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Abstract

Under production economies with unequal labor skills, we
study axiomatic characterizations of Pareto subsolutions which
are implementable by sharing mechanisms in Nash, strong Nash,
and subgame-perfect equilibria. The sharing mechanism allows
agents to work freely while asking them to give information con-
cerning their demands for outputs, their labor skills, and the
prices of goods. Then, the mechanism distributes the produced
output to the agents, according to the given information and the
profile of their labor hours. Based on the characterizations, we
may see most of fair allocation rules, which embody the ethical
principles of responsibility and compensation, cannot be imple-
mentable when individuals’ labor skills are private information.
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1 Introduction

In this paper, we consider implementation problems of allocation rules in
production economies with possibly unequal labor skills among individuals.
On this problem, a number of works such as Varian (1994), Hurwicz et al.
(1995), Hong (1995), Suh (1995), Tian (1999, 2000), Yoshihara (1999), and
Kaplan and Wettstein (2000) have proposed simple or natural mechanisms
(game forms) for implementing some particular allocation rules like the Wal-
rasian solution and the proportional solution (Roemer and Silvestre (1993)).
In contrast, a few works such as Shin and Suh (1997) and Yoshihara (2000)
have discussed characterizations of allocation rules implementable by such
simple or natural mechanisms. In these works, however, there are two im-
plicit assumptions about the basic information structure among individuals
and the social planner (mechanism coordinator).
The first implicit assumption is that the planner can know every individ-

ual’s level of labor skill, or otherwise, every individual has the same labor
skill. Thus, the main problem of asymmetric information in this structure
is reduced to the possibility of misrepresenting each individual’s preference
ordering,1 and at most, the possibility of understating each individual’s en-
dowment of material goods.2 However, if every individual is possibly endowed
with a different level of labor skill, it is more natural to consider the infor-
mational structure such that the planner cannot know each individual’s true
level of labor skill, and so the individual may have an incentive to overstate,
as well as to understate, his own labor skill. Note that the possibility of over-
stating individual labor skill is an essential feature of production economies
with asymmetric information, since the planner cannot require individuals
to “place the claimed endowments on the table” (Hurwicz et al. (1995)) in
advance of production. Thus, taking this feature of the problem into con-
sideration, our concern in this paper is to characterize the class of allocation
rules, each of which assigns a subset of Pareto efficient allocations to each eco-
nomic environment, and is implementable by one type of natural mechanism
even when individuals’ labor skills are unknown to the planner.
What kind of game form should we take as a natural mechanism in

this context? This issue is relevant to our discussion on the second im-
1For instance, Varian (1994), Suh (1995), Shin and Suh (1997), Yoshihara (1999, 2000),

and Kaplan and Wettstein (2000) discussed this type of problem.
2For instance, Hurwicz et al. (1995), Hong (1995), and Tian (1999, 2000) discussed

this type of problem.
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plicit assumption in the present literature on implementation in production
economies. Although Shin and Suh (1997) and Yoshihara (2000) defined the
conditions for characterizing “natural mechanisms” in production economies,
the list of those conditions3 is not yet satisfactory, since they omit another
important feature of production economies with asymmetric information.
Usually, the mechanisms in the implementation literature consist of pairs
of strategy spaces and outcome functions, where each agent is required to
announce some information, and the outcome function assigns an allocation
to each profile of individuals’ strategies. So, in production economies where
one of the main productive factors is labor, it seems to be implicitly assumed
that the planner is authorized to force individuals to provide the amount of
labor time assigned by the outcome function of the mechanism.4 However,
the planner may not necessarily be able to exert such authority.
To solve this problem, we introduce another condition, labor sovereignty

(Kranich (1994)), for characterizing “natural mechanisms” in production
economies, and propose sharing mechanisms as a type of game form sat-
isfying labor sovereignty. Labor sovereignty requires that every individual
should have a right to choose his own labor time. Under sharing mecha-
nisms, each individual can freely supply his labor time, and he is asked to
give information concerning his demand for consumption goods and his labor
skill. After that, the outcome function only distributes the produced output
to agents, according to the information they gave and the record of their
labor hours done.
Thus, the underlying question this paper attempts to solve is summa-

rized as follows: what kinds of allocation rules which assign some Pareto
efficient allocations are implementable by sharing mechanisms, even when
individuals’ labor skills are unknown to the planner? As the following sec-
tion discusses in detail, we will take three equilibrium notions, Nash, strong
Nash, and subgame-perfect Nash, for the non-cooperative games defined by
sharing mechanisms.5 We will identify two axioms which characterize allo-

3Those conditions are feasibility, forthrightness, best response property, and simple strat-
egy spaces, which were originally proposed by Dutta, Sen, and Vohra (1995) and Saijo,
Tatamitani, and Yamato (1996) to characterize “natural mechanisms” in pure exchange
economies.

4Roemer (1989) pointed out this implicit assumption explicitly.
5Yamada and Yoshihara (2002) proposed a sharing mechanism which triply imple-

ments the proportional solution in these three equilibria, when the production function is
differentiable.
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cation rules triply implementable by sharing mechanisms in the above three
equilibria. The two axioms are respectively relevant to the ethical princi-
ples of responsibility and compensation (Fleurbaey (1998)) in fair allocation
problems. Thus, by using the characterization results in this paper, we will
have some insight on implementability of fair allocation rules in terms of
responsibility and compensation.
In the following discussion, the model is defined in Section 2. Section 3

provides a characterization of triple implementation by sharing mechanisms.
Section 4 gives some samples of implementable and unimplementable Pareto
subsolutions respectively. Some concluding remarks appear in Section 5. All
the proofs of the theorems will be relegated to the Appendix.

2 The Basic Model

There are two goods, one of which is an input good (labor time) x ∈ R+
to be used to produce the other good y ∈ R+.6 The population in the
society is given by the set N = {1, . . . , n}, where 2 ≤ n < +∞. Each
agent i0s consumption vector is denoted by zi = (xi, yi), where xi denotes his
labor time, and yi denotes his assigned amount of output consumption. It
is assumed that all the agents face a common upper bound of labor time x̄ ,
where 0 < x̄ < +∞, so that they have the same consumption set [0, x̄]×R+.
Each agent i0s preference is defined on [0, x̄] × R+ and represented by a
utility function ui : [0, x̄] × R+ → R which is continuous and quasi-concave
on [0, x̄]×R+, and strictly monotonic (decreasing in labor time and increasing
in the share of output) on [0, x̄) × R++.7 We denote by U the class of such
utility functions. Each agent i is also characterized by a labor skill which
is represented by a positive real number sti ∈ R++. The superscript t on sti
indicates “true,” so that sti denotes agent i

0s true labor skill. The universal
set of labor skills for all agents is denoted by S = R++.8 The labor skill
sti ∈ S implies i0s labor endowment per unit of labor time. It can also be
interpreted as i0s labor intensity which would be exercised in the production

6The symbol R+ denotes the set of non-negative real numbers.
7The symbol R++ denotes the set of positive real numbers.
8For any two sets X and Y , X ⊆ Y whenever any x ∈ X also belongs to Y , and X = Y

if and only if X ⊆ Y and Y ⊆ X.
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process: that is, i0s labor input per unit of labor time.9 Thus, if his supply of
labor time is xi ∈ [0, x̄] and his labor intensity is sti ∈ S, then it is stixi ∈ R+
which implies his labor contribution to the production process measured in
efficiency units. The production technology is described by a production
function f : R+ → R+ which is assumed to be continuous, strictly increasing,
concave, and f (0) = 0, but not necessarily differentiable. For simplicity,
we fix a production function f for all economies. Thus, the economy is
characterized by a pair of profiles e ≡ (u, st) with u = (u1, . . . , un) ∈ Un and
st = (st1, . . . , s

t
n) ∈ Sn. Denote the class of such economies by E ≡ Un × Sn.

Given st = (st1, . . . , s
t
n) ∈ Sn, an allocation z = (xi, yi)i∈N ∈ ([0, x̄]×R+)n

is feasible for st if
P
yi ≤ f (

P
stixi). We denote by Z (s

t) the set of feasi-
ble allocations for st ∈ Sn. An allocation z = (z1, . . . , zn) ∈ ([0, x̄]×R+)n
is Pareto efficient for e = (u, st) ∈ E if z ∈ Z (st) and there does not exist
z0 = (z01, . . . , z

0
n) ∈ Z (st) such that for all i ∈ N , ui (z0i) ≥ ui (zi), and for some

i ∈ N , ui (z0i) > ui (zi). A solution is a correspondence ϕ : E ³ ([0, x̄]×R+)n
such that for each e = (u, st) ∈ E , ϕ (e) ⊆ Z (st). We particularly focus on
solutions which respectively assign a subset of Pareto efficient allocations to
each economy. We call such solutions Pareto subsolutions. Given a Pareto
subsolution ϕ, an allocation z ∈ ([0, x̄]×R+)n is ϕ-optimal for e ∈ E if
z ∈ ϕ (e).

2.1 Sharing mechanisms

A normal-form game form is a pair Γ = (A, h), where A = A1×· · ·×An, Ai
being the strategy space of agent i ∈ N , and h : A → ([0, x̄]×R+)n being
the outcome function which associates each a ∈ A with a unique element
h(a) ∈ ([0, x̄]× R+)n. The i-th component of h(a) will be denoted by hi(a) ≡
(hi1(a), hi2(a)), where hi1(a) ∈ [0, x] and hi2(a) ∈ R+. Given a ∈ A, let
a−i = (a1, . . . , ai−1, ai+1, . . . , an). A normal-form game form Γ = (A, h) is

9It might be more natural to define labor endowment and labor intensity in a discrim-
inative way: for example, if sti ∈ S is i’s labor endowment per unit of labor time, then i’s
labor intensity is a variable sti, where 0 < s

t
i ≤ sti. In such a formulation, we may view the

amount of sti as being determined endogenously based upon the agent’s characteristic of
preference ordering (utility function). In spite of this more natural view, we will assume
in the following discussion that the labor intensity is a constant value, sti = s

t
i, for the sake

of simplicity. The main theorems in the following discussion would remain valid with a
few changes in the settings of the economic environments even if the labor intensity were
assumed to be varied.
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labor sovereign if for every i ∈ N and every xi ∈ [0, x̄], there exists a strategy
ai ∈ Ai such that for any a−i ∈ A−i, hi1(ai,a−i) = xi.
We are interested in labor sovereign game forms, and focus on sharing

mechanisms that only distribute output among the agents according to their
announcements on their private information and their supplied labor time.

Definition 1. A sharing mechanism is a function g :M× [0, x̄]n → Rn+ such
that for any (m,x) ∈ M × [0, x̄]n, g (m,x) = y for some y ∈ Rn+, where
m = (m1, . . . ,mn) denotes the agents’ messages.

A sharing mechanism g is feasible if for any st ∈ Sn, any m ∈ M , and any
x ∈ [0, x̄]n, (x, g (m,x)) ∈ Z (st). Note that a feasible sharing mechanism g
needs not refer to st in dividing the total output f

¡P
stjxj

¢
, and is expressed

as a game form Γg = (M × [0, x̄]n , h) such that for any (m,x) ∈M × [0, x̄]n,
h (m,x) = (x, g (m,x)). Clearly, Γg is a labor sovereign normal-form game
form, which is uniquely corresponding to g. We denote by G the class of such
feasible sharing mechanisms.
Given a feasible sharing mechanism g ∈ G, a feasible sharing game is de-

fined for each economy e ∈ E as a non-cooperative game (N,M × [0, x̄]n , g, e).
Fixing the set of players N and their strategy sets M × [0, x̄]n, we simply
denote a feasible sharing game (N,M × [0, x̄]n , g, e) by (g, e).
Given a strategy profile (m,x) ∈ M × [0, x̄]n, let ¡mm0

i
,xx0i

¢ ∈ M ×
[0, x̄]n be another strategy profile which is obtained by replacing the i-th
component (mi, xi) of (m,x) with (m0

i, x
0
i). A strategy profile (m∗,x∗) ∈

M × [0, x̄]n is a (pure-strategy) Nash equilibrium of the feasible sharing game
(g, e) if for any i ∈ N and any (mi, xi) ∈ Mi × [0, x̄], ui (x∗i , gi (m∗,x∗)) ≥
ui
¡
xi, gi

¡
m∗
mi
,x∗xi

¢¢
. Denote byNE (g, e) the set of Nash equilibria of (g, e).

An allocation z = (xi, yi)i∈N ∈ ([0, x̄]×R+)n is a Nash equilibrium allocation
of the feasible sharing game (g, e) if there exists m ∈M such that (m,x) ∈
NE (g, e) and y = g (m,x) where x = (xi)i∈N and y = (yi)i∈N . Denote by
NA (g, e) the set of Nash equilibrium allocations of (g, e). A feasible sharing
mechanism g ∈ G is said to implement a solution ϕ on E in Nash equilibria
if for all e ∈ E , NA (g, e) = ϕ (e).
A strategy profile (m∗,x∗) ∈M×[0, x̄]n is a (pure-strategy) strong (Nash)

equilibrium of the feasible sharing game (g, e) if for any T ⊆ N and any
(mi, xi)i∈T ∈ (Mi)i∈T × [0, x̄]#T , there exists j ∈ T such that

uj
¡
x∗j , gj (m

∗,x∗)
¢ ≥ uj ¡xj, gj ¡(mi, xi)i∈T , (m

∗
k, x

∗
k)k∈T c

¢¢
.10

10For any T ⊆ N , #T denotes the number of agents in T . For any T ⊆ N , T c denotes
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Denote by SNE (g, e) the set of strong equilibria of (g, e). An allocation z =
(xi, yi)i∈N ∈ ([0, x̄]×R+)n is a strong equilibrium allocation of the feasible
sharing game (g, e) if there existsm ∈M such that (m,x) ∈ SNE (g, e) and
y = g (m,x) where x = (xi)i∈N and y = (yi)i∈N . Denote by SNA (g, e) the
set of strong equilibrium allocations of (g, e). A feasible sharing mechanism
g ∈ G is said to implement a solution ϕ on E in strong equilibria, if for all
e ∈ E , SNA (g, e) = ϕ (e).

2.2 Timing Problem with Sharing Mechanisms

We should mention here that m and x represent the agents’ different kinds
of strategic actions: m indicates the agents’ announcements on their private
information, while x their engagements in production activity by supplying
those amounts of labor time. Thus, there may be a time difference between
the point in time when m is announced and the period when x is exercised.
It implies that there may be at least two polar cases of time sequence of deci-
sion making: the agents may announce m before they engage in production
activity, or they may announce m after supplying x. The former allows the
case when each agent i decides his supply of labor time with the knowledge
of the announcements m, while the latter allows the case when each agent i
decides his announcement mi with the knowledge of the agents’ actions x in
production process.
So, we should additionally consider at least two types of two-stage game

forms:

(1) The first type is that in the first stage, every agent i simultaneously makes
an announcement, mi, on his private information, and in the second stage,
every agent i engages in the production activity and provides his labor time,
xi, according to his preference. After the production process, the outcome
function assigns a distribution of the output produced.

(2) The second type has the converse sequence of strategic actions. In the first
stage, every agent i engages in the production activity and provides his labor
time, xi, according to his preference, and after the production, every agent
i simultaneously makes an announcement, mi, on his private information in
the second stage. Finally, the outcome function assigns a distribution of the
output produced.

the complement of T in N .
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Given a feasible sharing mechanism g ∈ G, the feasible (1) type g-implicit
two-stage mechanism Γ1g is a two-stage extensive game form in which the first
stage consists of selecting m from M , the second stage consists of selecting
x from [0, x̄]n, and the final stage assigns an outcome (x, g (m,x)). Given
g ∈ G, the feasible (2) type g-implicit two-stage mechanism Γ2g is a two-stage
extensive game form in which the first stage consists of selecting x from
[0, x̄]n, the second stage consists of selecting m from M , and the final stage
assigns an outcome (x, g (m,x)).
Given a feasible (1) type g-implicit two-stage game

¡
Γ1g, e

¢
and a strat-

egy profile m ∈ M in the first stage of the game
¡
Γ1g, e

¢
, let us denote its

corresponding second stage subgame by
¡
Γ1g (m) , e

¢
. Let xe : M → [0, x̄]n

be a Nash equilibrium mapping such that for each m ∈ M , xe (m) is a
(pure-strategy) Nash equilibrium of the subgame

¡
Γ1g (m) , e

¢
. Denote the

set of such Nash equilibrium mappings of the game
¡
Γ1g, e

¢
by Xe. A strat-

egy profile (m∗,xe∗) ∈ M ×Xe is a (pure-strategy) subgame-perfect (Nash)
equilibrium of the feasible (1) type g-implicit two-stage game

¡
Γ1g, e

¢
if for

any i ∈ N and any mi ∈Mi,

ui (x
e∗
i (m

∗) , gi (m∗,xe∗ (m∗))) ≥ ui
¡
xe∗i (m

∗
mi
), gi

¡
m∗
mi
,xe∗(m∗

mi
)
¢¢
,

where xe∗i (m) is the i-th component of the Nash equilibrium strategy profile
xe∗ (m) in the second stage subgame induced by the strategy choice m in
the first stage.
Given a feasible (2) type g-implicit two-stage game

¡
Γ2g, e

¢
and a strategy

profile x ∈ [0, x̄]n in the first stage of the game ¡Γ2g, e¢, let us denote its
corresponding second stage subgame by

¡
Γ2g(x), e

¢
. Let me : [0, x̄]n → M

be a Nash equilibrium mapping such that for each x ∈ [0, x̄]n, me (x) is a
(pure-strategy) Nash equilibrium of the subgame

¡
Γ2g (x) , e

¢
. Denote the set

of such Nash equilibrium mappings of the game
¡
Γ2g, e

¢
by Me. A strategy

profile (me∗,x∗) ∈ Me × [0, x̄]n is a (pure-strategy) subgame-perfect (Nash)
equilibrium of the feasible (2) type g-implicit two-stage game

¡
Γ2g, e

¢
if for

any i ∈ N and any xi ∈ [0, x̄],

ui (x
∗
i , gi (m

e∗ (x∗) ,x∗)) ≥ ui
¡
xi, gi

¡
me∗ ¡x∗xi¢ ,x∗xi¢¢ .

Denote by SPE
¡
Γ1g, e

¢
(resp. SPE

¡
Γ2g, e

¢
) the set of subgame-perfect

equilibria of
¡
Γ1g, e

¢
(resp.

¡
Γ2g, e

¢
). An allocation z = (xi, yi)i∈N ∈ ([0, x̄]×R+)n

is a subgame-perfect equilibrium allocation of
¡
Γ1g, e

¢
(resp.

¡
Γ2g, e

¢
) if there
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exists (m,xe) ∈ SPE
¡
Γ1g, e

¢
(resp. (me,x) ∈ SPE

¡
Γ2g, e

¢
) such that

xe (m) = x and y = g (m,xe (m)) (resp. y = g (me (x) ,x)) where x =
(xi)i∈N and y = (yi)i∈N . Denote by SPA

¡
Γ1g, e

¢
(resp. SPA

¡
Γ2g, e

¢
) the set

of subgame-perfect equilibrium allocations of
¡
Γ1g, e

¢
(resp.

¡
Γ2g, e

¢
). Given

g ∈ G, the feasible (1) type g-implicit two-stage mechanism Γ1g (resp. the fea-
sible (2) type g-implicit two-stage mechanism Γ2g) is said to implement a solu-
tion ϕ on E in subgame-perfect equilibria if for all e ∈ E , SPA ¡Γ1g, e¢ = ϕ (e)

(resp. SPA
¡
Γ2g, e

¢
= ϕ (e)). Given g ∈ G, the feasible (1) type g-implicit

two-stage mechanism Γ1g (resp. the feasible (2) type g-implicit two-stage
mechanism Γ2g) is said to triply implement a solution ϕ on E in Nash, strong,
and subgame-perfect equilibria if for all e ∈ E , NA (g, e) = SNA (g, e) =
SPA

¡
Γ1g, e

¢
= ϕ (e) (resp. NA (g, e) = SNA (g, e) = SPA

¡
Γ2g, e

¢
= ϕ (e)).

3 Implementation by sharing mechanisms

Throughout our discussion, we assume that each agent prefers consumption
vectors with a positive amount of output and a positive amount of leisure,
to consumption vectors with no output or no leisure.

Assumption 1 (boundary condition of utility functions):

∀i ∈ N,∀zi ∈ [0, x̄)×R++,∀z0i ∈ ∂ ([0, x̄]×R+) , ui (zi) > ui (z0i) .11

If the production function is not differentiable, it is possible that the slope
of the budget line faced by the agents could not be uniquely verified by the
information of the production possibility set around the production point.
Thus, the mechanism would need additional information on the price.
Let us introduce a new notation here. We denote the set of price vectors

by the unit simplex ∆ ≡ {p = (px, py) ∈ R+ × R+ : px + py = 1}, where px
represents the price of labor (measured in efficiency units) and py the price
of output. The message spaceM of the sharing mechanism considered in the
present paper is defined byM ≡ ∆n×Sn×Rn+ with generic element (p, s,w),
where p = (p1, . . . , pn) in which pi denotes i’s reported price vector, s =
(s1, . . . , sn) in which si denotes i’s reported amount of labor skill, and w =
(w1, . . . , wn) in which wi denotes i’s desired amount of output consumption.
Moreover, we define efficiency prices as follows.

11∂ ([0, x̄]×R+) ≡ ([0, x̄]× R+) \ ([0, x̄)×R++) .
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Definition 2. A price vector p = (px, py) ∈ ∆ is an efficiency price for
z = (x,y) ∈ [0, x̄]n × Rn+ at e = (u, st) ∈ E iff
(i) (xi)i∈N ∈ arg max

(x0i)i∈N
pyf (

P
stix

0
i)− px

P
stix

0
i ;

(ii) for all i ∈ N and all z0i ∈ [0, x̄] × R+, if ui (z0i) ≥ ui (zi), then pyy0i −
pxs

t
ix
0
i ≥ pyyi − pxstixi.

The set of efficiency prices for z at e is denoted by ∆P (e, z).

We define implementability by such a sharing mechanism as follows.

Definition 3. A Pareto subsolution ϕ is (1) or (2) type triply labor sovereign-
implementable, if there exists a feasible sharing mechanism g ∈ G such that :
(i) Γ1g (resp. Γ

2
g) triply implements ϕ on E in Nash, strong, and subgame-

perfect equilibria;
(ii) g meets the forthrightness: for all e = (u, st) ∈ E and all (x,y) ∈
ϕ (e), there exists p ∈ ∆P (u, st,x,y) such that (p, st,x,y) ∈ NE (g, e) and
g (p, st,x,y) = y, where p = (pi)i∈N with p

i = p for all i ∈ N ;
(iii) g has the following property: for all e = (ui, sti)i∈N ∈ E, if (p, s,x,w) ∈
NE (g, e) and g (p, s,x,w) = y, where p = (pi)i∈N , x = (xi)i∈N , and y =
(yi)i∈N , then there exists p ∈ ∆P (u, st,x,y) such that

gi
¡
ppi0 , ss0i ,xx0i ,ww0i

¢ ≤ max½0, yi + px
py
sti (x

0
i − xi)

¾
for all i ∈ N and all (pi0, s0i, x

0
i, w

0
i) ∈ ∆× S × [0, x̄]×R+;

(iv) g has the following property: for all e = (ui, sti)i∈N ∈ E, if (p, s,x,w) ∈
NE (g, e), then (p, s0,x,w) ∈ NE (g, e) and g (p, s,x,w) = g (p, s0,x,w)
whenever si = s0i for all i ∈ N with xi > 0.

Definition 3 (ii) was first introduced by Dutta et al. (1995) and discussed
by Saijo et al. (1996). It requires that if the agents’ strategy profile is con-
sistent with the given economy and a ϕ-optimal allocation, then the profile
must be a Nash equilibrium and the outcome must coincide with the alloca-
tion. That is, any ϕ-optimal allocation should be realizable as an equilibrium
outcome in a straightforward way.
Definition 3 (iii) requires a kind of informational efficiency of the mech-

anism. It says that in equilibrium, each agent’s attainable set under the
mechanism must be included in a half space which is inevitably included in
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the lower contour set of his utility function when the equilibrium allocation
is Pareto efficient. The point is that this half space is defined by only the in-
formation on the production point and the production possibility set. Owing
to this condition, the mechanism coordinator does not need to know all the
information on the agents’ preferences in order to get ϕ-optimal allocations
as equilibrium allocations.
Definition 3 (iv) is another requirement of informational efficiency. It

says that the distribution of output by the mechanism would not change
regardless of any change in skill information announced by “non-working”
agents. That is, unexercised labor skills should be equally taken into account
in the determination of distribution. Owing to this condition, the mechanism
coordinator needs not consider degenerative labor skills.
We introduce two axioms as necessary conditions for the labor sovereign

implementation.

Supporting Price Independence (SPI) (Yoshihara (1998), Gaspart (1998)).
For all e = (u, st) ∈ E and all z ∈ ϕ (e), there exists p ∈ ∆P (e, z) such that
for all e0 = (u0, st) ∈ E , if p ∈ ∆P (e0, z), then z ∈ ϕ (e0).

Let ∆SPI (u, s, z) ≡ ©p ∈ ∆P (u, s, z) : ∀u0 ∈ Un s.t. p ∈ ∆P (u0, s, z) , z ∈
ϕ (u0, s) holds}.
Independence of Unused Skills (IUS). For all e = (u, st) = (ui, sti)i∈N ∈
E and all z = (xi, yi)i∈N ∈ ϕ (e), there exists p ∈ ∆P (e, z) such that for all
e0 = (u, st0) = (ui, s

t0
i )i∈N ∈ E where sti = st0i for all i ∈ N with xi > 0, if

p ∈ ∆P (e0, z), then z ∈ ϕ (e0).

Let∆IUS (u, s, z) ≡ ©p ∈ ∆P (u, s, z) : ∀s0 ∈ Sn s.t. p ∈ ∆P (u, s0, z) , z ∈ ϕ (u, s0) ,
where s0i = si for all i ∈ N with xi > 0}, where z = (xi, yi)i∈N .
The axiom SPI requires that any ϕ-optimal allocation should remain to

be ϕ-optimal if the profile of utility functions changes, but still keeping the
Pareto efficiency of this allocation. This implies that SPI is a condition for
informational efficiency, since it only requires a local information of individ-
uals’ preference orderings. As for the second axiom, IUS, it requires that
any ϕ-optimal allocation should remain to be ϕ-optimal if the labor skills
of non-working agents in this allocation change, but still keeping the Pareto
efficiency of this allocation. This implies that IUS is also a condition for
informational efficiency, since it admits ignorance of the skill information on
non-working agents.

11



The two axioms can also have some implications of responsibility and
compensation (Fleurbaey (1998)) in fair allocation problems. The axiom SPI
represents a “stronger” condition of responsibility, since it requires indepen-
dence of the particular change of individuals’ responsible factors like utility
functions. It is “stronger” because SPI is stronger thanMaskin Monotonicity
(Maskin (1999)), which was taken as a relatively strong axiom of responsi-
bility by Fleurbaey and Maniquet (1996). The axiom IUS, in contrast, can
be interpreted as a weaker condition of compensation, since it requires in-
dependence of the particular change of individuals’ non-responsible factors
like labor skills. It is “weaker” because IUS is weaker than the axiom of
Independence of Skill Endowments (Yoshihara (2003)), which was taken as
a relatively weak axiom of compensation by Yoshihara (2003).
Note that a Pareto subsolution ϕ satisfies SPI and IUS if and only if for

all e ∈ E , all z ∈ ϕ (e), there exists p ∈ ∆SPI (e, z) and p0 ∈ ∆IUS (e, z) . In
general, ∆SPI (e, z) 6= ∆IUS (e, z). However, there exists some intersection
between the two sets as the following lemma shows.

Lemma 0: Let ϕ satisfy SPI and IUS. Then, for all e = (u, st) ∈ E and all
z ∈ ϕ (e), there exists p ∈ ∆SPI (u, st, z) ∩∆IUS (u, st, z).

Proof. Given (u, st) ∈ E , let z ∈ ϕ (u, st) and p ∈ ∆SPI (u, st, z). Without
loss of generality, for this z = (xi, yi)i∈N , let x1 = 0 and xi > 0 for any i 6= 1.
Consider any st0 =

¡
st01 , s

t
−1
¢
such that p ∈ ∆P (u, st0, z). If z ∈ ϕ (u, st0) is

shown, then by the definition of ∆IUS, we have that p ∈ ∆IUS (u, st, z).
Let us consider u∗ = (u∗2,u−2) where u

∗
2 (x, y) = pyy−pxst2x for all (x, y) ∈

[0, x̄] × R+. Since ∆P (u∗, st, z) = {p} and ϕ satisfies SPI, z ∈ ϕ (u∗, st)
and ∆SPI (u∗, st, z) = {p}. Consider moving from (u∗, st) to (u∗, st0). By
the definition of u∗, ∆P (u∗, st0, z) = {p}. Since ϕ satisfies IUS, we have
z ∈ ϕ (u∗, st0) and ∆IUS (u∗, st0, z) = {p}. Consider moving from (u∗, st0) to
(u, st0). Since p ∈ ∆P (u, st0, z) and ϕ satisfies SPI, z ∈ ϕ (u, st0).

SPI and IUS are necessary conditions for the labor sovereign triple im-
plementation.

Theorem 1. If a Pareto subsolution ϕ is (1) (resp. (2)) type triply labor
sovereign-implementable, then ϕ satisfies SPI.

Theorem 2. If a Pareto subsolution ϕ is (1) (resp. (2)) type triply labor
sovereign-implementable, then ϕ satisfies IUS.
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We next show that SPI and IUS together constitute a sufficient condition
for the labor sovereign triple implementation. First, we propose a feasible
sharing mechanism g ∈ G for which Γ1g and Γ2g respectively triply implement
Pareto subsolutions satisfying SPI and IUS in Nash, strong, and subgame-
perfect equilibria. To construct our mechanism, let us introduce two feasible
sharing mechanisms defined as follows:

• gw is such that for each st ∈ Sn and each strategy profile (p, s,x,w) ∈
4n × Sn × [0, x̄]n × Rn+, and for all i ∈ N ,

gwi (p, s,x,w) =

 f (
P
stkxk)

if xi = µ (x−i) and
wi > max {f (

P
skx̄) , maxj 6=i {wj}} ,

0 otherwise,
where µ (x−i) ≡ maxxj<x̄,j 6=i

©xj+x̄
2

ª
.

• gs is such that for each st ∈ Sn and each strategy profile (p, s,x,w) ∈
4n × Sn × [0, x̄]n × Rn+, and for all i ∈ N ,
gsi (p, s,x,w) =

½
f (
P
stkxk) if xi = 0, wi = 0, and si > sj for all j 6= i,

0 otherwise.

The mechanism gw assigns all of the produced output12 to only one agent who
provides the maximal interior amount of labor time and reports a maximal
amount of demand for the output, where µ (x−i) is a scheme to have agents
find their best response strategies. The mechanism gs also assigns all of the
produced output to only one agent who reports the highest labor skill and
does not work at all.
Given p ∈ ∆ and (s,x,w) ∈ Sn × [0, x̄]n × Rn+, let ϕ (p, s,x,w)−1 ≡©

u ∈ Un : (x,w) ∈ ϕ (u, s) and p ∈ ∆SPI (u, s,x,w)
ª
. Given p ∈ ∆ and

(s,x,w) ∈ Sn×[0, x̄]n×Rn+, letN (p, s,x,w) ≡ {i ∈ N : ∃ (x0i, w0i) ∈ [0, x̄)×R++
s.t. ϕ

¡
p, s,xx0i ,ww0i

¢−1 6= ∅o.
Given a strategy profile (p, s,x,w) such that pi = p for all i, an agent i ∈

N (p, s,x,w) is called a “potential deviator.” Let us discuss the meaning of
“potential deviators.” Consider ϕ (p, s,x,w)−1 = ∅ and N (p, s,x,w) 6= ∅.
The first equation implies that the strategy profile (p, s,x,w) is inconsistent
with the solution ϕ. The second N (p, s,x,w) 6= ∅ implies there is an agent
12Note that we implicitly assume that the mechanism coordinator can hold all of the

produced output after the production process, although he may not monitor that process
perfectly.
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i who can change his strategy to another one (pi, si, x0i, w
0
i) so that the new

strategy profile
³
p, s,xx0i ,ww0i

´
would become consistent with ϕ. That is, it

may be this i who makes the current strategy profile (p, s,x,w) inconsistent
with ϕ. This is the meaning that i ∈ N (p, s,x,w) is a “potential deviator.”
We propose a feasible sharing mechanism g∗ ∈ G which works in each

given st ∈ Sn as follows:

For any (p, s,x,w) = (pi, si, xi, wi)i∈N ∈ 4n × Sn × [0, x̄]n ×Rn+,
Rule 1: if f (

P
skxk) = f (

P
stkxk), then

1-1: if for some p ∈ ∆, pi = p for all i ∈ N and ϕ (p, s,x,w)−1 6= ∅, then
g∗ (p, s,x,w) = w,
1-2: if there exists j ∈ N such that for some p ∈ ∆, pi = p for all i 6= j,
ϕ (pj, s,x,w)

−1
= ∅, and j ∈ N (p, s,x,w), then g∗j (p, s,x,w) =(

max
n
0,min

n
w0j +

px
py

¡
sjxj − sjx0j

¢
, f (

P
stkxk)

oo
if wj > f (

P
skx̄)

0 otherwise,
and g∗i (p, s,x,w) = 0 for all i 6= j,
1-3: for any other case, g∗ (p, s,x,w) = gw (p, s,x,w),

Rule 2: if f (
P
skxk) 6= f (

P
stkxk), then g

∗ (p, s,x,w) = gs (p, s,x,w) .

It is easy to see that g∗ satisfies forthrightness (Saijo et al. (1996)) and best
response property (Jackson et al. (1994)). Moreover, g∗ is a mechanism of
the price-quantity type, and so satisfies self-relevancy (Hurwicz (1960)). It
is also easy to check that the mechanism g∗ is feasible. Note that the total
amount of output f (

P
stkxk) is observable, even without the true information

of labor skills, after the production process, since the coordinator can hold
all of the produced output.
In the following, a strategy profile (p, s,x,w) ∈ 4n × Sn × [0, x̄]n ×

Rn+ is called ϕ-consistent if for some p ∈ ∆, pi = p for all i ∈ N and
ϕ (p, s,x,w)−1 6= ∅. Given a strategy profile (p, s,x,w), g∗ works as follows.
First of all, g∗ computes the expected amount of output f (

P
skxk) from the

data (s,x) and compares this with the actual produced amount of output
f (
P
stkxk). In the case that these two values coincide, if the strategy profile is

ϕ-consistent, then g∗ distributes f (
P
stkxk) in accordance withw under Rule

1-1. If (p, s,x,w) is not ϕ-consistent, and there is a unique potential deviator,
then g∗ punishes him under Rule 1-2. For any other case of f (

P
skxk) =

14



f (
P
stkxk), g

∗ assigns the same value as gw under Rule 1-3. In the case that
f (
P
skxk) 6= f (

P
stkxk), g

∗ assigns the same value as gs under Rule 2.
Before we discuss the performance of g∗ formally, let us briefly explain how

the mechanism induces true information of labor skills at least for working
agents in the following part (A), and how it attains desirable allocations in
the following part (B):
(A) g∗ distributes the total amount f (

P
stkxk) of output among agents ac-

cording to the agents’ supplies of labor time x, reported price vectors p,
reported labor skills s, and demands for the output w. The problem is that
the agents’ true labor skills are not observable and they may misrepresent
their labor skills so as to increase their share of output. To solve this problem,
a scheme of reward-and-punishment is set up in the mechanism as follows.
First, if f (

P
skxk) 6= f (

P
stkxk), then clearly s 6= st holds, and there must

be at least one agent, say j ∈ N , who has misrepresented his labor skill,
sj 6= stj, and supplied a positive amount of labor time xj > 0. Then, this
agent is definitely punished under the application of Rule 2.
Second, consider the case that f (

P
skxk) = f (

P
stkxk) but s 6= st. Then,

there are at least two agents who have misrepresented their labor skills while
supplying positive amounts of labor time, or someone, say j, has chosen “non-
working” while misrepresenting his labor skill. Let us put aside the latter
case for the moment. In the former case, suppose one of such misrepresenting
agents, say j ∈ N , changes from xj > 0 to x0j = 0, while reporting a suffi-
ciently high level of labor skill. Then, the situation f (

P
skxk) = f (

P
stkxk)

shifts to f
³
sjx

0
j +

P
i6=j sixi

´
6= f

³
stjx

0
j +

P
i6=j s

t
ixi
´
, thereby j may be bet-

ter off under the application of Rule 2. Thus, the case may not correspond to
an equilibrium situation. The following lemma actually confirms this insight.

Lemma 1: Let Assumption 1 hold. Let the feasible sharing mechanism
g∗ ∈ G be given as above. Given an economy (u, st) ∈ E , let a strategy profile
(p, s,x,w) ∈ 4n × Sn × [0, x̄]n × Rn+ be a Nash equilibrium of the game
(g∗,u, st) such that f (

P
skxk) = f (

P
stkxk). Then, it follows that si = s

t
i

for all i ∈ N with xi > 0.

(B) What explanation remaining is mainly how the mechanism imple-
ments the Pareto subsolution ϕ when all agents report their true labor skills,
s = st. To do this, we adopt a scheme developed by Yoshihara (2000a).
Since s = st, the strategy profile (p, s,x,w) ∈ 4n × Sn × [0, x̄]n × Rn+

corresponds only to Rule 1. Note that among the three subrules of Rule
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1, only Rule 1-1 can realize a desirable allocation in equilibrium, while the
other two are to punish agents who have deviated from the situation of Rule
1-1. Suppose (p, s,x,w) is ϕ-consistent. Then, (x,w) becomes the outcome
by Rule 1-1, which is a ϕ-optimal allocation for some economy with s = st.
However, this does not necessarily imply that (x,w) is ϕ-optimal for the
actual economy. If (x,w) is not Pareto efficient for the actual economy,
(x,w) should not be an equilibrium allocation. Rule 1-2 is necessary for
solving this problem: if (p, s,x,w) corresponds to Rule 1-1 and results in
the allocation (x,w), any agent is able to benefit from another consumption
vector on the budget line, determined by a supporting price at (x,w) by
deviating to induce Rule 1-2. Therefore, if (x,w) is an equilibrium allocation,
then (x,w) must be Pareto efficient.
We are ready to discuss full characterizations of labor sovereign triple

implementation by examining the performance of g∗.

Theorem 3. Let Assumption 1 hold. Then, if a Pareto subsolution ϕ sat-
isfies SPI and IUS, then ϕ is (1) (resp. (2)) type triply labor sovereign-
implementable by g∗.

Note that this result does not depend upon the number of agents: any Pareto
subsolution satisfying SPI and IUS can be triply implementable by g∗ even
in economies of two agents.

Corollary 1. Let Assumption 1 hold. Then, a Pareto subsolution ϕ is (1)
(resp. (2)) type triply labor sovereign-implementable if and only if ϕ satisfies
SPI and IUS.

By Corollary 1, we can have two new insights on the implementability of
Pareto subsolutions in production economies with unequal skills. First, we
can classify what solutions are implementable or not, if the profile of labor
skills becomes unknown to the coordinator, from among the Pareto subsolu-
tions which were implementable when the profile was known to him. Note
that it is easy to see any Pareto subsolution is labor sovereign-implementable
if and only if it satisfies SPI, whenever the labor skills are known to the co-
ordinator. Secondly, since the two axioms, SPI and IUS, can be regarded as
the axioms of responsibility and compensation as we have discussed above,
Corollary 1 indicates that the implementable solutions in this problem should
have a rather strong property on responsibility, as well as only a rather weak
property on compensation.
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4 Characterization Results

Based upon the characterization in the previous section, let us examine which
Pareto subsolutions are implementable or not, when the production skills are
private information. In the first place, let us discuss the three variations of
the Walrasian solution, as follows:

Definition 4. Given a profit share θ = (θ1, . . . , θn) ∈ [0, 1]n with
P

θi = 1,
a solution ϕW is Walrasian if for any e = (u, st) ∈ E , z ∈ ϕW (e) implies
that there exists p = (px, py) ∈ ∆ such that:
(i) for all z0 ∈ Z (st), P (pyy

0
i − pxstix0i) ≤

P
(pyyi − pxstixi);

(ii) for all i ∈ N , zi ∈ argmax(x,y)∈B(p,sti,zi,θi) ui (x, y) where B (p, s
t
i, zi, θi) ≡

{(x, y) ∈ [0, x̄]×R+ : pyy − pxstix ≤ θi
P
(pyyi − pxstixi)}.

Definition 5 (Roemer and Silvestre (1989, 1993)). A solution ϕPR is the
proportional solution if for any e = (u, st) ∈ E , z ∈ ϕPR (e) implies that:

(i) z is Pareto efficient for e;
(ii) for all i ∈ N , yi = stixiP

stjxj

P
yj.

Definition 6 (Roemer and Silvestre (1989)). A solution ϕEB is the equal
benefit solution if for any e = (u, st) ∈ E , z ∈ ϕEB (e) implies that:

(i) z is Pareto efficient for e;
(ii) there exists an efficiency price p = (px, py) ∈ ∆ for z at e = (u, st) ∈ E
such that for all i ∈ N , pyyi − pxstixi = 1

n

P¡
pyyj − pxstjxj

¢
.

As Yoshihara (2000) already showed, all the above three solutions respec-
tively satisfy SPI. Thus, to confirm the implementability of each of the three
solutions, it suffices to examine on IUS. Then:

Lemma 6. The Walrasian solution ϕW satisfies IUS.

Lemma 7. The proportional solution ϕPR satisfies IUS.

Lemma 8. The equal benefit solution ϕEB satisfies IUS.13

Thus, the Walrasian solution, the proportional solution, and the equal
benefit solution are implementable by sharing mechanisms.

13The proof of Lemma 8 would be a variation of that of Lemma 6.
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Corollary 2. Let Assumption 1 hold. Then, the Walrasian solution ϕW is
(1) (resp. (2)) type triply labor sovereign-implementable.

Corollary 3. Let Assumption 1 hold. Then, the proportional solution ϕPR

is (1) (resp. (2)) type triply labor sovereign-implementable.

Corollary 4. Let Assumption 1 hold. Then, the equal benefit solution ϕEB

is (1) (resp. (2)) type triply labor sovereign-implementable.

By Corollary 1, there may exist some Pareto subsolutions which are im-
plementable by sharing mechanisms whenever the profile of labor skills is
public information, but fails to be implementable once it becomes private
information. As a sample of such solutions, we introduce the following:

Definition 7 (Fleurbaey and Maniquet (1996)). A solution ϕeuRWEB is theeu-reference welfare equivalent budget solution if for any e = (u, st) ∈ E ,
z ∈ ϕeuRWEB (e) implies that there exists an efficiency price p = (px, py) ∈ ∆
for z at e = (u, st) ∈ E such that for all i, j ∈ N , max(x,y)∈B(p,sti,zi) eu (x, y) =
max(x0,y0)∈B(p,stj ,zj) eu (x0, y0) where

B
¡
p, stk, zk

¢ ≡ ©(x, y) ∈ [0, x̄]×R+ : pyy − pxstkx ≤ pyyk − pxstkxkª .
This solution requires the agents’ budget sets to be of equal value in terms
of the reference utility eu. It satisfies SPI, but not IUS.
Lemma 9. The eu-reference welfare equivalent budget solution ϕeuRWEB sat-
isfies SPI.

Lemma 10. The eu-reference welfare equivalent budget solution ϕeuRWEB

does not satisfy IUS.

Corollary 5. The eu-reference welfare equivalent budget solution ϕeuRWEB is
not (1) (resp. (2)) type triply labor sovereign-implementable.

In summary, the above characterization results give us a new insight on
implementation of Pareto subsolutions in production economies. It has been
already shown by Dutta, et. al (1995), Saijo, et. al (1999), and Yoshihara
(2000), that the three variations of the Walrasian types are implementable by
natural mechanisms, while the no-envy and efficient solution is not, under
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an implicit assumption that the production skills of agents are known to
the coordinator. In this paper, in contrast, we have seen that the three
variations of the Walrasian types are implementable by sharing mechanisms
even if the skills of agents are private information. However, some type of
fair allocation rule like the eu-reference welfare equivalent budget solution can
be implementable by sharing mechanisms whenever the skills are known to
the coordinator, while it fails to be implementable once the skills are private
information.

5 Concluding remarks

We characterized implementation by sharing mechanisms in production economies
with unequal labor skills. The class of Pareto subsolutions implementable by
sharing mechanisms is characterized by two axioms, Supporting Price Inde-
pendence and Independence of Unused Skills. Based upon this character-
ization, we examined that the Walrasian, the proportional, and the equal
benefit solutions are respectively implementable, while the eu-reference wel-
fare equivalent budget solution fails to be implementable if individuals’ labor
skills become unknown to the planner. This result may indicate impossibility
of implementing a Pareto subsolution which compensates the relatively lower
skilled individuals, whenever the labor skills are private information. This
is because such a solution may change the shares of produced outputs, cor-
responding to changes in the profile of labor skills, regardless of individuals’
labor hours, which indicates such a solution might violate Independence of
Unused Skills.
The workability of our proposed feasible sharing mechanism depends on

the following two implicit but reasonable assumptions: first, although every
individual i’s labor performance, sixi, measured in efficiency units is imper-
fectly observable and unverifiable by the planner, his working hour, xi, is
perfectly observable. Second, in spite of such imperfect observability, the
planner can observe the real amount of outputs produced in the economy, so
that he can compare this amount with the expected amount of outputs which
were obtained by the announcements of individuals. We believe that these
implicit assumptions are reasonable enough to formulate the essential aspect
of informational asymmetry in production economies. However, it is an open
question to discuss, even without the above two implicit assumptions, im-
plementation of Pareto subsolutions by natural mechanisms in production
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economies with possibly unequal labor skills.

6 Appendix

6.1 Proofs of Theorem 1 and Theorem 2

Proof of Theorem 1. Suppose a Pareto subsolution ϕ is triply labor
sovereign-implementable. Then, there exists a feasible sharing mechanism
g ∈ G which satisfies the conditions (i)-(iv) in Definition 3. For any z =
(xi, yi)i∈N ∈ [0, x̄]n × Rn+ and any e = (ui, s

t
i)i∈N , e

0 = (u0i, s
t0
i )i∈N ∈ E

where sti = s
t0
i (∀i ∈ N), suppose that z ∈ ϕ (e) and there exists a price p ∈

∆P (e, z)∩∆P (e0, z). By (ii), (p, st,x,y) ∈ NE (g, e) and g (p, st,x,y) = y,
where p = (p)i∈N , s

t = (sti)i∈N , x = (xi)i∈N , and y = (yi)i∈N , so by (iii),

gi
³
ppi0 , s

t
s0i
,xx0i ,yw0i

´
≤ max

½
0, yi +

px
py
sti (x

0
i − xi)

¾
for all i ∈ N and all (pi

0
, s0i, x

0
i, w

0
i) ∈ ∆×S× [0, x̄]×R+. Since p ∈ ∆P (e0, z),

this implies (p, st,x,y) ∈ NE (g, e0) and (x,y) ∈ NA (g, e0). Hence, z ∈
ϕ (e0) by (i).

Proof of Theorem 2. Suppose a Pareto subsolution ϕ is triply labor
sovereign-implementable. Then, there exists a feasible sharing mechanism
g ∈ G which satisfies the conditions (i)-(iv) in Definition 3. For any z =
(xi, yi)i∈N ∈ [0, x̄]n × Rn+ and any e = (ui, sti)i∈N , e0 = (u0i, st0i )i∈N ∈ E where
ui = u0i for all i ∈ N and sti = st0i for all i ∈ N with xi > 0, suppose
that z ∈ ϕ (e) and there exists a price p ∈ ∆P (e, z) ∩ ∆P (e0, z). By (ii),
(p, st,x,y) ∈ NE (g, e) and g (p, st,x,y) = y, where p = (p)i∈N , s

t =
(sti)i∈N , x = (xi)i∈N , and y = (yi)i∈N , which implies (p, s

t0,x,y) ∈ NE (g, e)
and g (p, st0,x,y) = g (p, st,x,y) = y by (iv). Then, by (iii),

gi
³
ppi0 , s

t0
s0i
,xx0i ,yw0i

´
≤ max

½
0, yi +

px
py
sti (x

0
i − xi)

¾
for all i ∈ N and all (pi

0
, s0i, x

0
i, w

0
i) ∈ ∆×S× [0, x̄]×R+. Since p ∈ ∆P (e0, z),

this implies (p, st0,x,y) ∈ NE (g, e0) and (x,y) ∈ NA (g, e0). Hence, z ∈
ϕ (e0) by (i).
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6.2 Proof of Theorem 3

Proof of Lemma 1. Suppose there exists j ∈ N with sj 6= stj and xj > 0.
LetN (s,x) be the set of such j. Since f (

P
sixi) = f (

P
stixi), N (s,x) is not

a singleton. Moreover, any j ∈ N (s,x) can obtain y0j = f
³P

i6=j s
t
ixi

´
> 0

with s0j > maxi6=j {si}, x0j = 0, and w0j = 0 under Rule 2. Note that

X
j∈N(s,x)

y0j =
X

j∈N(s,x)
f

ÃX
i6=j

stixi

!
=
X

j∈N(s,x)
f

 X
i∈N(s,x)\{j}

stixi+
X

k/∈N(s,x)
stkxk


≥

X
j∈N(s,x)

f

stjxj+ X
k/∈N(s,x)

stkxk

 (since N (s,x) is not a singleton)

≥ f

 X
j∈N(s,x)

stjxj+ X
k/∈N(s,x)

stkxk

 (since f is concave and f (0) ≥ 0)

≥ f

 X
j∈N(s,x)

stjxj+
X

k/∈N(s,x)
stkxk


= f

³X
stkxk

´
≥

X
j∈N(s,x)

yj ≡
X

j∈N(s,x)
g∗j (p, s,x,w) .

Hence, there must be j ∈ N (s,x) with y0j ≥ yj. This j has an incentive to
change xj to x0j = 0 to obtain y

0
j, for uj(x

0
j, y

0
j) ≥ uj(x0j, yj) ≥ uj(xj, yj), where

uj(x
0
j, y

0
j) > uj(x

0
j, yj) if yj = 0 by Assumption 1, while uj(x

0
j, yj) > uj(xj, yj)

if yj > 0 by strict monotonicity of utility functions. Thus, (p, s,x,w) does
not constitute a Nash equilibrium.

Lemma 2: Let Assumption 1 hold. Let the feasible sharing mechanism
g∗ ∈ G be given as above. Then, g∗ implements any Pareto subsolution ϕ
satisfying SPI and IUS on E in Nash equilibria.
Proof. Let ϕ be a Pareto subsolution satisfying SPI and IUS. Let e =
(u, st) ∈ E be any given.
(1) First, we show that ϕ (e) ⊆ NA (g∗, e). Let z = (x,y) ∈ ϕ (e). Let the
strategy profile of agents be (p, st,x,y) = (pi, sti, xi, yi)i∈N ∈ (∆× S × [0, x̄]×R+)n
such that pi = p for all i ∈ N where p ∈ ∆SPI (u, st, z). Then g∗ (p, st,x,y) =
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y by Rule 1-1. Suppose that an individual j ∈ N deviates from
¡
pj, stj, xj, yj

¢
to
¡
pj0, s0j, x

0
j, w

0
j

¢ ∈ ∆×S × [0, x̄]×R+. Note by Assumption 1 and the con-
tinuity of utility functions, if g∗j

³
ppj0 , s

t
s0j
,xx0j ,yw0j

´
= 0, then the deviation

gives no reward to j.
Since every i 6= j truly reports his skill, s0j = stj is necessary to induce some

subrule of Rule 1 with x0j > 0. That is, the deviation cannot induce Rule 1-3
as long as x0j > 0, which is a necessary condition for the deviator to consume a
positive output under Rule 1-3. If the deviation induces Rule 2, then x0j > 0,

so that g∗j
³
ppj0 , s

t
s0j
,xx0j ,yw0j

´
= 0. In fact, if x0j = 0, then

P
i6=j s

t
ixi+ s

0
jx
0
j =P

i6=j s
t
ixi+s

t
jx
0
j, so that f

³P
i6=j s

t
ixi + s

0
jx
0
j

´
= f

³P
i6=j s

t
ixi + s

t
jx
0
j

´
, which

contradicts the fact that Rule 2 is induced.
Suppose the deviation induces Rule 1-2. If x0j > 0, then s

0
j = s

t
j and

g∗j
³
ppj0 , s

t
s0j
,xx0j ,yw0j

´
≤ max

½
0, yj +

px
py

¡
stjx

0
j − stjxj

¢¾
,

which implies j cannot gain from his deviation. Let us consider the case
x0j = 0. The application of Rule 1-2 implies that there exist x00j and w

00
j

such that ϕ
³
p, sts0j

,xx00j ,yw00j

´−1
6= ∅. Note that the information of p induces

w00j +
px
py

¡
s0jx

0
j − s0jx00j

¢
= yj +

px
py

¡
s0jx

0
j − stjxj

¢
. Thus,

g∗j
³
ppj0 , s

t
s0j
,xx0j ,yw0j

´
≤ max

½
0, yj +

px
py

¡
s0jx

0
j − stjxj

¢¾
,

which implies again j cannot gain from his deviation.
Finally, if the deviation induces Rule 1-1, then

g∗j
³
ppj0 , s

t
s0j
,xx0j ,yw0j

´
= w0j = f

ÃX
i6=j

stixi + s
t
jx
0
j

!
−
X
i6=j

yi.

The Pareto efficiency of z implies no additional benefit for j.

(2) Second, we will show thatNA (g∗, e) ⊆ ϕ (e). Let (p, s,x,w) = (pi, si, xi, wi)i∈N ∈
(∆× S × [0, x̄]×R+)n be a pure-strategy Nash equilibrium of the feasible
sharing game (g∗, e).
Suppose that (p, s,x,w) induces Rule 2. If N0 (x) ≡ {i ∈ N : xi = 0} =

∅, then g∗i (p, s,x,w) = 0 for all i ∈ N . Note here that there exists at least

22



an individual j ∈ N such that
P

i6=j sixi 6=
P

i6=j s
t
ixi. In fact, if not, then

(n− 1) · (P sixi) = (n− 1) · (
P
stixi), which contradicts the fact that Rule

2 is induced. Thus, there exists an individual j ∈ N in this case, who can
enjoy g∗j

³
ppj0 , ss0j ,xx0j ,ww0j

´
> 0 with s0j > max {si}i∈N , x0j = 0, and w0j = 0

under Rule 2.
If N0 (x) 6= ∅, then any j ∈ N0 (x) can monopolize all f (

P
stkxk) by

reporting his labor skill as s0j so that s
0
j > si for all i 6= j, while supplying

x0j = 0 and reporting w
0
j = 0 under Rule 2. Thus, if #N

0 (x) ≥ 2, then no
profile of agents’ strategies can constitute a Nash equilibrium under Rule 2.
If #N0 (x) = 1 and #N\N0 (x) ≥ 2, then there exists at least an indi-

vidual j ∈ N\N0 (x) such that
P

i∈N\(N0(x)∪{j}) sixi 6=
P

i∈N\(N0(x)∪{j}) s
t
ixi

under Rule 2. In fact, if not, then (n− 2) ·
³P

i∈N\N0(x) sixi
´
= (n− 2) ·³P

i∈N\N0(x) s
t
ixi
´
, which contradicts the fact that Rule 2 is induced. Thus,

there exists an individual j ∈ N\N0 (x), who can enjoy g∗j
³
ppj0 , ss0j ,xx0j ,ww0j

´
>

0 with s0j > max {si}i∈N , x0j = 0, and w0j = 0 under Rule 2. Suppose
#N0 (x) = 1 with N0 (x) = {i} and #N\N0 (x) = 1 with N\N0 (x) = {j}.
If wi > 0, then i can enjoy g∗i

¡
ppi0 , ss0i ,xx0i ,ww0i

¢
= f

¡
stjxj

¢
with x0i = 0 and

w0i = 0 under Rule 2. If wi = 0, then j can enjoy g
∗
j

³
ppj0 , ss0j ,xx0j ,ww0j

´
=

f
¡
stjx

0
j

¢
with pj0 = pi, s0j = s

t
j, x

0
j =

x
2
, and w0j > f

¡
stjx+ six

¢
under Rule

1-3. Thus, if #N0 (x) = 1, no profile of agents’ strategies can constitute a
Nash equilibrium corresponding to Rule 2.
Suppose that (p, s,x,w) induces Rule 1-2 or 1-3. Then, there exists

j ∈ N such that g∗j (p, s,x,w) = 0. For this j, sj = stj or xj = 0 by
Lemma 1. Thus, if j deviates with supplying a positive amount of labor
while truly reporting his skill, then the deviation induces either of Rule 1-1,
Rule 1-2, or Rule 1-3. Suppose pk 6= pl for some k, l 6= j. Then, j can enjoy
g∗j
³
ppj0 , ss0j ,xx0j ,ww0j

´
> 0 with pj0 such that pj0 6= pk and pj0 6= pl, s0j =

stj, x
0
j = µ (x−j) < x, and w0j > max

n
f
³P

i6=j six̄+ s
0
jx̄
´
, maxi6=j {wi}

o
under Rule 1-3. Suppose pk = pl = p for all k, l 6= j. Then, if (p, s,x,w)
corresponds to Rule 1-2, either j ∈ N (p, s,x,w) or not. In any case, by
choosing pj0 = p, s0j = stj, w

0
j > max

n
f
³P

i6=j six̄+ s
0
jx̄
´
, maxi6=j {wi}

o
,

and appropriate choice of x0j as a deviating strategy, j can get a positive
amount of output. By the same type of deviating strategy, j can also get a

23



positive amount of output when (p, s,x,w) corresponds to Rule 1-3.
Thus, (p, s,x,w) corresponds to Rule 1-1, and g∗ (p, s,x,w) = w. In

this case, there exists u0 ∈ Un such that p ∈ ∆SPI (u0, s,x,w) where pi = p
for all i ∈ N . Moreover, p ∈ ∆P (u, st,x,w) and (x,w) is Pareto efficient
for (u, st), for otherwise, some j has an incentive to deviate to Rule 1-2,
which contradicts the fact that (p, s,x,w) ∈ NE (g∗, e). Consider another
economy (u0, s0) ∈ E such that s0i = min {si, sti} for each i ∈ N with xi = 0
while s0i = si (= s

t
i by Lemma 1) for every i ∈ N with xi > 0. First, the

Pareto efficiency of (x,w) for (u0, s) implies the efficiency of (x,w) for (u0, s0)
since s0i ≤ si for all i ∈ N with xi = 0 and s0i = si for all i ∈ N with
xi > 0. Hence (x,w) ∈ ϕ (u0, s) implies (x,w) ∈ ϕ (u0, s0) by IUS. Next,
the Pareto efficiency of (x,w) for (u, st) implies the efficiency of (x,w) for
(u, s0) since s0i ≤ sti for all i ∈ N with xi = 0 and s0i = sti for all i ∈ N
with xi > 0. Note here p ∈ ∆SPI (u0, s,x,w) ∩ ∆P (u0, s0,x,w) and p ∈
∆P (u, st,x,w) ∩ ∆P (u, s0,x,w). Thus (x,w) ∈ ϕ (u0, s0) in turn implies
(x,w) ∈ ϕ (u, s0) by SPI. Finally, since (x,w) is Pareto efficient for (u, st) and
s0i = s

t
i for all i ∈ N with xi > 0, (x,w) ∈ ϕ (u, s0) implies (x,w) ∈ ϕ (u, st)

by IUS.

Lemma 3: Let Assumption 1 hold. Let the feasible sharing mechanism
g∗ ∈ G be given as above. Then, g∗ implements any Pareto subsolution ϕ
satisfying SPI and IUS on E in strong equilibria.
Proof. Let ϕ be a Pareto subsolution satisfying SPI and IUS. Let e =
(u, st) ∈ E be any given. Since NA (g∗, e) = ϕ (e), we have only to show
NA (g∗, e) ⊆ SNA (g∗, e). Assume that there exists (p, s,x,w) ∈ NE (g∗, e)
such that for some T ⊆ N with 2 ≤ #T < n and some (pi0, s0i, x0i, w0i)i∈T ∈
(∆× S × [0, x̄]×R+)#T ,
uj
¡
xj, g

∗
j (p, s,x,w)

¢
< uj

³
x0j, g

∗
j

³¡
pi0, s0i, x

0
i, w

0
i

¢
i∈T ,

¡
pk, sk, xk, wk

¢
k∈T c

´´
for all j ∈ T.Note first that (p, s,x,w) corresponds to Rule 1-1 and g∗ (p, s,x,w) =
w, as is shown in the proof of Lemma 2. Moreover, (x,w) is Pareto efficient
for (u, st).
By construction of g∗, there is at most one agent who can enjoy a positive

amount of output under Rule 1-2, Rule 1-3, and Rule 2. Thus, by Assumption
1, the deviation by T should induce Rule 1-1. Then,

g∗
³¡
pi0, s0i, x

0
i, w

0
i

¢
i∈T ,

¡
pk, sk, xk, wk

¢
k∈T c

´
=
¡
(w0i)i∈T , (wk)k∈T c

¢
.
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That is, even under the deviation, every k ∈ T c works for the same time and
enjoys the same amount of output consumption. Hence, the assumption that
the deviation is beneficial for every i ∈ T contradicts the Pareto efficiency of
(x,w). Thus, NA (g∗, e) ⊆ SNA (g∗, e).

Lemma 4: Let Assumption 1 hold. Let the feasible sharing mechanism
g∗ ∈ G be given as above. Then, Γ2g∗ implements any Pareto subsolution ϕ
satisfying SPI and IUS on E in subgame-perfect equilibria.

Proof. Let ϕ be a Pareto subsolution satisfying SPI and IUS. Let e =
(u, st) ∈ E be any given. NA (g∗, e) = ϕ (e) by Lemma 2. Moreover,
SPA

¡
Γ2g∗, e

¢ ⊆ NA (g∗, e). Hence, we have only to show ϕ (e) ⊆ SPA ¡Γ2g∗, e¢.
First, we will show that in every second stage subgame, there is at

least one Nash equilibrium strategy. Let us take a strategy mapping me∗ :
[0, x̄]n → ∆n×Sn×Rn+ such that for each second stage subgame

¡
Γ2g∗(x), e

¢
,

me∗ (x) = (p, s,w) where for all i ∈ N
¡
pi, si, wi

¢
=

½
((0, 1) , sti, f (

P
stkx̄) + 1) if xi 6= µ (x−i)

((0, 1) , sti, f (
P
stkx̄) + 2) otherwise

.

Then, we can see that (p, s,w) ∈ NE ¡Γ2g∗(x), e¢. Note that g∗ (p, s,x,w)
corresponds to Rule 1-3. Since pi = (0, 1) for all i ∈ N , no individual can
induce Rule 1-1 by changing his strategy. Inducing Rule 1-2 with

¡
pj0, s0j, w

0
j

¢
would not be beneficial for any j ∈ N since pi = (0, 1) for another i 6= j and
there does not exist

¡
x00j , w

00
j

¢ ∈ [0, x̄]×R++ such that ϕ³pi, ss0j ,xx00j ,ww00j ´−1 6=
∅. Moreover, if any i ∈ N can induce Rule 2 by some deviation, then it
must be the case that xi > 0, which implies this deviation is not beneficial
for i. Finally, if any i ∈ N can deviate to induce Rule 1-3 again, then
such a deviation gives him no additional benefit, since the individual i who
has xi = µ (x−i) is already fixed in the first stage game. Thus, (p, s,w) ∈
NE

¡
Γ2g∗(x), e

¢
.

Now, we will show that for the given e = (u, st) ∈ E , if bz = (bx, by) ∈
ϕ (e), then there exists a subgame perfect equilibrium whose corresponding
outcome is bz. Consider the following strategy profile of the extensive game¡
Γ2g∗, e

¢
:

(1) In the first stage, every individual i supplies bxi.
(2) In the second stage, the agents take a strategy mapping me : [0, x̄]n →
∆n × Sn × Rn+ such that me (x) = (p, s,w) as follows:
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(2-1): if x = bx is the action profile of all individuals in the first stage, then
for any i ∈ N , me

i (x) = (p
i, si, wi) = (p, s

t
i, byi) where p ∈ ∆SPI (u, st, bx, by);

(2-2): if x = bxx0j , where x0j 6= bxj, is the action profile of all individuals in the
first stage, then for this j ∈ N ,

me
j (x) =

¡
pj, sj, wj

¢
=
³
(0, 1) , stj, f

³X
stkx̄
´
+ 1
´
,

and for all i 6= j,

me
i (x) =

¡
pi, si, wi

¢
=

½
(p, sti, byi) if xi 6= µ (x−i) ,
((1, 0) , sti, f (

P
stkx̄) + 2) otherwise,

where p ∈ ∆SPI (u, st, bx, by);
(2-3): in any other case, me (x) =me∗ (x).
Note that for the subgame of (2-1), (p, s,w) = (p, st, by) ∈ NE ¡Γ2g∗(x), e¢,

since (p, st, bx, by) ∈ NE (g∗, e). Also, (p, s,w) ∈ NE ¡Γ2g∗ (x) , e¢ for any sub-
game

¡
Γ2g∗ (x) , e

¢
of the case (2-3), as we have already shown. Moreover, we

will show that for the subgame of (2-2), (p, s,w) ∈ NE ¡Γ2g∗ (x) , e¢. Since
s = st, if anyone deviates to induce Rule 2, then he has to supply a positive
amount of labor, which implies the deviation is not beneficial for him by the
construction of Rule 2.
Consider the case that for all i 6= j, xi 6= µ (x−i) in (2-2). Then,

g∗ (p, s,x,w) corresponds to Rule 1-2. No i 6= j can induce Rule 1-1 nor
can he consume a positive output under Rule 1-2 since pj = (0, 1) and
ϕ
¡
pj, s,xx0i ,ww0i

¢−1
= ∅ for any (x0i, w0i) ∈ [0, x̄]× R++. Moreover, no i 6= j

can consume a positive output under Rule 1-3 since xi 6= µ (x−i). On the
other hand, j can deviate to induce Rule 1-1, or Rule 1-2, but it does not make
him better off. When Rule 1-1 is induced, j’s output consumption becomes
f
³
stjx

0
j +

P
k 6=j s

t
kbxk´−Pk 6=j byk, which is no more than byj + px

py
stj
¡
x0j − bxj¢

since p ∈ ∆SPI (u, st, bx, by). When Rule 1-2 is induced again, j’s output
consumption remains

max

½
0,min

½byj + px
py

¡
stjx

0
j − stjbxj¢ , f ³X stkxk

´¾¾
.

Moreover, if j deviates to induce Rule 1-3, then he has no positive output
consumption. Thus, (p, s,w) ∈ NE ¡Γ2g∗ (x) , e¢.
Consider the case that there exists i 6= j with xi = µ (x−i) in (2-2). Then

g∗ (p, s,x,w) corresponds to Rule 1-3. Any deviation cannot induce Rule 1-1
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since pj = (0, 1) and pi = (1, 0). Agent j’s deviation to induce Rule 1-2 results
in g∗j (p, s,x,w) = 0 since p

i = (1, 0) for i 6= j and ϕ ((1, 0) , s,x,w)−1 = ∅
for any (s,x,w). The same is true for i. Moreover, if any i ∈ N can
induce Rule 1-3 by changing his strategy, then such a deviation gives him
no additional benefit, since the individual i who has xi = µ (x−i) is already
fixed in the first stage game. Thus, (p, s,w) ∈ NE ¡Γ2g∗ (x) , e¢.
Now, let us see that the above strategy profile (1)-(2) constitutes a sub-

game perfect equilibrium of the extensive game
¡
Γ2g∗, e

¢
. In accordance with

(1)-(2-1), the outcome becomes (bx,by). Suppose some j has an incentive to
deviate from bxj to x0j 6= bxj in the first stage. Then by (2-2), he only gets
g∗j
³
me

³bxx0j´ , bxx0j´ ≤ max½0,min½byj + pxpy ¡stjx0j − stjbxj¢ , f
³X

stkxk
´¾¾

,

which contradicts the fact that bz is Pareto efficient for e. Thus, bz = (bx, by) ∈
SPA

¡
Γ2g∗, e

¢
.

Lemma 5: Let Assumption 1 hold. Let the feasible sharing mechanism
g∗ ∈ G be given as above. Then, Γ1g∗ implements any Pareto subsolution ϕ
satisfying SPI and IUS on E in subgame-perfect equilibria.
Proof. Let ϕ be a Pareto subsolution satisfying SPI and IUS. Let e =
(u, st) ∈ E be any given. NA (g∗, e) = ϕ (e) by Lemma 2. Moreover,
SPA

¡
Γ1g∗, e

¢ ⊆ NA (g∗, e). Hence we have only to showϕ (e) ⊆ SPA ¡Γ1g∗, e¢.
First, we will show that in every second stage subgame, there is at least

one Nash equilibrium strategy. Let

I (p, s,0,w) ≡
½
i ∈ N : ∃x0i,ϕ

³
p, s,0x0i ,w

´−1
6= ∅

¾
.

Let us take a strategy mapping xe∗ : ∆n × Sn × Rn+ → [0, x̄]n such that for
each second stage subgame

¡
Γ1g∗ (p, s,w) , e

¢
: for all i ∈ N ,

(i) if si = sti and ∃p s.t. pj = p for all j ∈ N and i = min I (p, s,0,w), then

xe∗i (p, s,w) = x
0
i such that ϕ

³
p, s,0x0i ,w

´−1
6= ∅;

(ii) if si = sti, wi > f (
P
skx̄), and ∃p s.t. pj = p (∀j 6= i) and i ∈

N (p, s,0,w), then

xe∗i (p, s,w) = arg max
xi

ui

µ
xi,max

½
0,min

½
w0i +

px
py
sti (xi − x0i) , f

¡
stixi

¢¾¾¶
;
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(iii) if si = sti, wi > max {f (
P
skx̄) ,maxj 6=i {wj}}, and

[{∃p s.t. pj = p (∀j 6= i)}⇒ i /∈ N (p, s,0,w)], then xe∗i (p, s,w) = x
2
;

(iv) otherwise, xe∗i (p, s,w) = 0,
where (x0i, w

0
i) comes fromϕ

¡
p, s,0x0i ,ww0i

¢−1 6= ∅. Note that g∗ (p, s,xe∗ (p, s,w) ,w)
corresponds to one of the subrules of Rule 1 since xi = 0 for all i with si 6= sti.
Then, we can see that xe∗ (p, s,w) ∈ NE ¡Γ1g∗ (p, s,w) , e¢. To simplify the
notation, let us denote x∗ = xe∗ (p, s,w) in the following discussion.
Since xi = 0 for all i with si 6= sti, if anyone deviates to induce Rule

2, then he has to supply a positive amount of labor. This implies such a
deviation is not beneficial for him by the construction of Rule 2.
Suppose g∗ (p, s,x∗,w) corresponds to Rule 1-1. Then, since (p, s,w) is

already fixed, no unilateral deviation from x∗ can induce Rule 1-1. Moreover,
wi ≤ f (

P
skx̄) for any i when g∗ (p, s,x∗,w) corresponds to Rule 1-1, which

implies that no individual would gain under Rule 1-2 nor Rule 1-3.
Suppose g∗ (p, s,x∗,w) corresponds to Rule 1-2. Then, we will first show

that there exists a unique agent j ∈ N who takes (ii) of the strategy mapping
xe∗j , while any other i 6= j takes (iv) of the strategy xe∗i . By the definition
of Rule 1-2, there exists j ∈ N (p, s,x∗,w) for p = pi (∀i 6= j), which implies
wi ≤ f (

P
skx̄) for any i 6= j. Thus, no i 6= j can take (ii) and (iii) of the

strategy mapping under Rule 1-2. Also, when g∗ (p, s,x∗,w) corresponds
to Rule 1-2, no agent should take (i) of the strategy mapping xe∗i . Thus,
any i 6= j should take (iv) of the strategy xe∗i , while j ∈ N (p, s,x∗,w)
should take (ii) of xe∗j so as to induce Rule 1-2. In this strategy profile,
any i 6= j cannot gain by any deviation to induce Rule 1-2, 1-3, or Rule
2. Also, since wj > f (

P
skx̄), every i 6= j cannot induce Rule 1-1. As for

j ∈ N (p, s,x∗,w), he cannot induce Rule 1-1 by any deviation because of
wj > f (

P
skx̄). Also, he cannot induce Rule 1-3, since j ∈ N (p, s,x∗,w)

implies j ∈ N
³
p, s,x∗x0j ,w

´
. Finally, j cannot gain by deviation to induce

Rule 1-2. Thus, taking (ii) of the strategy mapping is the best response for
j ∈ N (p, s,x∗,w), which implies xe∗ is a Nash equilibrium.
Suppose g∗ (p, s,x∗,w) corresponds to Rule 1-3. Then, x∗ consists of

x∗j =
x
2
and x∗i = 0 for any i 6= j, or x∗i = 0 for all i ∈ N . In both

cases, x∗ ∈ NE ¡Γ1g∗ (p, s,w) , e¢. In the latter case, any i takes (iv) of
xe∗i , and there is no other better strategy for i on his labor choice, given
(p, s,w) and x∗−i = 0−i. In the former case, x∗j =

x
2
is the best response

for j ∈ N to x∗−j = 0−j. In fact, j ∈ N cannot induce Rule 1-1 or 1-
2, while he cannot gain by any deviation to Rule 2, given x∗−j = 0−j. In
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contrast, given x∗j =
x
2
and x∗−{i,j} = 0−{i,j}, any i 6= j cannot gain by any

deviation to Rule 1-3 or 2. Also, i cannot induce Rule 1-1 or 1-2, since
wj > f (

P
skx̄) implies i /∈ N

¡
p, s,

¡
0−j,x2

¢
,w
¢
even if p = pk (∀k 6= i).

Thus, xe∗ (p, s,w) ∈ NE ¡Γ1g∗ (p, s,w) , e¢.
Now, we will show that for the given e = (u, st) ∈ E , if bz = (bx, by) ∈

ϕ (e), then there exists a subgame perfect equilibrium whose corresponding
outcome is bz. Consider the following strategy profile of the extensive game¡
Γ1g∗, e

¢
:

(1) In the first stage, every individual i reports (pi, si, wi) = (p, sti, byi) where
p ∈ ∆SPI (u, st, bx, by).
(2) In the second stage:
(2-1): if (p, s,w) =

¡
(pi)i∈N , s

t, by¢ with pi = p for all i ∈ N is the action
profile of all individuals in the first stage, then any i ∈ N supplies xi = bxi;
(2-2): if (p, s,w) =

³³
pj0, (pi)i6=j

´
, st, byw0j´, where pi = p for all i 6= j and

w0j > f (
P
stkx̄), is the action profile of all individuals in the first stage, then

for this j ∈ N ,
xj = arg max

x0j
uj
³
x0j,min

nbyj + px
py
stj
¡
x0j − bxj¢ , f ³Pi6=j s

t
ibxi + stjx0j´o´

and for all i 6= j, xi = bxi;
(2-3): if (p, s,w) =

³³
pj0, (pi)i6=j

´
, st, byw0j´, where pi = p for all i 6= j,¡

pj0, w0j
¢ 6= (p, byj) and w0j ≤ f (P stkx̄), is the action profile of all individuals

in the first stage, then x = x;
(2-4): if (p, s,w) =

³³
pj0, (pi)i6=j

´
, sts0j

, byw0j´, where pi = p for all i 6= j and
s0j 6= stj, is the action profile of all individuals in the first stage, then for this
j ∈ N , xj = x

2
, and for all i 6= j, xi = 0;

(2-5): in any other case, xe (p, s,w) = xe∗ (p, s,w).
Note that for the subgame of (2-1), x = bx ∈ NE ¡Γ1g∗ (p, s,w) , e¢, since

wi ≤ f (
P
skx̄) for any i ∈ N and no deviator can enjoy a positive amount

of output under Rule 1-2. Also, x ∈ NE ¡Γ1g∗ (p, s,w) , e¢ for the subgame of
(2-5), as we have already shown. Moreover, we will see that for the subgames
from (2-2) to (2-4), x ∈ NE ¡Γ1g∗ (p, s,w) , e¢.
Note that g∗ (p, s,x,w) corresponds to Rule 1-2 if

¡
Γ1g∗ (p, s,w) , e

¢
cor-

responds to (2-2). In this case, nobody can induce Rule 1-1 nor Rule 2.
Moreover, no i 6= j can enjoy a positive amount of output under Rule 1-2
nor Rule 1-3 since wi = byi ≤ f (P skx̄). Finally, j cannot induce Rule 1-3
by only changing labor supply. Thus, x ∈ NE ¡Γ1g∗ (p, s,w) , e¢.
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If
¡
Γ1g∗ (p, s,w) , e

¢
corresponds to (2-3), g∗ (p, s,x,w) corresponds to

Rule 1-3 since x = x, where nobody can enjoy positive output consumption
by the definition of Rule 1-3. In this case, some unilateral deviation may
induce Rule 1-2 or Rule 1-3, but it is not beneficial for any i ∈ N since
wi ≤ f (

P
skx̄). Thus, x ∈ NE

¡
Γ1g∗ (p, s,w) , e

¢
.

Finally, g∗ (p, s,x,w) corresponds to Rule 2 if
¡
Γ1g∗ (p, s,w) , e

¢
corre-

sponds to (2-4). In this case, any x0j > 0 induces Rule 2 again and x
0
j = 0

makes the total output zero. Thus, j cannot enjoy positive output consump-
tion in any case. As for i 6= j, any x0i 6= xi induces Rule 2 again, but the
deviation brings no additional benefit for i since xi = 0 and x0i > 0. Thus,
x ∈ NE ¡Γ1g∗ (p, s,w) , e¢.
Now, let us see that the above strategy profile (1)-(2) constitutes a sub-

game perfect equilibrium of the extensive game
¡
Γ1g∗, e

¢
. By the strategy pro-

file (1)-(2) of the extensive game
¡
Γ1g∗ , e

¢
, g∗ (p, s,x,w) = g∗ ((p)i , s

t, bx, by) =by. Suppose that some j has an incentive to deviate from (pj, sj, wj) to¡
pj0, sj, w0j

¢
in the first stage. Then, by (2-2) and (2-3), he only gets

g∗j
³
ppj0 , s,x

³
ppj0 , s,ww0j

´
,ww0j

´
≤ byj + px

py
stj (xj − bxj)

where xj = xj
³
ppj0 , s,ww0j

´
. This contradicts the fact that bz is Pareto effi-

cient for e. Suppose that some j has an incentive to deviate from (pj, sj, wj)
to
¡
pj0, s0j, w

0
j

¢
with sj 6= s0j in the first stage. Then by (2-4), he cannot enjoy

positive output consumption. Thus, bz = (bx, by) ∈ SPA ¡Γ1g∗, e¢.
Proof of Theorem 3. Let Assumptions 1 hold. Let ϕ be a Pareto sub-
solution satisfying SPI and IUS. By Lemmas 2, 3, 4, and 5, Γ1g∗ (resp. Γ

2
g∗)

triply implements ϕ on E in Nash, strong, and subgame-perfect equilibria.
Moreover, g∗ meets the forthrightness, as is shown in the former half of the
proof of Lemma 2. Thus, it suffices to show g∗ meets Definition 3 (iii) and
(iv).
Let us show on Definition 3 (iii). The latter half of the proof of Lemma

2 shows that if (p, s,x,w) ∈ NE (g∗, e), then it corresponds to Rule 1-1 and
g∗ (p, s,x,w) = w. For any i ∈ N and any (pi0, s0i, x0i, w0i) ∈ ∆×S×[0, x̄]×R+,
if
¡
ppi0 , ss0i ,xx0i ,ww0i

¢
corresponds to Rule 1-1 or Rule 1-2, then

g∗i
¡
ppi0 , ss0i ,xx0i ,ww0i

¢ ≤ max½0, yi + px
py
sti (x

0
i − xi)

¾
.
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If
¡
ppi0 , ss0i ,xx0i ,ww0i

¢
corresponds to Rule 1-3, it implies either (i) ϕ

¡
pi0, ss0i ,xx0i ,ww0i

¢ 6=
∅ and i ∈ N ¡p, ss0i ,xx0i ,ww0i¢ or (ii) i /∈ N ¡p, ss0i ,xx0i ,ww0i¢, where p = pk

for all k 6= i. The case (i) implies g∗i
¡
ppi0 , ss0i ,xx0i ,ww0i

¢
= 0 by w0i ≤

f (
P
stkx). Consider the case (ii). Since by Lemma 2, (x,w) ∈ ϕ (e) and

p ∈ ∆SPI (u, s,x,w) hold, i ∈ N ¡p, ss0i ,xx0i ,ww0i¢ whenever s0i = si = sti.
Thus, s0i 6= si which implies x0i = 0 because

¡
ppi0 , ss0i ,xx0i ,ww0i

¢
corresponds to

Rule 1-3. Then, g∗i
¡
ppi0 , ss0i ,xx0i ,ww0i

¢
= 0. If

¡
ppi0 , ss0i ,xx0i ,ww0i

¢
corresponds

to Rule 2, then x0i > 0 by Lemma 1 and g
∗
i

¡
ppi0 , ss0i ,xx0i ,ww0i

¢
= 0. Thus, g∗

meets Definition 3 (iii).
For Definition 3 (iv), note again that if (p, s,x,w) ∈ NE (g∗, e), then it

corresponds to Rule 1-1, or there exists u ∈ Un such that (x,w) ∈ ϕ (u, s)
and for all i ∈ N , pi = p ∈ ∆SPI (u, s,x,w). Moreover, if (x,w) ∈ ϕ (u, s)
for some u ∈ Un, then p ∈ ∆P (u, s,x,w) implies that for any s0 ∈ Sn such
that s0i = si for all i ∈ N with xi > 0, there exists some u0 ∈ Un such
that p ∈ ∆P (u0, s,x,w) ∩ ∆P (u0, s0,x,w). By SPI, (x,w) ∈ ϕ (u, s) and
p ∈ ∆P (u, s,x,w) ∩ ∆P (u0, s,x,w) together imply (x,w) ∈ ϕ (u0, s). By
IUS, (x,w) ∈ ϕ (u0, s) and p ∈ ∆P (u0, s,x,w) ∩ ∆P (u0, s0,x,w) together
imply (x,w) ∈ ϕ (u0, s0). Thus (p, s0,x,w) also corresponds to Rule 1-1.
Hence g∗ (p, s0,x,w) = g∗ (p, s,x,w) = w and (p, s0,x,w) ∈ NE (g∗, e).

6.3 Proofs of Lemmas in Section 4

Proof of Lemma 6. Consider an economy (u, st) such that for some alloca-
tion (x,y), (x,y) ∈ ϕW (u, st). Let us take a competitive equilibrium price
p = (px, py) which corresponds to (x,y) at (u, st). Suppose the economy
(u, st) changes to (u, st0) so that st0i = s

t
i for all i ∈ N with xi > 0 but still

p ∈ ∆P (u, st0,x,y). Then, by the definition of efficiency prices and the strict
monotonicity of utility functions, it holds that:
(i) for all z0 ∈ Z (st0),P (pyy

0
i − pxst0i x0i) ≤

P
(pyyi − pxst0i xi);

(ii) for all i ∈ N , zi ∈ arg max
(x,y)∈B(p,st0i ,zi,θi)

ui (x, y) where B (p, st0i , zi, θi) ≡©
(x, y) ∈ [0, x̄]×R+ : pyy − pxst0i x ≤ θi

P¡
pyyj − pxst0j xj

¢ª
and θi =

pyyi−pxst0i xiP
(pyyj−pxst0j xj)

.

Therefore, (x,y) ∈ ϕW (u, st0). Thus, the Walrasian solution satisfies IUS.

Proof of Lemma 7. Consider an economy (u, st) such that for some alloca-
tion (x,y), (x,y) ∈ ϕPR (u, st). Let p = (px, py) ∈ ∆P (u, st,x,y). Suppose
the economy (u, st) changes to (u, st0) so that st0i = sti for all i ∈ N with
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xi > 0 but still p ∈ ∆P (u, st0,x,y). Then, since (x,y) ∈ ϕPR (u, st) and
st0j = stj for all j ∈ N with xj > 0, for each i ∈ N , yi = stixiP

stjxj

P
yj =

stixiP
j∈N,xj>0 s

t
jxj

P
yj =

st0i xiP
j∈N,xj>0 s

t0
j xj

P
yj =

st0i xiP
st0j xj

P
yj. Therefore, (x,y) ∈

ϕPR (u, st0). Thus, the proportional solution satisfies IUS.

Proof of Lemma 9. Consider an economy (u, st) such that for some alloca-
tion (x,y), (x,y) ∈ ϕeuRWEB (u, st). Let p = (px, py) ∈ ∆P (u, st,x,y) such
that for all i, j ∈ N , max(x,y)∈B(p,sti,zi) eu (x, y) = max(x0,y0)∈B(p,stj ,zj) eu (x0, y0).
Suppose the economy (u, st) changes to (u0, st) so that p ∈ ∆P (u0, st,x,y).
Since the skill profile remains st, (x,y) is still feasible in the new economy.
Moreover, for any i, j ∈ N ,max(x,y)∈B(p,sti,zi) eu (x, y) = max(x0,y0)∈B(p,stj ,zj) eu (x0, y0)
in the new economy, since the budget sets of all agents and the reference util-
ity function eu remain unaltered even after the change of economy. Therefore,
(x,y) ∈ ϕeuRWEB (u0, st). Thus, the eu-reference welfare equivalent budget so-
lution satisfies SPI.

Proof of Lemma 10. Consider an economy (u, st) such that for some al-
location (x,y), (x,y) ∈ ϕeuRWEB (u, st) where xi = 0 for some i ∈ N . Let
p = (px, py) ∈ ∆P (u, st,x,y). Let y = v(x) represent the indifference curve
for eu that is tangent to i’s budget set {(x, y) : pyy − pxstix ≤ pyyi}. Suppose
the economy (u, st) changes to (u, st0) such that st0i > s

t
i, s

t0
−i = s

t
−i and p ∈

∆P (u, st0,x,y)where the agent i’s new budget set {(x, y) : pyy − pxst0i x ≤ pyyi}
intersects with {(x, y) : y > v(x)}. Then, the maximized utility for eu un-
der the new budget set is greater than that under the original budget set.
Therefore, (x,y) /∈ ϕeuRWEB (u, st0). Thus, the eu-reference welfare equivalent
budget solution dose not satisfy IUS.
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