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Abstract

We introduce several distinct notions of equity as no-envy into the over-
lapping generations economy formulated by Samuelson (1958). No-Envy in
Overlapping Consumptions requires that for each time period, no person
should prefer the bundle of any other person who lives in the same period
to his/her own. No-Envy in Lifetime Consumptions states that no person
should prefer the lifetime consumption plan of any other person to his/her
own. Equity in Lifetime Rate of Return requires that the lifetime rate of
return (Cass and Yaari,1966) be equal for all persons. For each of the three
notions, we characterize allocations satisfying it, and clarify logical relations
among these conditions. We also examine existence of a stationary allocation
that attains maximal utility under No-Envy in Lifetime Consumptions.
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1 Introduction

This paper studies equity and efficiency of allocations in the overlapping gen-
erations economy formulated by Samuelson (1958). A central notion of distri-
butional equity is no-envy (Foley (1967), Kolm (1972)): no person prefers the
consumption of any other person to his/her own. Suzumura (2002) proposed
three distinct notions of equity based on no-envy in overlapping generations
economies. The first one concerns contemporary (overlapping) consumptions
in each time period. It requires that for each period, no person should prefer
the consumption of any other person in that period to his/her own. In con-
trast, the second notion is about lifetime consumption plans. It stipulates
that no person should prefer the lifetime consumption plan of any other per-
son to his/her own. The third notion is based on the lifetime rate of return
due to Cass and Yaari (1966). It simply requires an equal lifetime rate of
return of all persons.

In a simple model where there is one (composite) commodity with no
production, the preferences are identical, and the rate of population growth
is constant, we examine the implications of each notion of equity, and clarify
the logical relations of the three notions, paying special attention to their
relations with stationarity of allocations. We also study the existence and
characterizations of allocations attaining maximal utility under no-envy in
liftime consumption plans, which are the allocations selected by the equity-
first and efficiency-second principle due to Tadenuma (2002).

The rest of the paper is organized as follows. The next section formulates
the model and the notions of equity. The following three sections examine
the implications of no-envy in contemporary (overlapping) consumptions,
equality in lifetime rate of return, and no-envy in lifetime consumption plans,
respectively. Section 6 studies allocations attaining maximal utility under
no-envy in lifetime consumption plans. The final section summarizes the
results.

2 The Model and the Notions of Equity

We consider the overlapping generations model formulated by Samuelson
(1958). Each person lives for two periods, earning one unit of a perishable
good in the first period, and earning nothing in the second period. Let
C i denote an amount of consumption in her i-th period. Preferences are
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assumed to be identical for all persons. Let U : R
2
+ → R be the common

utility function, which is increasing in each argument. The value U(C1, C2)
represents the utility level when a person consumes C1 and C2 in his first
period and in his second period, respectively. At the beginning of each period
t, (1+n)t persons are born where n ≥ 0 is the rate of population growth. We
call the persons born at t generation t.

In order to focus on inter-generational distribution problems rather than
intra-generational problems, we assume that all persons belonging to the
same generation consumes the same bundle. Let Ct = (C1

t , C
2
t ) be a lifetime

consumption plan of each person in generation t. Since (1 + n)t persons are
born at the beginning of each period t, the aggregate consumption vector of
generation t is given by (1 + n)tCt. An allocation is a doubly infinite and
nonnegative sequence {Ct}t∈Z, where Z denotes the set of all integers. An
allocation {Ct}t∈Z is stationary if Ct−1 = Ct for all t ∈ Z. An allocation
{Ct}t∈Z is feasible if for every t ∈ Z,

C1
t +

C2
t−1

1 + n
≤ 1, (1)

and it is exactly feasible if for every t ∈ Z,

C1
t +

C2
t−1

1 + n
= 1. (2)

An allocation {Ct}t∈Z is Pareto efficient if it is feasible and there exists no
feasible allocation {C′

t}t∈Z such that U(C′
t) ≥ U(Ct) for all t ∈ Z with strict

inequality for some t.
Following Suzumura (2002), we formulate three distinct notions of equity-

as-no-envy. The first one requires that for each time period, no person prefers
the consumption of any other person in the same period. Since there is
only one (composite) commodity in our model, the condition reduces to the
following one:

No-Envy in Overlapping Consumptions (NEOC): For all t ∈ Z,
C2

t−1 = C1
t .

The second notion means that no person prefers the lifetime consumption
plan of any other person to his/her own. Because it is assumed that the pref-
erences are identical, and that all persons belonging to the same generation
have the same lifetime consumption, the condition reduces to the following
one:
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No-Envy in Lifetime Consumptions (NELC): For all t ∈ Z, U(Ct−1) =
U(Ct).

The third notion of equity is based on the lifetime rate of return due to
Cass and Yaari (1966). Consider allocations {Ct}t∈Z such that C1

t > 0 and
C2

t > 0 for all t. We call such allocation positive. Note that exact feasibility
and positivity together imply C1

t < 1 for all t ∈ Z. Thus, the following
notion of lifetime rate of return is well-defined:

rt =
C2

t − (1 − C1
t )

1 −C1
t

.

Equity in Lifetime Rate of Return (ELRR): For all positive and exactly
feasible allocations, and for all t ∈ Z, rt−1 = rt.

In the following sections, we investigate implications and logical relations
of these equity notions.

3 No-Envy in Overlapping Consumptions

We start with examining implications of No-Envy in Overlapping Consump-
tions (NEOC). It turns out that this is the strongest requirement of all the
equity notions introduced above, and a fundamental trade-off between equity
and efficiency emerges.

Proposition 1 There exists one and only one allocation satisfying exact fea-
sibility and NEOC. It is given by

Ĉt = Ĉ :=

(
n + 1

n + 2
,
n + 1

n + 2

)

for all t ∈ Z. If the marginal rate of substitution of consumption in period 2
for consumption in period 1 at Ĉ is not equal to 1 + n, then the allocation is
not Pareto efficient.

Proof : Let {Ĉt}t∈Z be an allocation satisfying exact feasibility and NEOC.
Let t ∈ Z be given. By exact feasibility,

Ĉ1
t +

Ĉ2
t−1

1 + n
= 1. (3)
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By NEOC,

Ĉ2
t−1 = Ĉ1

t (4)

Solving equations (3) and (4), we have

(Ĉ1
t , Ĉ

2
t−1) =

(
n + 1

n + 2
,
n + 1

n + 2

)
.

Because the rate of population growth n is constant, the solution does not
depend on t. Hence, Ĉ2

t−1 = Ĉ2
t . Therefore, for all t ∈ Z,

Ĉt := (Ĉ1
t , Ĉ

2
t ) =

(
n + 1

n + 2
,
n + 1

n + 2

)
= Ĉ.

This means that the allocation {Ĉt}t∈Z is stationary.
Define

η(Ĉ) :=
∂

∂C1 U(Ĉ)
∂

∂C2 U(Ĉ)
.

η(Ĉ) is the marginal rate of substitution of consumption in period 2 for
consumption in period 1 at Ĉ. Notice that a stationary allocation {Ct}t∈Z

is feasible if and only if

C1
t +

C2
t

1 + n
≤ 1

for all t ∈ Z. Hence, if η(Ĉ) �= 1 + n, then there exists a feasible and
stationary allocation that Pareto dominates {Ĉt}t∈Z (Figure 1). Q.E.D.

Let us call the allocation {Ĉt}t∈Z defined above the NEOC allocation.

Corollary 1 If an exactly feasible allocation satisfies NEOC, then it also
satisfies both NELC and ELRR.

Proof : From Proposition 1, if an exactly feasible allocation satisfies NEOC,
then it must be the NEOC allocation. Since the NEOC allocation is station-
ary, it satisfies both NELC and ELRR. Q.E.D.

Corollary 2 If the marginal rate of substitution of consumption in period 2
for consumption in period 1 at Ĉ is not equal to 1 + n, then there exists no
allocation satisfying NEOC and Pareto efficiency together.
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Figure 1: Trade-off between NEOC and Pareto efficiency

Proof : Suppose, on the contrary, that there exists an allocation satisfying
NEOC and Pareto efficiency together. Since it is Pareto efficient, it must be
exactly feasible. By Proposition 1, exact feasibility and NEOC imply that
the allocation is the NEOC allocation. But since η(Ĉ) �= 1+n, it also follows
from Proposition 1 that the allocation cannot be Pareto efficient. This is a
contradiction. Q.E.D.

Consider the separable utility function U defined by

U(C1, C2) = u(C1) + δu(C2) (5)

where δ is a positive constant and u is a twice continuously differentiable
function with a positive first derivative and a negative second derivative.
Then, δ−1 − 1 is called the pure rate of time preference. In this case,

η(Ĉ) =
∂

∂C1 U(Ĉ)
∂

∂C2 U(Ĉ)
= δ−1.

Hence, we have the following corollary.
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Corollary 3 In the case of the separable utility function, if the pure rate of
time preference is not equal to the rate of population growth, then there exists
no allocation satisfying NEOC and Pareto efficiency together.

Proposition 1 has two interesting implications. First, growth is compatible
with equity. If there were no growth, each young person would have to split
her earnings to give a half to an old person in order to achieve equity in
overlapping consumptions. The faster the economy grows, the more each
person can receive because she has to give less to older persons in her young
age while she can receive more from younger persons in her old age. Indeed,
the NEOC allocation is strictly increasing in the rate of population growth
n.

The second implication of Proposition 1 is that there exists almost surely
a room for improvement in the welfare of all persons at the NEOC allocation.
In the static model with one commodity, equal split is always Pareto efficient
as well as equitable. By contrast, in this simple model with overlapping
generations, equal split among contemporary persons at each period does
not lead to a Pareto efficient allocation.

4 Equity in Lifetime Rate of Return and the

Biological Rate of Interest

In this section, we consider positive and exactly feasible allocations, for which
the lifetime rate of return rt is well-defined.

It is easy to see that the lifetime rate of return associated with the NEOC
allocation is equal to n. That is, NEOC implies that the lifetime rate of return
should be equal to the “biological rate of interest”. This welfare implication
on the biological rate of interest seems new.

As we saw in the previous section, under exact feasibility, NEOC implies
Equity in Lifetime Rate of Return (ELRR), but the converse is not true. In-
deed, any stationary allocation satisfies ELRR. Hence, interesting questions
would be:
(1) Are there non-stationary allocations satisfying ELRR?
(2) Does ELRR provide some implications on the biological rate of interest?

Our next result answers the above questions.
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Proposition 2 Let {Ct}t∈Z be an exactly feasible, positive allocation satis-
fying ELRR with the common lifetime rate of return r being nonnegative.
Then, r = n and the allocation is stationary.

Proof : By ELRR, C2
t = (1 + r)(1 − C1

t ) for all t. By exact feasibility,
C2

t−1 = (1 + n)(1 −C1
t ) for all t. Hence, (1 + r)(1 −C1

t ) = (1 + n)(1 −C1
t+1)

for all t. Let λ = (1 + r)/(1 + n). Since r is nonnegative, λ is positive.
Then, (1 − C1

t+1) = λ(1 − C1
t ) for all t. Hence, (1 − C1

t ) = λt(1 − C1
0) for

all t. Note that 1 − C1
t is positive for all t since {Ct}t∈Z is exactly feasible

and positive. If λ > 1, {|1 − C1
t |}t∈Z goes to infinity as t goes to infinity. If

λ > 1, {|1−C1
t |}t∈Z goes to infinity as t goes to minus infinity. Hence, exact

feasibility is violated unless λ = 1. Therefore, r = n. Then, the allocation is
stationary. Q.E.D.

Proposition 2 means that, for positive and exactly feasible allocations,
ELRR is equivalent to stationarity. In other words, an allocation satisfies
ELRR if and only if the lifetime rate of return of each generation is equal to
the biological rate of interest. This seems to be an interesting characterization
of the biological rate of interest.

In Figure 1, the set of all exactly feasible and positive allocations satis-
fying ELRR are depicted as the line

C1 +
C2

1 + n
= 1.

The point ((n+1)/(n+2), (n+1)/(n+2)) on the line represents the unique
(under exact feasibility) allocation satisfying NEOC. This figure clearly shows
that under exact feasibility, NEOC implies ELRR.

5 No-Envy in Lifetime Consumptions

In this section, we investigate implications of requiring No-Envy in Lifetime
Consumptions (NELC). Clearly, any stationary allocation satisfies NELC.
The question is: Is there any non-stationary allocation satisfying exact fea-
sibility and NELC?

A basic observation is that exact feasibility and NELC together generate a
dynamical system defined by the following difference equation: for all t ∈ Z,

U(C1
t−1, (1 + n)(1 − C1

t )) = U(C1
t , (1 + n)(1 −C1

t+1)). (6)
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By nonnegativity of consumption and exact feasibility,

0 ≤ C1
t ≤ 1 (7)

for all t ∈ Z.

Proposition 3 Let {Ct}t∈Z be an exactly feasible allocation satisfying
NELC. If it is not a stationary allocation, then there exist C̄1 ∈ [0, 1] and
¯̄C1 ∈ [0, 1] such that limt→∞ C1

t = C̄1, limt→−∞ C1
t = ¯̄C1, and for all t ∈ Z,

U(Ct) = U(C̄1, (1 + n)(1 − C̄1)) = U( ¯̄C1, (1 + n)(1 − ¯̄C1)).

Proof : Assume that {Ct}t∈Z is exactly feasible, satisfies NELC, but is not
stationary. Then, there exists t∗ ∈ Z such that C1

t∗−1 �= C1
t∗ .

Case 1: C1
t∗−1 < C1

t∗.
By equation (6) and the strict monotonicity of U , it must be true that
(1 + n)(1 − C1

t∗) > (1 + n)(1 − C1
t∗+1). Hence, C1

t∗ < C1
t∗+1. Repeating

this argument, we have C1
t∗−1 < C1

t∗ < C1
t∗+1 < C1

t∗+2 . . . . That is, C1
t is

monotonically increasing as t increases. Since C1
t is bounded in [0, 1], there

exists C̄1 ∈ [0, 1] such that limt→∞ C1
t = C̄1.

On the other hand, by C1
t∗−1 < C1

t∗, we have (1 + n)(1 − C1
t∗−1) > (1 +

n)(1 − C1
t∗). It follows from equation (6) and the strict monotonicity of

U that C1
t∗−2 < C1

t∗−1. Repeating this argument, we can show that C1
t is

monotonically decreasing as t decreases. Since C1
t is bounded in [0, 1], there

exists ¯̄C1 ∈ [0, 1] such that limt→−∞ C1
t = ¯̄C1.

By continuity of U and equation (6), we have for all t ∈ Z, U(Ct) =

U(C̄1, (1 + n)(1 − C̄1)) = U( ¯̄C1, (1 + n)(1 − ¯̄C1)).
Case 2: C1

t∗−1 > C1
t∗.

It can be shown that C1
t is monotonically decreasing as t increases, and

monotonically increasing as t decreases. Then, the claim in the proposition
follows from a similar argument to case 1. Q.E.D.

5.1 Linear Utility Case

In this subsection, we assume that the utility function U is linear:

U(C1, C2) = aC1 + C2 (8)

where a is a positive constant.

10



Proposition 4 If the utility function U is linear, then there does not exist
a non-stationary allocation satisfying exact feasibility and NELC.

Proof : Substituting (8) into (6), we obtain the following linear, second order
difference equation:

aC1
t−1 + (1 + n)(1 − C1

t ) = aC1
t + (1 + n)(1 − C1

t+1). (9)

Rearranging the terms gives

(1 + n)C1
t+1 − (1 + n + a)C1

t + aC1
t−1 = 0. (10)

Consider the corresponding characteristic equation:

(1 + n)x2 − (1 + n + a)x + a = 0. (11)

The solutions to (11) are:

x1 = 1, x2 =
a

1 + n
. (12)

Therefore, the solution to the difference equation (6) is as follows:
if a = 1 + n,

C1
t = B1 + B2t, (13)

and if a �= 1 + n,

C1
t = B1 + B2x

t
2, (14)

where B1 and B2 are constants depending on the initial condition. Note that
an allocation {Ct}t∈Z is stationary if and only if {C1

t }t∈Z is constant over
time.

The case of a = 1 + n is devided into three subcases. If B2 > 0, then
{C1

t }t∈Z goes above 1 as t goes to infinity, and it goes below 0 as t goes to
minus infinity. Thus the feasibility condition does not hold for sufficiently
large or small t. If B2 < 0, then {C1

t }t∈Z goes below 0 as t goes to infinity,
and it goes above 1 as t goes to minus infinity. Thus the feasibility condition
does not hold for sufficiently large or small t. When B2 = 0, {C1

t }t∈Z is
constant.

Suppose a
1+n

< 1. If {C1
t }t∈Z is not constant over time, then {C1

t }t∈Z

goes to infinity as t goes to minus infinity. Hence, there does not exist a
non-stationary allocation satisfying exact feasibility and NELC.

Suppose a
1+n

> 1. If {C1
t }t∈Z is not constant over time, then {C1

t }t∈Z goes
to infinity as t goes to infinity. Hence, there does not exist a non-stationary
allocation satisfying exact feasibility and NELC in this case either. Q.E.D.
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5.2 Quasi-Linear Utility Case

In this subsection, we assume that the utility function U is of the following
form:

U(C1, C2) = v(C1) + C2, (15)

where v(C1) is of the class C2 and has positive first derivative and negative
second derivative. Define α := min {v′(c) | c ∈ [0, 1]} and β := max {v′(c) |
c ∈ [0, 1]}. The parameters α and β measure the magnitudes of marginal
utility in the first-period consumption.

Proposition 5 If either α > 1 + n or β < 1 + n, there does not exist a
non-stationary allocation satisfying exact feasibility and NELC.

Proof : Substituting (15) into (6), we obtain a non-linear, second order dif-
ference equation:

v(C1
t−1) + (1 + n)(1 − C1

t ) = v(C1
t ) + (1 + n)(1 − C1

t+1). (16)

Rearranging the terms, we have

C1
t+1 − C1

t =
1

1 + n
[v(C1

t ) − v(C1
t−1)]. (17)

By the mean value theorem, there exists c∗t ∈ [0, 1] such that

|C1
t+1 − C1

t | =
v′(c∗t )
1 + n

|C1
t − C1

t−1|. (18)

Assume that α > 1 + n. For all t ∈ Z, since v′(c∗t ) ≥ α > 1 + n, we have
v′(c∗t )

1+n
> 1. It then follows from (18) that if {C1

t }t∈Z is not constant, then
{|C1

t+1 − C1
t |}t∈Z goes to infinity as t goes to infinity. Therefore, {C1

t }t∈Z

violates feasibility.
Next, assume that 0 < β < 1 + n. Then, 0 < β

1+n
< 1. For all t ∈ Z,

since v′(c∗t ) ≤ β, it follows from (18) that

|C1
t+1 − C1

t | ≤
β

1 + n
|C1

t −C1
t−1|.

By iteration, for all positive integers T ,

|C1
t+1 −C1

t | ≤
(

β

1 + n

)T

|C1
t−T+1 − C1

t−T |.
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Letting t = 0, for all positive integers T , we obtain

(
β

1 + n

)−T

|C1
1 − C1

0 | ≤ |C1
−T+1 −C1

−T |.

Therefore, if {C1
t }t∈Z is not constant, then {|C1

t+1 − C1
t |}t∈Z goes to infinity

as t goes to minus infinity. Q.E.D.

5.3 Non-Stationary Allocation Satisfying NELC

If the utility function is not linear or quasi-linear, then NELC does not imply
stationarity. There exist non-stationary allocations satisfying NELC, as we
present an example in what follows.

Let n > −1 be the rate of population growth. Let a > max {1 + n, 1
1+n

}
be given. The utility function U is defined by:

U(C1, C2) =

{
aC1 + C2 if C1 ≤ C2

C1 + aC2 if C1 > C2.

Since a > max
{
1 + n, 1

1+n

}
, we have

max

{
1 + n

1 + a
,

1

1 + a

}
<

1 + n

2 + n
.

Choose α ∈ R such that

max

{
1 + n

1 + a
,

1

1 + a

}
< α <

1 + n

2 + n
. (19)

Define ū := α(1 + a). Notice that ū = U(α, α). It follows from (19) that the
indifference curve passing through (α, α) intersects with the line

C1 +
C2

1 + n
= 1

at two distinct points (A and B in Figure 2).
Let Z− be the set of all negative integers, and Z+ be the set of all positive

integers. Consider the following system of equations:



aC1
t + C2

t = ū for all t ∈ Z−

C1
t +

C2
t−1

1+n
= 1 for all t ∈ {0} ∪ Z−

C1
0 = α

13
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Figure 2: Piecewise-Linear Utility Function

The solution for this system of equations is:

C1
t = [ū− (1 + n)]

[
1

a
+

1 + n

a2
+ . . . +

(1 + n)−t−1

a−t

]
+

(1 + n)−tα

a−t
(20)

C2
t = (1 + n) − [ū − (1 + n)]

[
1 + n

a
+

(1 + n)2

a2
+ . . . +

(1 + n)−t−1

a−t−1

]

−(1 + n)−tα

a−t−1
(21)

for all t ∈ Z−, and C1
0 = α. Because a > 1 + n, it follows that

lim
t→−∞

C1
t =

ū− (1 + n)

a − (1 + n)

lim
t→−∞

C2
t = (1 + n)

[
1 − ū − (1 + n)

a − (1 + n)

]
.

Let C̄1 := ū−(1+n)
a−(1+n)

and C̄2 := (1+n)
[
1 − ū−(1+n)

a−(1+n)

]
. Notice that C̄1+ C̄2

1+n
= 1,

and (C̄1, C̄2) = A in Figure 2.
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Next, consider the following system of equations:


C1
t + aC2

t = ū for all t ∈ Z+

C1
t +

C2
t−1

1+n
= 1 for all t ∈ Z+

C2
0 = α

The solution for this system of equations is:

C1
t = 1 − (ū− 1)

[
1

a(1 + n)
+

1

a2(1 + n)2
+ . . . +

1

at−1(1 + n)t−1

]

− α

at−1(1 + n)t
(22)

C2
t = (ū − 1)

[
1

a
+

1

a2(1 + n)
+ . . . +

1

at(1 + n)t−1

]
+

α

at(1 + n)t
(23)

for all t ∈ Z+, and C2
0 = α. Since a > 1

1+n
, we have

lim
t→∞

C1
t = 1 − ū − 1

a(1 + n) − 1

lim
t→∞

C2
t =

(1 + n)(ū − 1)

a(1 + n) − 1
.

Let ¯̄C1 := 1 − ū−1
a(1+n)−1

and ¯̄C2 := (1+n)(ū−1)
a(1+n)−1

. Note that ¯̄C1 +
¯̄C2

1+n
= 1, and

( ¯̄C1, ¯̄C2) = B in Figure 2.
The allocation {Ct}t∈Z defined by (20), (21), (22), (23) and (C1

0 , C2
0) =

(α, α) is exactly feasible and satisfies NELC (that is, U(Ct) = U(Ct′) for
all t, t′ ∈ Z), but it is not stationary. It should be noted, however, that
Ct converges to a consumption bundle at a stationary allocation when t →
−∞, and it also converges to a consumption bundle at another stationary
allocation when t → +∞.

The crucial point in the above example is that there are indifference curves
cutting the line C1+ C2

1+n
= 1 twice. Then, we can construct a non-stationary

allocation such that the consumption bundle converges to one intersection as
t goes to infinity, and to the other intersection as t goes to minus infinity.

In contrast, when the utility function is linear or quasi-linear with v′(1) >
1+n or v′(0) < 1+n, then every indifference curve cuts the line C1+ C2

1+n
= 1

at most once. In this case, any non-stationary allocation satisfying NELC
must violate feasibility either as t goes to infinity, or as t goes to minus
infinity.
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6 Pareto Efficiency and Maximal Utility un-

der NELC

In this section, we only assume that U(C1, C2) is continuous. Within this
most general framework, we settle several problems on the existence of rele-
vant allocations with the purpose of securing the non-emptiness of our anal-
ysis on the properties of these allocations.

Proposition 6 There exists a Pareto efficient allocation.

Proof : Let {γt}t∈Z be a doubly infinite sequence with γt > 0 for all t and∑
t∈Z γt = 1. Let F be the set of exactly feasible allocations. Clearly, F

is non-empty and compact in the product topology. For each C ∈ F , let
V (C) =

∑
t∈Z γtU(C1

t , C2
t ). It is easy to see that V is product continuous

on F . By the Weierstrass theorem, there exists C∗ in F that attains the
maximum value of V over F . Clearly, C is Pareto efficient. Q.E.D.

Next, we consider the following procedure to select allocations. First,
we choose all exactly feasible allocations satisfying NELC. Then, we select
“optimal” allocations, from an efficiency standpoint, among those allocations.
The selection procedure is based on the equity-first and efficiency-second
principle due to Tadenuma (2002).

Let NE be the set of all exactly feasible allocations satisfying NELC.
Clearly, NE is non-empty. Recall that at any allocation satisfying NELC,
all the generations t attain the same level of utility. Let

u∗ := sup {α | ∃C ∈ NE such that ∀t ∈ Z,U(C1
t , C2

t ) = α}.

We say that an allocation C ∈ NE attains maximal utility under NELC if
U(C1

t , C
2
t ) = u∗ for all t ∈ Z.

Proposition 7 There exists an allocation that attains maximal utility under
NELC.

Proof : Let {{Cn
t }t∈Z}∞n=1 be a sequence in NE such that {U(C1n

t , C2n
t )}∞n=1

converges to u∗. Since {Cn
t }t∈Z is exactly feasible, there exists a subsequence

{{Cnq

t }t∈Z}∞q=1 such that for each t {Cnq

t }∞q=1 converges to some C∗
t . Clearly,

{Cn∗
t }t∈Z is exactly feasible. Since U(C1, C2) is continuous, U(C1∗

t , C2∗
t ) = α.

Thus, {Cn∗
t }t∈Z attains maximal utility under NELC. Q.E.D.
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Remark: It is an open question whether an allocation that attains maximal
utility under NELC is Pareto efficient or not.

If the utility function U is, in addition, quasi-concave, one can prove a
stronger result.

Proposition 8 If U is, in addition, quasi-concave, then there exists a sta-
tionary allocation that attains maximal utility under NELC.

Proof : Let {Cn∗
t }t∈Z be an allocation that attains maximal utility under

NELC. By averaging operations, we construct a sequence of allocations that
attain maximal utility under NELC. For each positive integer N and for each
t ∈ Z, let

CN
t =

1

2N + 1
(C∗

t−N + C∗
t−N+1 + · · · + C∗

t−1 + C∗
t + C∗

t+1 + · · · + C∗
t+N ).

Then, it is easy to see that CN = {CN
t }t∈Z is exactly feasible. By quasi-

concavity of U ,
U(CN

t ) ≥ min
t−N≤n≤t+N

{U(CN
n )} = u∗

for each t ∈ Z, where the last equality follows from the hypothesis that
{Cn∗

t }t∈Z attains maximal utility under NELC. By exact feasibility, the se-
quence {CN

t }∞N=1 is uniformly bounded for each t ∈ Z. By Cantor’s diagonal-
ization process, there exists a subsequence {CNq}∞q=1 = {{CNq}t∈Z}∞q=1 such
that for each t ∈ Z, {CNq}∞q=1 converges to some Ct. Clearly, C = {Ct}t∈Z

is exactly feasible. By continuity of U , U(Ct) ≥ u∗ for each t ∈ Z.
Now, we will show that Ct = Ct−1 for each t ∈ Z. Suppose that Ct �=

Ct−1 for some t ∈ Z. Let δ = |Ct −Ct−1|. Then, δ > 0. For each t ∈ Z,

|CN
t − CN

t−1| =
|C∗

t+N − C∗
t−1−N |

2N + 1
≤ 2

2N + 1
.

Hence, there exists a positive integer N(δ) such that for all N ≥ N(δ),
|CN

t − CN
t−1| < δ

2
. On the other hand, we have

δ = |Ct −Ct−1| ≤ |Ct − CN
t | + |CN

t − CN
t−1| + |CN

t−1 −Ct−1|
<

δ

4
+ |CN

t − CN
t−1| +

δ

4
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holds for all N ≥ N(δ). Hence, for all N ≥ N(δ),

δ

2
< |CN

t − CN
t−1|.

This is a contradiction. Thus, Ct = Ct−1 for each t ∈ Z. Let us denote this
common vector by C̃ = (C̃1, C̃2). By exact feasibility of C = {Ct}t∈Z,

C̃1 +
C̃2

1 + n
= 1.

Clearly, U(C̃) ≥ u∗. By maximality under NELC, U(C̃) = u∗. Therefore,
C̃ = (C̃1, C̃2) generates a stationary allocation that attains maximal utility
under NELC. Q.E.D.

Corollary 4 A consumption vector Ĉ = (Ĉ1, Ĉ2) generates a stationary
allocation that attains maximal utility under NELC if and only if it maximizes
U(C) subject to C1 + C2/(1 + n) = 1.

Proof : Let C̃ = (C̃1, C̃2) be a consumption vector generating a stationary
allocation that attains maximal utility under NELC. By maximality under
NELC, for any consumption vector Ĉ = (Ĉ1, Ĉ2) satisfying Ĉ1+Ĉ2/(1+n) =
1, U(C̃) ≥ U(Ĉ).

Conversely, let Ĉ be a consumption vector maximizing U(C) subject to
Ĉ1 + Ĉ2/(1 + n) = 1. Then, U(Ĉ) ≥ U(C̃). Since C̃ attains maximal utility
under NELC, U(C̃) ≥ U(Ĉ). Hence, U(C̃) = U(Ĉ). This completes the
proof. Q.E.D.

7 Conclusion

The main conclusions of our analysis may be summarized in Figure 3, where
an arrow represents a logical implication which cannot be reversed in general.
An arrow from NELC to Stationarity is valid subject to the condition that
the utility function is either linear or quasi-linear.

Recollect that our three alternative concepts of intergenerational equity
are not just hairsplitting theoretical toys, but are relevant in many actual dis-
putes in the design and implementation of equitable social security schemes
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and intergenerational transfer mechanisms. Despite their obvious impor-
tance, not many studies have been done on equity and efficiency in overlap-
ping generations economies. It is hoped that our exploration of the funda-
mental implications of several distinct notions of equity-as-no-envy may be
found useful in orienting further studies of this important issue.

Linear or Quasi-Linear
Utility Functions∗∗

Stationarity

r = n

ELRR

NELC

NEOC

Figure 3: Logical Relations among Equity Concepts∗

* Exact feasibility is always assumed.
** For the case of quasi-linear utility functions, we need an assumption that
min {v′(c) | c ∈ [0, 1]} > 1 + n or max {v′(c) | c ∈ [0, 1]} < 1 + n.
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