) the set of Nash equilibria of (g, e). An allocation z =
(xi, yi)i∈N ∈ ([0, x̄]×R+)n is a Nash equilibrium allocation of the feasible

8More correctly, any feasible sharing mechanism g is also expressed as a game form
Γg =

¡Sn × [0, x̄]n ×Rn+, h¢ such that for any (s,x,w) ∈ Sn × [0, x̄]n × Rn+, h (s,x,w) =
(x, g (s,x,w)). Clearly, Γg is a labor sovereign normal-form game form, which is uniquely
corresponding to g.
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sharing game (g, e) if there exists (s,w) ∈ Sn × Rn+ such that (s,x,w) ∈
NE (g, e) and y = g (s,x,w) where x = (xi)i∈N and y = (yi)i∈N . Denote by
NA (g, e) the set of Nash equilibrium allocations of (g, e). A feasible sharing
mechanism g ∈ G is said to implement the proportional solution on E in
Nash equilibria, if for all e ∈ E , NA (g, e) = PR (e).
A strategy profile (s∗,x∗,w∗) ∈ Sn×[0, x̄]n×Rn+ is a (pure-strategy) strong

(Nash) equilibrium of the feasible sharing game (g, e), if for any T ⊆ N and
any (si, xi, wi)i∈T ∈ S#T × [0, x̄]#T ×R#T+ , there exists j ∈ T such that

uj
¡
x∗j , gj (s

∗,x∗,w∗)
¢ ≥ uj ³xj, gj ³(si, xi, wi)i∈T , (s∗k, x∗k, w∗k)k∈N\T´´ .

Denote by SNE (g, e) the set of strong equilibria of (g, e). An allocation z =
(xi, yi)i∈N ∈ ([0, x̄]×R+)n is a strong equilibrium allocation of the feasible
sharing game (g, e) if there exists (s,w) ∈ Sn × Rn+ such that (s,x,w) ∈
SNE (g, e) and y = g (s,x,w). Denote by SNA (g, e) the set of strong
equilibrium allocations of (g, e). A feasible sharing mechanism g ∈ G is said
to implement the proportional solution on E in strong equilibria, if for all
e ∈ E , SNA (g, e) = PR (e). Moreover, a feasible sharing mechanism g ∈ G
is said to doubly implement the proportional solution on E in Nash and strong
equilibria, if for all e ∈ E , NA (g, e) = SNA (g, e) = PR (e).

2.2 Timing Problem in Sharing Mechanisms

Before discussing our own sharing mechanism for implementing the propor-
tional solution, we should mention the timing problem of strategy-decision
in real applications of sharing mechanisms, which is particularly relevent to
the case of production economies. Note that the strategic action for (s, w) is
only to announce a pair of two real numbers, while the strategic action for x
is to engage in production activity by supplying that amount of labor time.
Thus, there may be a time difference between the point in time when (s,w)
is announced and the period when x is exercised. It implies that there may
be at least two polar cases of time sequence of decision making: the agents
may annouce (s,w) before they supply their labor hours, or they may an-
nouce (s,w) after each agent supplies his labor time x. In the former case,
each agent i may decide his supply of labor time with the knowledge of the
messages (s,w), while in the latter case, he may decide his message (si, wi)
with the knowledge of agents’ actions x in production process.
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Consequently, we may derive at least the following two types of two-stage
game forms from the original normal form sharing mechanism. Given a fea-

sible sharing mechanism g ∈ G, the (1) type g-implicit two-stage mechanism
Γ1g is a two-stage extensive game form in which the first stage consists of
selecting (s,w) from Sn × Rn+, the second stage consists of selecting x from
[0, x̄]n, and the final stage assigns an outcome which is the same value as
g (s,x,w) for every choice (s,w) ∈ Sn × Rn+ in the first stage and every
choice x ∈ [0, x̄]n in the second stage. Given g ∈ G, the (2) type g-implicit
two-stage mechanism Γ2g is a two-stage extensive game form in which the
first stage consists of selecting x from [0, x̄]n, the second stage consists of
selecting (s,w) from Sn ×Rn+, and the final stage assigns an outcome which
is the same value as g (s,x,w) for every choice x ∈ [0, x̄]n in the first stage
and every choice (s,w) ∈ Sn ×Rn+ in the second stage.
Given the feasible (1) type g-implicit two-stage game

¡
Γ1g, e

¢
and each

strategy profile (s,w) ∈ Sn × Rn+ in the first stage of the game
¡
Γ1g, e

¢
, let

us denote its corresponding second stage subgame by
¡
Γ1g (s,w) , e

¢
. Let

xe : Sn × Rn+ → [0, x̄]n be a Nash equilibrium mapping such that for each
(s,w) ∈ Sn × Rn+, xe (s,w) is a (pure-strategy) Nash equilibrium of the
subgame

¡
Γ1g (s,w) , e

¢
. Denote the set of such Nash equilibrium mappings

in second stage subgames of the game
¡
Γ1g, e

¢
by Xe. A strategy profile

(s∗,w∗,xe∗) ∈ Sn × Rn+ × Xe is a (pure-strategy) subgame-perfect (Nash)
equilibrium of the feasible (1) type g-implicit two-stage game

¡
Γ1g, e

¢
, if for

any i ∈ N and any (si, wi) ∈ S × R+,

ui (x
e∗
i (s

∗,w∗) , gi (s∗,xe∗ (s∗,w∗) ,w∗))

≥ ui
¡
xe∗i (s

∗
si
,w∗wi), gi

¡
s∗si ,x

e∗(s∗si ,w
∗
wi
),w∗wi

¢¢
,

where xe∗i (s
∗,w∗) is the i-th component of the Nash equilibrium strategy

profile xe∗ (s∗,w∗) in the second stage subgame induced from the strategy
choice (s∗,w∗) in the first stage.
Given the feasible (2) type g-implicit two-stage game

¡
Γ2g, e

¢
and each

strategy profile x ∈ [0, x̄]n in the first stage of the game ¡Γ2g, e¢, let us denote
its corresponding second stage subgame by

¡
Γ2g(x), e

¢
. Let ωe : [0, x̄]n →

Sn×Rn+ be a Nash equilibrium mapping such that for each x ∈ [0, x̄]n, ωe (x)
is a (pure-strategy) Nash equilibrium of the subgame

¡
Γ2g (x) , e

¢
. Denote the

set of such Nash equilibrium mappings in second stage subgames of the game¡
Γ2g, e

¢
by Ωe. A strategy profile (x∗,ωe∗) ∈ [0, x̄]n ×Ωe is a (pure-strategy)
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subgame-perfect (Nash) equilibrium of the feasible (2) type g-implicit two-
stage game

¡
Γ2g, e

¢
, if for any i ∈ N and any xi ∈ [0, x̄],

ui (x
∗
i , gi (x

∗,ωe∗ (x∗))) ≥ ui
¡
xi, gi

¡
x∗xi ,ω

e∗ ¡x∗xi¢¢¢ .
Denote by SPE

¡
Γ1g, e

¢
(resp. SPE

¡
Γ2g, e

¢
) the set of subgame-perfect

equilibria of
¡
Γ1g, e

¢
(resp.

¡
Γ2g, e

¢
). An allocation z = (xi, yi)i∈N ∈ ([0, x̄]×R+)n

is a subgame-perfect equilibrium allocation of the game
¡
Γ1g, e

¢
(resp.

¡
Γ2g, e

¢
)

if there exists (s,w,xe) ∈ SPE ¡Γ1g, e¢ (resp. (x,ωe) ∈ SPE ¡Γ2g, e¢) such
that xe (s,w) = x and y = g (s,xe (s,w) ,w) (resp. y = g (x,ωe (x))).
Denote by SPA

¡
Γ1g, e

¢
(resp. SPA

¡
Γ2g, e

¢
) the set of subgame-perfect equi-

librium allocations of
¡
Γ1g, e

¢
(resp.

¡
Γ2g, e

¢
). A feasible (1)-type (resp. (2)-

type) g-implicit two-stage mechanism Γ1g (resp. Γ
2
g) is said to implement the

proportional solution on E in subgame-perfect equilibria, if for all e ∈ E ,
SPA

¡
Γ1g, e

¢
= PR (e) (resp. SPA

¡
Γ2g, e

¢
= PR (e)). Moreover, a feasible

(1)-type (resp. (2)-type) g-implicit two-stage mechanism Γ1g (resp. Γ
2
g) is said

to doubly implement the proportional solution on E in Nash and subgame-
perfect equilibria, if for all e ∈ E , NA (g, e) = SPA ¡Γ1g, e¢ = PR (e) (resp.
NA (g, e) = SPA

¡
Γ2g, e

¢
= PR (e)). Finally, a feasible (1)-type (resp. (2)-

type) g-implicit two-stage mechanism Γ1g (resp. Γ
2
g) is said to triply implement

the proportional solution on E in Nash, subgame-perfect, and strong equilib-
ria, if for all e ∈ E , NA (g, e) = SPA ¡Γ1g, e¢ = SNA (g, e) = PR (e) (resp.
NA (g, e) = SPA

¡
Γ2g, e

¢
= SNA (g, e) = PR (e)).

3 Implementation of the proportional solu-
tion

In the following, we add two additional assumptions.

Assumption 1 (boundary condition):

∀i ∈ N,∀zi ∈ [0, x̄)×R++,∀z0i ∈ [0, x̄]× {0} , ui (zi) > ui (z0i) .

Assumption 2: The production function f is continuously differentiable.

We denote by f 0 (x) the derivative of f at x.
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3.1 Nash and strong implementability

In this subsection, we will set aside the timing problem of sharing mecha-
nisms and propose a sharing mechanism as a normal form game form, which
doubly implements the proportional solution in Nash and strong equilibria.
To propose our mechanism, let us introduce four feasible sharing mechanisms
defined as follows:

• gPR is such that for each strategy profile (s,x,w) ∈ Sn × [0, x̄]n × Rn+
and real amount of produced output f

¡P
stjxj

¢
,

gPRi (s,x,w) = sixiP
sjxj
f
¡P

stjxj
¢
for all i ∈ N .

• g(ẑ,bs) with bs ∈ Sn and ẑ =(x̂, ŷ) ∈ [0, x̄]n × Rn+ is such that for each
strategy profile (s,x,w) ∈ Sn × [0, x̄]n × Rn+ and real amount of pro-
duced output f

¡P
stjxj

¢
,

g
(ẑ,bs)
i (s,x,w) =

 min
©
max {0, ŷi + bsi · f 0 (Pbsjx̂j) · (xi − x̂i)} , f ¡P stjxj

¢ª
if ẑ ∈Z (bs) and xj = x̂j, sj = bsj (∀j 6= i),
0 otherwise,

for all i ∈ N .
• gm is such that for each strategy profile (s,x,w) ∈ Sn × [0, x̄]n × Rn+
and real amount of produced output f

¡P
stjxj

¢
, and for all i ∈ N ,

gmi (s,x,w) =

½
f
¡P

stjxj
¢
if xi = µ (x−i) and wi > max {wj}j 6=i

0 otherwise.

where µ (x−i) ≡ maxxj<x̄ {xj}j 6=i +
x̄−maxxj<x̄{xj}j 6=i

2
.

• gd is such that for each strategy profile (s,x,w) ∈ Sn × [0, x̄]n × Rn+
and real amount of produced output f

¡P
stjxj

¢
, and for all i ∈ N ,

gdi (s,x,w) =

½
f
¡P

stjxj
¢
if Nm (s) = {i} ⊆ N0 (x) ,

0 otherwise,

whereNm (s) ≡
n
i ∈ N : si = max {sj}j∈N

o
andN0 (x) ≡ {i ∈ N : xi = 0}.

Note that g(ẑ,bs) is designed to implement ẑ in Nash equilibrium under some
economy with bs. If ẑ is Pareto efficient for some economy with bs, say (bu,bs),
then ẑ becomes a Nash equilibrium allocation of the game

¡
g(ẑ,bs), (bu,bs)¢, since

each agent’s attainable allocations by his unilateral deviation from ẑ are the
points in the “budget set” defined by the supporting price f 0 (

Pbsjx̂j) at
9



ẑ. Secondly, gm assigns all of the produced output to only one agent who
provides the maximal interior amount of labor time and reports a maximal
amount of demand for the output, where the scheme µ (x−i) is introduced to
have agents find their best response strategies.
Given (s,x,w) = (si, xi, wi)i∈N ∈ Sn × [0, x̄]n ×Rn+, let PR (s,x,w)−1 ≡

{u ∈ Un : (x,w) ∈ PR (u, s)}. If PR (s,x,w)−1 6= ∅, then (x,w) should
be a PR-optimal allocation for some economy with s. Let us call such a
(s,x,w) a PR-consistent strategy profile. Note that if gPR (s,x,w) = w
holds and (x,w) is an interior allocation, then PR (s,x,w)−1 6= ∅ holds.
Given (s,x,w) ∈ Sn × [0, x̄]n ×Rn+, let N (s,x,w) ≡ {i ∈ N : ∃ (s0i, x0i, w0i) ∈
S×[0, x̄]×R+ s.t. PR

¡
ss0i ,xx0i ,ww0i

¢−1 6= ∅}. ThisN (s,x,w) is the set of po-
tential deviators under strategy profile (s,x,w), since any i ∈ N (s,x,w) can
constitute a PR-consistent strategy profile with the others’ fixed strategies
by changing his strategy from (si, xi, wi). Given (s,x,w) ∈ Sn× [0, x̄]n×Rn+
and i ∈ N (s,x,w), let

Si (s,x,w) ≡ ©s0i ∈ S : ∃ (x0i, w0i) ∈ [0, x̄]× R+ s.t. PR(ss0i ,xx0i ,ww0i)−1 6= ∅ª .
Note that Si (s,x,w) is closed and bounded from below, or otherwise, Si (s,x,w) =
S. The latter case occurs if and only if f is linear on [0, b] such thatP

k 6=i skxk < b.
We introduce a feasible sharing mechanism g∗ ∈ G which works in each

given st ∈ Sn as follows:

For any (s,x,w) = (si, xi, wi)i∈N ∈ Sn × [0, x̄]n ×Rn+,
Rule 1: If f (

P
sjxj) = f

¡P
stjxj

¢
, then

1-1: if PR (s,x,w)−1 6= ∅, then g∗ (s,x,w) = gPR (s,x,w),
1-2: if PR (s,x,w)−1 = ∅, and N (s,x,w) 6= ∅, then
1-2-1: if #N (s,x,w) > 1, then g∗ (s,x,w) = 0,
1-2-2: if N (s,x,w) = {j} for some j ∈ N , then g∗j (s,x,w) = g(bz,bs)j (s,x,w)
and g∗i (s,x,w) = 0 for any i 6= j, where bz = (xbxj ,w bwj) and bs = sbsj such
that bsj = argmins0j∈Sj(s,x,w) | s0j − sj | & PR(sbsj ,xbxj ,w bwj)−1 6= ∅,
1-3: in any other case, g∗ (s,x,w) = gm (s,x,w).

Rule 2: If f (
P
sjxj) 6= f

¡P
stjxj

¢
, then g∗ (s,x,w) = gd (s,x,w).

It is easy to see that g∗ satisfies forthrightness (Saijo et al. (1996)) and best
response property (Jackson et al. (1994)). Moreover, g∗ is a mechanism of
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the quantity type, and so satisfies self-relevancy (Hurwicz (1960)). It is also
easy to check that the mechanism g∗ is feasible.
The mechanism g∗ is a combination of the four sharing mechanisms de-

fined above: First, g∗ computes the expected amount of produced output
f (
P
sjxj) from the data (s,x,w) and compares this with the real amount

of produced output f
¡P

stjxj
¢
. In the case that these two values coincide, if

the strategy profile (s,x,w) is PR-consistent, then g∗ applies gPR in Rule
1-1; if (s,x,w) is not PR-consistent, and there is a unique potential devia-
tor, then g∗ applies g(bz,bs) in Rule 1-2-2 so as to punish him; for any other
case, g∗ either applies gm inRule 1-3 or assigns nothing to everyone inRule
1-2-1. Finally, if f (

P
sjxj) and f

¡P
stjxj

¢
are different, then g∗ applies gd

in Rule 2.
Note that the data (bz,bs) of g(bz,bs) in Rule 1-2-2 is obtained by replacing

the unique potential deviator’s strategy with an appropriate one, where such
an operation is possible by the definition of N (s,x,w). Note also that such
(bz,bs) is essentially uniquely determined: first, bsj is uniquely determined, since
if sj ∈ Sj (s,x,w), then bsj = sj, while if sj /∈ Sj (s,x,w), then Sj (s,x,w) is
bounded from below and bsj = minSj (s,x,w). Second, once bsj is uniquely
determined, then the other agents’ strategies together with bsj give us the
unique information about j’s potential consumption vector (bxj, bwj), whenever
the production function f is strictly concave, because of the proportionality
of the PR-optimal allocation. Even if f is linear, the ratios between input
and output of j’s potential consumption vectors should be the same value,
by which the corresponding supporting price is uniquely determined.
Before we formally show the performance of g∗, let us briefly explain

how the mechanism induces true information of labor skills below:the mech-

anism g∗ only distributes total amounts of output f (
P
stkxk) among agents

according to the agents’ strategies (s,x,w), where the coordinator cannot
know whether s = st or not. However, first, if f (

P
skxk) 6= f (

P
stkxk), then

clearly s 6= st holds, and there must be at least one agent, say j ∈ N , who
has misreported his labor skill, sj 6= stj, and supplied a positive amount of
labor time xj > 0. Then, this agent is definitely punished under the appli-
cation of Rule 2. Secondly, consider the case that f (

P
skxk) = f (

P
stkxk)

but s 6= st. Then, there are at least two agents i, j ∈ N such that si 6= sti,
sj 6= stj, xi > 0, and xj > 0; otherwise there exists at least one agent j ∈ N
such that sj 6= stj and xj = 0. If the latter case is applied, agents such as
j will be punished under the application of Rule 1-3. In the former case,

11



one of the agents, j ∈ N , who has misrepresented his skill can induce Rule
2 by changing from xj > 0 to x0j = 0, together with reporting a sufficiently
high level of labor skill, so as to improve his payoff, while the other misre-
porting agents remain punished. Thus, this case may also not correspond to
an equilibrium situation, and the following lemma confirms such an insight:

Lemma 1: Let the feasible sharing mechanism g∗ ∈ G be given as above.
Given an economy (u, st) ∈ E , let a strategy profile (s,x,w) ∈ Sn× [0, x̄]n×
Rn+ be a Nash equilibrium of the game (g∗,u, st) such that f (

P
sjxj) =

f
¡P

stjxj
¢
. Then, it follows that si = sti for all i ∈ N with xi > 0.

Now, we analyze the performance of g∗.

Theorem 1: Let Assumptions 1 and 2 hold. Let the feasible sharing mecha-
nism g∗ ∈ G be given as above. Then, g∗ doubly implements the proportional
solution on E in Nash and strong equilibria.

Note that the mechanism g∗ does not depend on the number of agents, and
it works even in economies of two agents.

3.2 Implementation of the proportional solution with
the timing problem

Given the mechanism g∗, we can also derive the (1) type and the (2) type
two-stage g∗-implicit extensive game forms Γ1g∗ and Γ

2
g∗ respectively from g

∗.
Because of the timing problem discussed in section 2.2, g∗ may be played as
Γ1g∗ or Γ

2
g∗. In this situation, the coordinator may not know in advance the

information structure of the two-stage game induced by Γ1g∗ or Γ
2
g∗ , even if

he has control on the number of stages in the mechanism: this information
structure among agents may be characterized as perfect information, or as
complete but imperfect information on the first stage.9 In such a situation,
the double implementability by Γ1g∗ (resp. Γ

2
g∗) in Nash and subgame perfect

equilibria would be strongly attractive, since it keeps the desirable perfor-
mance of the mechanism without relying on the information structure among
agents. Fortunately, the following results would warrant this:

9If the game is played as one with perfect information (resp. complete but imperfect
information), the natural equilibrium notion might be the subgame-perfect one (resp. the
Nash one).
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Theorem 2: Let Assumptions 1 and 2 hold. Let the feasible sharing mech-
anism g∗ ∈ G be given as above. Then, the (1)-type g∗-implicit extensive
game form doubly implements the proportional solution on E in Nash and
subgame-perfect equilibria.

Theorem 3: Let Assumptions 1 and 2 hold. Let the feasible sharing mech-
anism g∗ ∈ G be given as above. Then, the (2)-type g∗-implicit extensive
game form doubly implements the proportional solution on E in Nash and
subgame-perfect equilibria.

By the three theorems discussed above, we can summarize as follows:

Corollary: Let Assumptions 1 and 2 hold. Let the feasible sharing mech-
anism g∗ ∈ G be given as above. Then, both the (1)-type and the (2)-type
g∗-implicit extensive game forms respectively triply implement the propor-
tional solution on E in Nash, subgame-perfect, and strong equilibria.

This result implies that the mechanism g∗ implements the solution even if it
permits each agent various kinds of freedom: he may choose his own supply
of labor time freely; he is permitted to overstate his labor skill; he can behave
unilaterally or coalitionally; and he can behave strong-rationally, as in the
subgame-perfect response, or weak-rationally, as in the Nash-like response.

4 Concluding remarks

We have proposed a feasible sharing mechanism which triply implements
the proportional solution in Nash, subgame-perfect, and strong equilibria,
even when agents can not only understate, but also overstate their labor
skills. The performance of our mechanism is summarized in Table 1, which
provides a comparison with other relevant mechanisms.

Insert Table 1 around here.

As shown in Table 1, our mechanism has two undesirable features. First,
it lacks continuity. Second, the mechanism fails to meet balancedness or non-
wastefulness. One reason is that the mechanism permits agents to both over-
state and/or understate their labor skills. So, it is difficult to find the deviator
when only aggregate information

¡
f (
P
sjxj) and f

¡P
stjxj

¢¢
is available.
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Therefore, the mechanism basically punishes all agents when there must be
a deviator. The other reason is that this mechanism is labor sovereign. The
labor sovereign mechanism should accept a profile of the agents’ choice of
labor time as an outcome, even when it may constitute a non-desirable allo-
cation. Thus, if the mechanism needs to punish potential deviators, it is only
possible by reducing their shares of output, which leads it to violate balanced-
ness. We conjecture that there may be a trade-off between labor sovereignty
and balancedness. However, it is still an open question whether or not there
exists a mechanism which satisfies labor sovereignty and balancedness, and
implements the proportional solution.

5 Appendix

Proof of Lemma 1. Suppose there exists j ∈ N with sj 6= stj and xj > 0.
Let NL (s) be the set of such j. Since f (

P
sixi) = f (

P
stixi), NL (s) is not

a singleton. Moreover, any j ∈ NL (s) can obtain y0j = f
³P

i6=j s
t
ixi
´
> 0

with s0j > max {si}i6=j and x0j = 0 under Rule 2. Note that

X
j∈NL(s)

y0j =
X

j∈NL(s)
f

ÃX
i6=j

stixi

!
=
X

j∈NL(s)
f

 X
i∈NL(s)\{j}

stixi+
X

i/∈NL(s)
stixi


≥

X
j∈NL(s)

f

stjxj+ X
i/∈NL(s)

stixi

 (since NL (s) is not a singleton)

≥ f

 X
j∈NL(s)

stjxj+ X
i/∈NL(s)

stixi

 (since f is concave and f (0) ≥ 0)

≥ f

 X
j∈NL(s)

stjxj+
X

i/∈NL(s)
stixi

 ≥ X
j∈NL(s)

yj ≡
X

j∈NL(s)
g∗j (s,x,w) .

If
P

j∈NL(s) y
0
j >

P
j∈NL(s) yj, then there must be j ∈ NL (s) who has an

incentive to induce Rule 2 by s0j > max {si}i6=j and x0j = 0. If
P

j∈NL(s) y
0
j =P

j∈NL(s) yj and there exists one individual j ∈ NL (s) with y0j > yj, then
he has an incentive to induce Rule 2 by s0j > max {si}i6=j and x0j = 0.
Finally, if

P
j∈NL(s) y

0
j =

P
j∈NL(s) yj and y

0
j = yj for all j ∈ NL (s), then
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every j ∈ NL (s) has an incentive to change xj to x0j = 0, since uj(x0j, y0j) =
uj(0, yj) > uj(xj, yj) by the strict monotonicity of utility functions. Thus, in
any case, it contradicts the fact that (s,x,w) is a Nash equilibrium.

Proof of Theorem 1. Let (u, st) ∈ E be any given.
(1) Show PR (u, st) ⊆ NA (g∗,u, st) for all (u, st) ∈ E .
Let z = (x,y) ∈ PR (u, st). Then, if the strategy profile of agents is

(st,x,y) = (sti, xi, yi)i∈N ∈ (S × [0, x̄]×R+)n, then g∗ (st,x,y) = y by Rule
1-1. Since st À 0 and z is an efficient proportional allocation, Assumption 1
implies xÀ 0 and g∗i (s

t,x,y) > 0 for all i ∈ N . Suppose that an individual
j ∈ N deviates from

¡
stj, xj, yj

¢
to
¡
s0j, x

0
j, w

0
j

¢ ∈ S × [0, x̄]×R+.
Note first that the deviation cannot induce Rule 1-3. If the deviation

results in Rule 1-2-1, then g∗j
³
sts0j
,xx0j ,yw0j

´
= 0. If the deviation induces

Rule 2, then x0j > 0. Hence, it must be the case that g∗j
³
sts0j
,xx0j ,yw0j

´
= 0

under Rule 2.
If the deviation induces Rule 1-2-2 with s0j 6= stj, then x0j = 0. So,

g∗j
³
sts0j ,xx

0
j
,yw0j

´
≤ bwj + bsj · f 0ÃX

i6=j
stixi + bsjbxj

!
· ¡x0j − bxj¢

= bwj − bsjbxj · f 0ÃX
i6=j

stixi + bsjbxj
!

with some (bsj, bxj, bwj) ∈ S × [0, x̄]×R+ such that PR³stbsj ,xbxj ,y bwj´−1 6= ∅.
Suppose f

³P
i6=j s

t
ixi + bsjbxj´ 6= f ³Pi6=j s

t
ixi + s

t
jxj
´
. Since PR (st,x,y)−1 6=

∅, it implies that both of the points
³P

i6=j s
t
ixi + bsjbxj, f ³Pi6=j s

t
ixi + bsjbxj´´

and
³P

i6=j s
t
ixi + s

t
jxj, f

³P
i6=j s

t
ixi + s

t
jxj

´´
must be on the same line that

passes through (0, 0). Since f is concave, f must be linear on a closed

interval
h
0,max

nP
i6=j s

t
ixi + bsjbxj,Pi6=j s

t
ixi + s

t
jxj
oi
. Hence, bwj − bsjbxj ·

f 0
³P

i6=j s
t
ixi + bsjbxj´ = 0. Thus, g∗j ³sts0j ,xx0j ,yw0j´ ≤ 0. Next, suppose that

f
³P

i6=j s
t
ixi + bsjbxj´ = f ³Pi6=j s

t
ixi + s

t
jxj
´
. This implies bsjbxj = stjxj and
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bwj = yj, since PR (st,x,y)−1 6= ∅ and PR³stbsj ,xbxj ,y bwj´−1 6= ∅. Thus,
g∗j
³
sts0j ,xx

0
j
,yw0j

´
= bwj − bsjbxj · f 0ÃX

i6=j
stixi + bsjbxj

!
= yj − stjxj · f 0

³X
stixi

´
= yj + s

t
j · f 0

³X
stixi

´
· ¡x0j − xj¢ .

Since z is Pareto efficient, the deviation gives no additional benefit to j.
Consider the case that the deviation induces Rule 1-2-2 with s0j =

stj. If g
∗
j

³
st,xx0j ,yw0j

´
= g

(bz,bs)
j

³
st,xx0j ,yw0j

´
under Rule 1-2-2 where bz =³

(bxj,bwj) , (xi, yi)i6=j´, thenbs = st and the point ³Pi6=j s
t
ixi + s

t
jbxj, f ³Pi6=j s

t
ixi + s

t
jbxj´´

must be on the line that starts from (0, 0) and passes through (
P
stixi, f (

P
stixi)),

because we have (bwj,y−j) = gPR (st, (bxj,x−j) , ( bwj,y−j)) as well as y =
gPR (st,x,y). Since f is concave, f must be linear on a closed intervalh
0,max

nP
stixi,

P
i6=j s

t
ixi + s

t
jbxjoi, which implies g∗j ³st,xx0j ,yw0j´ = g(z,st)j

³
st,xx0j ,yw0j

´
.

Since g(z,s
t)

j

³
st,xx0j ,yw0j

´
≤ yj + stj · f 0 (

P
stixi) ·

¡
x0j − xj

¢
and z is Pareto

efficient, the deviation gives no additional benefit to j.

Next, if the deviation inducesRule 1-1with s0j 6= stj, then it must be x0j =
0 underRule 1-1, since xÀ 0. Thus, by the definition of gPR inRule 1-1, it
follows that w0j = 0. By Assumption 1, however, this implies that

³
xx0j ,yw0j

´
cannot be Pareto efficient for any economy, which is in contradiction toRule
1-1. Thus, s0j = stj follows when Rule 1-1 is induced. However, if the
deviation induces Rule 1-1 with s0j = s

t
j, then f must be linear on a closed

interval
h
0,max

nP
stixi,

P
i6=j s

t
ixi + s

t
jx
0
j

oi
, and we obtain

g∗j
³
st,xx0j ,yw0j

´
≤ yj + stj · f 0

³X
stixi

´
· ¡x0j − xj¢ .

The Pareto efficiency of z implies no additional benefit for j.

(2) Show NA (g∗,u, st) ⊆ PR (u, st) for all (u, st) ∈ E .
Let (s,x,w) = (si, xi, wi)i∈N ∈ (S × [0, x̄]×R+)n be a pure-strategy

Nash equilibrium of the feasible sharing game (g∗,u, st).
Suppose that (s,x,w) inducesRule 2. If N0 (x) = ∅, then g∗i (s,x,w) =

0 for all i ∈ N . Note that when Rule 2 is induced, there exists at least an
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individual j ∈ N such that
P

i6=j sixi 6=
P

i6=j s
t
ixi. Thus, there exists an

individual j ∈ N in this case who can enjoy g∗j
³
ss0j ,xx0j ,ww0j

´
> 0 with

s0j > max {si}i∈N and x0j = 0 under Rule 2.
If N0 (x) 6= ∅, then everyone j ∈ N0 (x) can monopolize all f (

P
stixi)

by supplying xj = 0 while reporting his labor skill as s0j so that s
0
j > si for

all i 6= j under Rule 2. Thus, if #N0 (x) ≥ 2, then no profile of agents’
strategies can constitute a Nash equilibrium in Rule 2.
If #N0 (x) = 1 and #N\N0 (x) ≥ 2, then there exists at least an indi-

vidual j ∈ N\N0 (x) such that
P

i∈N\(N0(x)∪{j}) sixi 6=
P

i∈N\(N0(x)∪{j}) s
t
ixi.

In fact, if not, then (n− 2) ·
³P

i∈N\N0(x) sixi
´
= (n− 2) ·

³P
i∈N\N0(x) s

t
ixi
´
,

which contradicts the fact that Rule 2 is induced. Thus, there exists an
individual j ∈ N\N0 (x) in this case who can enjoy g∗j

³
ss0j ,xx0j ,ww0j

´
> 0

with s0j > max {si}i∈N and x0j = 0 under Rule 2. If #N0 (x) = 1 with
N0 (x) = {i} and #N\N0 (x) = 1 with N\N0 (x) = {j}, then j can enjoy
g∗j
³
ss0j ,xx0j ,ww0j

´
> 0 with s0j = stj, x

0
j =

x
2
, and w0j > max

©
wi, f

¡
stjx

0
j

¢ª
under Rule 1-3. Thus, if #N0 (x) = 1, no profile of agents’ strategies can
constitute a Nash equilibrium in Rule 2.
Suppose that (s,x,w) induces Rule 1-3. Then, g∗j (s,x,w) = 0 for some

j ∈ N . If either xj = 0 or sj = stj, then he can enjoy g∗j
³
ss0j ,xx0j ,ww0j

´
> 0

with s0j = s
t
j, x

0
j = µ (x−j), and w

0
j > max

n
f
¡
stjx

0
j

¢
, max {wi}i6=j

o
, under

Rule 1-3. If xj > 0 and sj 6= stj, then he can enjoy g∗j
³
ss0j ,xx0j ,ww0j

´
> 0

with s0j > max {si}i∈N and x0j = 0 under Rule 2.
Suppose that (s,x,w) induces Rule 1-2-1. Then, g∗i (s,x,w) = 0 for

all i ∈ N . If xj = 0 for some j ∈ N , then N (s,x,w) = {j} or ∅. Hence
x À 0. Any j ∈ N with sj = stj can enjoy g

∗
j

³
ss0j ,xx0j ,ww0j

´
> 0 with

s0j = s
t
j, x

0
j = µ (x−j), and w

0
j > max

n
f
¡
stjx

0
j

¢
, max {wi}i6=j

o
, under Rule

1-3 or Rule 1-2-2. At the same time, any j ∈ N with sj 6= stj can enjoy

g∗j
³
ss0j ,xx0j ,ww0j

´
> 0 with s0j > max {si}i∈N and x0j = 0 under Rule 2.

Suppose that (s,x,w) induces Rule 1-2-2. Then, N\N (s,x,w) 6= ∅,
and xi > 0 and g∗i (s,x,w) = 0 for all i ∈ N\N (s,x,w). Any j ∈
N\N (s,x,w) with sj = stj can enjoy g

∗
j

³
ss0j ,xx0j ,ww0j

´
> 0 with s0j = stj,
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x0j = µ (x−j), and w0j > max
n
f
¡
stjx

0
j

¢
, max {wi}i6=j

o
, under Rule 1-

3. At the same time, any j ∈ N\N (s,x,w) with sj 6= stj can enjoy

g∗j
³
ss0j ,xx0j ,ww0j

´
> 0 with s0j > max {si}i∈N and x0j = 0 under Rule 2.

Thus, (s,x,w) corresponds toRule 1-1. Then, for z =
¡
x, gPR (s,x,w)

¢
,

we have g∗ (s,x,w) = gPR (s,x,w), whichmeans g∗i (s,x,w) =
sixiP
sjxj
f
¡P

stjxj
¢

for each i ∈ N . Note that by Assumption 1, xÀ 0. Moreover, f (
P
sjxj) =

f
¡P

stjxj
¢
holds. Therefore, Lemma 1 implies it must be the case that

s = st.

Since (s,x,w) is a Nash equilibrium, it holds that for all i ∈ N and all
(s0i, x

0
i, w

0
i) ∈ S × [0, x̄] × R+, ui (xi, g∗i (s,x,w)) ≥ ui

¡
x0i, g

∗
i

¡
ss0i ,xx0i ,ww0i

¢¢
.

At the same time, any i ∈ N can enjoy

g∗i
¡
ss0i ,xx0i ,ww0i

¢ ≤ yi + sti · f 0 ³X stjxj
´
· (x0i − xi)

with s0i = s
t
i and w

0
i = 0 under Rule 1-2-2. Thus, the facts together imply

the Pareto efficiency of z, or z ∈ PR (u, st).
(3) Show SNA (g∗, e) = NA (g∗, e) for all e ∈ E .
Let e = (u, st) ∈ E be any given. By definition, SNA (g∗, e) ⊆ NA (g∗, e).

Suppose SNA (g∗, e) ( NA (g∗, e). Then, there exists (s,x,w) ∈ NE (g∗, e)
such that for some T ( N and some (s0i, x

0
i, w

0
i)i∈T ∈ S#T × [0, x̄]#T ×R#T+ ,

uj
¡
xj, g

∗
j (s,x,w)

¢
< uj

³
x0j, g

∗
j

³
(s0i, x

0
i, w

0
i)i∈T , (sk, xk, wk)k∈N\T

´´
for all j ∈ T . Since (s,x,w) ∈ NE (g∗, e) corresponds to Rule 1-1 as is
shown in the proof of Theorem 1, (s,x,w) is PR-consistent, which implies
x À 0 under Assumption 1. Hence s = st by Lemma 1. Note also that
T = N is eliminated by Pareto efficiency of NA (g∗, e). By construction of
g∗, there is at most one agent who can enjoy a positive amount of output
under Rules 1-2-1, 1-2-2, 1-3, and 2. Since g∗i (s

t,x,w) > 0 for all i ∈ N ,³
(s0i, x

0
i, w

0
i)i∈T , (s

t
k, xk, wk)k∈N\T

´
should induceRule 1-1 by Assumption 1.

Then, f must be linear on a closed interval
h
0,max

nP
stixi,

P
i∈T s

0
ix
0
i +
P

k∈N\T s
t
kxk
oi
,

and we obtain

g∗j
³
(s0i, x

0
i, w

0
i)i∈T ,

¡
stk, xk, wki

¢
k∈N\T

´
≤ wj + stj · f 0

³X
stixi

´
· ¡x0j − xj¢
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for some j ∈ T . The Pareto efficiency of (xi, g∗i (st,x,w))i∈N implies no
additional benefit for this j, which implies a desired contradiction. Thus,
NA (g∗, e) = SNA (g∗, e).

Proof of Theorem 2. Since NA (g∗, e) = PR (e) and SPA
¡
Γ1g∗ , e

¢ ⊆
NA (g∗, e) for all e ∈ E , we have only to show PR (e) ⊆ SPA ¡Γ1g∗, e¢ for
all e ∈ E . First, we will show that in every second stage subgame, there is
at least one Nash equilibrium strategy. Let us take a strategy mapping xe :
Sn × Rn+ → [0, x̄]n such that for each second stage subgame

¡
Γ1g∗ (s,w) , e

¢
:

for all i ∈ N , xei (s,w) =


x
2

if wi > max {wk}k 6=i , si = sti, and
for any j 6= i and any x0j,
PR

¡
s,
¡
x
2
, x0j,0−{i,j}

¢
,w
¢−1

= ∅
0 otherwise

.

Then, we can see that xe (s,w) ∈ NE ¡Γ1g∗ (s,w) , e¢. Note that g∗ (s,xe (s,w) ,w)
corresponds to Rule 1-3. To simplify the notation, let us denote xe =
xe (s,w) in the following discussion.
Note first that no individual can induce Rule 1-1 by changing his strat-

egy, and that no individual can enjoy output consumption underRule 1-2-1.
If i ∈ N can induce Rule 1-2-2 by changing his strategy, then the devia-
tion gives him no additional benefit, or g∗i

³
s,xex0i

,w
´
= 0, because it must

be the case that i /∈ N
³
s,xex0i

,w
´
. Moreover, if i ∈ N can induce Rule 2

by changing his strategy, then it must be the case that xei > 0, which im-

plies the deviation gives him no additional benefit, or g∗i
³
s,xex0i

,w
´
= 0.

Finally, if there exists i ∈ N who can enjoy a positive amount of out-
put under Rule 1-3, then wi > max {wk}k 6=i, si = sti, and for any j 6= i

and any x0j, PR
¡
s,
¡
x
2
, x0j,0−{i,j}

¢
,w
¢−1

= ∅. His strategy is already x
2
,

which is necessary for him to get a positive output under Rule 1-3. Thus,
xe ∈ NE ¡Γ1g∗ (s,w) , e¢.
Now, we will show that for each e = (u, st) ∈ E , if bz = (bx,by) ∈ PR (u, st),

then there exists a subgame perfect equilibrium whose corresponding out-
come is bz. Consider the following strategy profile of the extensive game¡
Γ1g∗, e

¢
:

(1) In the first stage, every individual i reports (si, wi) = (sti, byi).
(2) In the second stage:
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(2-1): if (s,w) = (st, by) is the action profile of all individuals in the first
stage, then any i ∈ N supplies xi = bxi;
(2-2): if (s,w) =

¡¡
s0j, s

t
−j
¢
,
¡
w0j, by−j¢¢, where s0j = stj, w0j 6= byj, and for all

i 6= j, wi ≤ w0j, is the action profile of all individuals in the first stage, then
for this j ∈ N ,

xj = arg max
x∗j∈χj

µ
st,bx−j ,byw0

j

¶ uj
³
x∗j , g

∗
j

³
st, bxx∗j , byw0j´´

and for all i 6= j, xi = bxi, where
χj
³
st, bx−j, byw0j´ ≡ ½x∗j | N ³st, bxx∗j , byw0j´ = {j} or PR³st, bxx∗j , byw0j´−1 6= ∅¾ ;

(2-3): in any other case, for all i ∈ N , xi = xei .
Note that for the subgame of (2-1), x = bx ∈ NE ¡Γ1g∗ (s,w) , e¢, since

any deviator can enjoy a positive amount of output only under Rule 1-
2-2. Also, x ∈ NE ¡Γ1g∗ (s,w) , e¢ for the subgame of (2-3), as we have
already shown. Moreover, we can see that for the subgame of (2-2), x ∈
NE

¡
Γ1g∗ (s,w) , e

¢
. Note that g∗ (s,x,w) corresponds to Rule 1-1 or Rule

1-2-2 if
¡
Γ1g∗ (s,w) , e

¢
corresponds to (2-2). Note also that χj

³
st, bx−j, byw0j´

is non-empty, since x∗j = 0 guarantees N
³
st, bxx∗j , byw0j´ = {j}.

Suppose that g∗ (s,x,w) corresponds to Rule 1-1 when
¡
Γ1g∗ (s,w) , e

¢
corresponds to (2-2). Then, f must be linear on

h
0,max

nP
stibxi,Pi6=j s

t
ibxi + stjxjoi,

which implies the Pareto efficiency of
¡
(xj, bx−i) , ¡w0j, by−j¢¢. Thus, x ∈

NE
¡
Γ1g∗ (s,w) , e

¢
.

Suppose that g∗ (s,x,w) corresponds toRule 1-2-2 when
¡
Γ1g∗ (s,w) , e

¢
corresponds to (2-2). Note first that any individual cannot induce Rule 2.
Moreover, any i 6= j cannot induce Rule 1-1, and he can induce Rule 1-3,
but only to enjoy no output consumption since wi ≤ w0j. Finally, j cannot
induce Rule 1-3. Thus, x ∈ NE ¡Γ1g∗ (s,w) , e¢.
Now, let us see that the above strategy profile (1)-(2) constitutes a sub-

game perfect equilibrium of the extensive game
¡
Γ1g∗, e

¢
. By the strategy

profile (1)-(2) of the extensive game
¡
Γ1g∗ , e

¢
, g∗ (s,x,w) = g∗ (st, bx,by) = by.

Suppose that individual j deviates from (sj, wj) to
¡
s0j, w

0
j

¢
in the first stage.

Then by (2-2) and (2-3), he only gets

g∗j
³
ss0j ,x

³
ss0j ,ww0j

´
,ww0j

´
≤ byj + stj · f 0 ³X stkbxk´ · (xj − bxj) .
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These arguments imply that no individual has any incentive to deviate from
(sj, wj) in the first stage. Thus, bz = (bx,by) ∈ SPA ¡Γ1g∗ ,u, st¢.
Proof of Theorem 3. Since NA (g∗, e) = PR (e) and SPA

¡
Γ2g∗ , e

¢ ⊆
NA (g∗, e) for all e ∈ E , we have only to show PR (e) ⊆ SPA ¡Γ2g∗, e¢ for all
e ∈ E . First, we will show that in every second stage subgame, there is at
least one Nash equilibrium strategy.
Let us define a strategy profile (se,we) of the given second stage subgame¡

Γ2g∗(x), e
¢
as follows:

for all i ∈ N , (sei , wei ) =
½
(sti, 0) if xi 6= µ (x−i)
(sti, f (s

t
ixi) + 1) otherwise

.

Then, we can see that (se,we) ∈ NE ¡Γ2g∗(x), e¢. Note that g∗ (se,x,we)
corresponds to Rule 1-3. Note first that no individual can induce Rule
1-1 by changing his strategy, and that no individual can enjoy output con-
sumption under Rule 1-2-1. If any i ∈ N can induce Rule 1-2-2 by
changing his strategy, then such a deviation gives him no additional benefit,
or g∗i

³
ses0i
,x,we

w0i

´
= 0, because it must be the case that i /∈ N

³
ses0i
,x,we

w0i

´
.

Moreover, if any i ∈ N can induce Rule 2 by changing his strategy, then
it must be the case that xi > 0, which implies this deviation gives him no
additional benefit, or g∗i

³
ses0i
,x,we

w0i

´
= 0. Finally, if any i ∈ N can induce

Rule 1-3 by changing his strategy, then such a deviation gives him no ad-
ditional benefit, since the individual i who has xi = µ (x−i) is already fixed
in the first stage game. Thus, (se,we) ∈ NE ¡Γ2g∗(x), e¢.
Now, we will show that for each e = (u, st) ∈ E , if bz = (bx,by) ∈ PR (u, st),

then there exists a subgame perfect equilibrium whose corresponding out-
come is bz. Consider the following strategy profile of the extensive game¡
Γ2g∗, e

¢
:

(1) In the first stage, every individual i supplies bxi > 0.
(2) In the second stage:
(2-1): if bx is the action profile of all individuals in the first stage, then for
any i ∈ N , (si, wi) = (sti, byi);
(2-2): if x =

¡
x0j, bx−j¢ À 0, where x0j 6= bxj, is the action profile of all indi-

viduals in the first stage, then

for this j ∈ N , (sj, wj) =
¡
stj, f

¡
stjx

0
j

¢
+ 1
¢
,

for all i 6= j, (si, wi) =
½
(sti, byi) if xi 6= µ (x−i)
(sti, f (

P
stkxk)) otherwise

;
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(2-3): in any other case, for all i ∈ N , (si, wi) = (sei , wei ).
Note that for the subgame of (2-1), (s,w) = (st, by) ∈ NE ¡Γ2g∗ (x) , e¢,

since any deviator can enjoy a positive amount of output only under Rule
1-2-2. Also, (s,w) ∈ NE ¡Γ2g∗ (x) , e¢ for any subgame ¡Γ2g∗ (x) , e¢ of the
case (2-3), as we have already shown. Moreover, we can see that for the
subgame of (2-2), (s,w) ∈ NE ¡Γ2g∗ (x) , e¢.
(i) Consider the case that for all i 6= j, xi 6= µ (x−i). Then, g∗ (s,x,w)
corresponds to Rule 1-2-2. Note that for any individual, changing his an-
nouncement of his labor skill cannot make him better off. Note also any i 6= j
can induce Rule 1-3 by changing from wi = byi to w0i = f (P stkxk), which
cannot make him better off. Finally, j cannot induce Rule 1-3 by changing
from wj = f

¡
stjxj

¢
+ 1 to any w0j ≥ 0. Thus, (s,w) ∈ NE

¡
Γ2g∗ (x) , e

¢
.

(ii) Consider the case that there exists i 6= j with xi = µ (x−i). Then
g∗ (s,x,w) corresponds toRule 1-3. Note first that no individual can induce
Rule 1-1 by changing his strategy, and that no individual can enjoy output
consumption under Rule 1-2-1. If any i ∈ N can induce Rule 1-2-2 by
changing his strategy, then such a deviation gives him no additional benefit,
or g∗i

¡
ss0i ,x,ww0i

¢
= 0, because it must be the case that i /∈ N ¡ss0i,x,ww0i¢.

Moreover, if any i ∈ N can induce Rule 2 by changing his strategy, then
the deviation gives him no additional benefit, or g∗i

¡
ss0i ,x,ww0i

¢
= 0, since

xÀ 0. Finally, if any i ∈ N can induce Rule 1-3 by changing his strategy,
then such a deviation gives him no additional benefit, since the individual i
who has xi = µ (x−i) is already fixed in the first stage game. Thus, (s,w) ∈
NE

¡
Γ2g∗ (x) , e

¢
.

Now, let us see that the above strategy profile (1)-(2) constitutes a sub-
game perfect equilibrium of the extensive game

¡
Γ2g∗, e

¢
. By the strategy

profile (1)-(2) of the extensive game
¡
Γ2g∗ , e

¢
, g∗ (s,x,w) = g∗ (st, bx, by) = by.

Suppose that individual j deviates from bxj to x0j 6= bxj in the first stage. If
x0j = 0, then by (2-3), he only gets g

∗
j

¡
s
¡
x0j, bx−j¢ , ¡x0j, bx−j¢ ,w ¡x0j, bx−j¢¢ =

0. If x0j > 0, then by (2-2), he only gets

g∗j
¡
s
¡
x0j, bx−j¢ , ¡x0j, bx−j¢ ,w ¡x0j, bx−j¢¢ ≤ byj + stj · f 0 ³X stibxi´ · ¡x0j − bxj¢ .

These arguments imply that no individual has any incentive to deviate from
xj in the first stage. Thus, bz = (bx,by) ∈ SPA ¡Γ2g∗,u, st¢.
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Equilibrium
notions

·NA
·SNA
·UNA

·NA
·SNA
·UNA

·NA
·SNA

·NA
·SNA
·SPA

# of goods 2 2 m ≥ 2 2
# of agents n ≥ 2 n ≥ 3 n ≥ 2 n ≥ 2

endowment
information

known known
unknown;
overstatements
are prohibited

unknown;
overstatements
and
understatements
are possible

labor
sovereignty

no no no yes

feasibility yes yes yes yes
self-relevancy no yes no yes
best response
property

no yes no yes

forthrightness no yes yes yes
balancedness no yes no no
continuity no no yes no

Table 1: Performance of mechanisms implementing PR

where NA means “Nash implementability,” SNA means “strong Nash
implementability,” UNA means “undominated Nash implementability,”

and SPA means “subgame-perfect implementability.”
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