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ABSTRACT. This paper presents a simple theoretical framework for differ-
entiating the effect of the magnitude of uncertainty on ex-ante excess returns (risk
premiums) from the effect of the subsequent resolution of uncertainty on ex-ante ex-
cess returns (liquidity premiums) in the presence of irreversible decisions, using an
overlapping generations model. Employing Kreps-Porteus preferences, numerical ex-
amples demonstrate that liquidity premiums emerge with strong preferences for early
resolution as well as large elasticities of intertemporal substitution. This numerical
investigation may shed light on the fundamental advantage of Kreps-Porteus prefer-

ences in dynamic asset pricing models with time-varying investment opportunities.
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1. Introduction In the fields of macroeconomics and financial economics, the effect of
risk-averse behavior on asset pricing has not always been clearly differentiated from the
pricing impact driven by demand for liquidity or flexibility. In the case of money demand,
for example, money is sometimes characterized as the safest asset in terms of risk-averse
behavior, whereas at other times it is characterized as the most flexible asset from the
viewpoint of liquidity demand. According to the former interpretation, money is priced
highly relative to other risky assets by the magnitude of risk premiums. Given the latter
interpretation, however, money is valuable due to its convenience or flexibility.

Citing Jones and Ostroy (1984), Hahn (1990) argues that risk premiums and liquidity
premiums are fundamentally different from each other due to their theoretical natures. On
the one hand, risk premiums are yielded as a consequence of aversion toward risky assets
and a preference for safe assets. On the other hand, liquidity premiums are generated as
a result of temporarily holding liquid assets while waiting for uncertainty to be resolved,
in the presence of irreversible decisions. In other words, risk premiums are driven by the
magnitude of risk involved in uncertain events, while liquidity premiums are caused by the
subsequent resolution of uncertainty. In modern macroeconomics and finance, the genera-
tion of risk premiums has been explored theoretically in depth and examined empirically
in detail. However, the tendency has been for the generation of liquidity premiums to be
treated implicitly rather than explicitly.

This paper exploits a simple three-period setup employed by Epstein (1980) in order to
systematically differentiate the effect of the subsequent resolution of uncertainty from the
effect of the magnitude of underlying risks attached to uncertain events. Then, it embeds
these models in an overlapping generations model, thereby numerically exploring general
equilibrium implications, in particular liquidity demand and asset pricing.

The most important feature of our investigation is that the model adopts Kreps-Porteus
preferences as an essential device to generate liquidity premiums. As Epstein (1980) clearly
demonstrates, consumers with high elasticity of intertemporal substitution tend to refrain

from committing to irreversible decisions, instead choosing to temporarily hold liquid as-
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sets when they expect uncertainty to be resolved subsequently. It immediately follows from
this implication that liquidity demand has, at most, tiny impacts on premiums within an
expected utility framework; risk aversion is inversely proportional to intertemporal substi-
tution in such a framework, and premiums over risk-free rates themselves turn out to be
negligible with near-risk neutral behavior.

As Miyazaki and Saito (2003) show, however, not only larger elasticity of intertemporal
substitution, but also stronger preferences for early resolution help to yield liquidity de-
mand. Under Kreps-Porteus preferences, risk aversion increases with preferences for early
resolution, given intertemporal substitution, and liquidity demand thus has a chance to be
reflected in larger excess returns over risk-free rates. Given the above setup, our numerical
analysis demonstrates that liquidity premiums are indeed generated as a consequence of
reduced commitment to current consumption and enhanced demand for liquid assets. As
discussed in the conclusion, our numerical investigation may shed light on the fundamental
advantage of Kreps-Porteus preferences in dynamic asset pricing models with time-varying
investment opportunities.

This paper is organized as follows. Section 2 presents a simple theoretical framework
where Epstein’s (1980) three-period model is embedded in an overlapping generations setup.
Section 3 numerically explores the asset pricing implications of this model. Section 4

discusses several theoretical and empirical implications of our numerical investigation.

2. A Theoretical Framework Let us consider a three-period overlapping generations
economy (OLG economy). Each generation is referred to as young, middle-aged, or old.
The population of each generation is constant over time and standardized to be one. A
young consumer is endowed with wy(> 0) units of goods, whereas a middle-aged consumer
is endowed with w;(> 0) units. There is no endowment for old consumers. In what follows,
some kinds of heterogeneity with respect to either information sets or preference parameters
may be considered among different generations, but heterogeneity is not at all applicable
within any generation.

Each generation may have access to financial markets to allocate consumption goods
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over three periods as follows. A young consumer can lend or borrow in one-period risk-free
assets, whereas a middle-aged consumer can invest in one-period risk-free assets and also
in one-period risky assets. A middle-aged consumer is allowed to hold short positions in
risk-free assets, but not in risky assets. The consumers transact in the financial markets
in a competitive manner once they participate. One-period returns on risky assets Ry are
given exogenously, whereas one-period risk-free rates R{ are determined endogenously as a
result of transactions between young and middle-aged consumers.

A young consumer will obtain a message concerning future opportunities for risky in-
vestment when he is middle-aged. A young consumer consequently faces two alternatives:
(i) consuming currently, or (ii) saving via risk-free assets. The motivation for the latter
alternative is to wait for uncertainty of risky investments to be resolved later. In this
setup, risk-free assets serve as liquid assets for young consumers in the sense that holdings
of risk-free assets allow them to behave flexibly in response to new information. The above
setup where young consumers are not allowed to participate in risky asset markets enables
liquidity premiums to emerge in a significant manner. Without this kind of participation
constraint, lower risk-free rates driven by liquidity demand would be cancelled out by an
incentive to leverage risky investment by borrowing at such low risk-free rates. As an
alternative constraint, limited borrowing in risk-free markets might also work in favor of
liquidity premiums?

More concretely, a one-period risky return R? will take a value of either B¢ or R’
(RY > R®). According to the information obtained initially by a consumer born at date 1,
a two-period ahead return R, , will take a value of RY with probability o and a value of
R with probability 1 — a. When he is middle-aged, the consumer receives an additional
message Y;;; concerning a one-period ahead risky return R, ,. This independently and
identically distributed (i.i.d.) random message takes a value of Y9 with a probability of «
and a value of Y* with probability 1—a; Prob(Y;;; = Y¥) = a and Prob(Y;y; = Y") = 1—a.

! Holmstrom and Tirole (2001), for example, assume that consumers are not allowed to hold any short
positions in risk-free assets in order to obtain positive liquidity premiums.
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The probability of R, , conditional on this interim message is characterized as follows:

Prob(R, = RIYi. =Y7) = p+a(l—p),

Prob

R, =RV =Y9) = 1—p—a(l—p),

Prob(R{, , = R°|Yi

= ol —p), and

(
(
( v')

Prob(Rf,, = R'|Yiy1 =Y") = 1—a(l—p).

A parameter p € [0,1] represents how uncertainty concerning future risky returns is
resolved one period later. As p approaches 1, the message provides more information with
respect to future risky returns, whereas it is less informative when p is closer to zero.
Extreme cases include the perfect resolution of uncertainty when p = 1, and the absence of
resolution when p = 0. The above assumption that Prob(Rf, , = R?) = Prob(Yij;; =Y9) =
« is also adopted by Jones and Ostroy (1984) as a parsimonious characterization of the
resolution of uncertainty? . Later, we will consider not only the case where all generations
experience resolution of uncertainty in an identical manner, but also the case where only a
particular generation can receive the interim message.

As discussed in the introduction, we employ Kreps-Porteus preferences (see Kreps and
Porteus, 1978; Epstein and Zin, 1989; Weil, 1990; and others). Given the above initial
endowment and financial opportunities, a representative consumer born at date ¢ thus
maximizes the following objective function with respect to an investment plan (risk-free

bonds a; and «a,,, and risky assets x,,).

max [(wo — ai)oT_l + [F; { max {(Uh + szaj - a§+1 - 51/'24-1)07_1

2 2
a, Aip10Ti41

a—1

+03 {Ei+1(3{+1a§+1 + Rf+2x§+1)l_qm}}] _ .

where F,; is the conditional expectation operator based on the information available at

? More general definitions of the resolution of uncertainty were originally proposed by Marschak and
Miyasawa (1968), and subsequently introduced into economic models by Epstein (1980) and others.
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date t; B (> 0) is a discount factor; o (> 0) is the elasticity of intertemporal substitution;
and v (> 0) is a degree of relative risk aversion. As Epstein and Zin (1989) discuss,
consumers prefer early resolution of uncertainty to late resolution when oy > 1, and vice
versa when oy < 1. With oy = 1, the above objective function reduces to an expected
utility framework, or a utility function with constant relative risk aversion (CRRA), where
consumers are indifferent with respect to timings of resolution.

We make two remarks on the above optimization problem. First, the information avail-
able at date ¢ + 1 (Q;1) differs from €; because of the interim message Y;y;. It means
that young consumers have to decide between consumption (an irreversible decision) and
risk-free savings before they receive the interim message. This aspect regarding resolution
of uncertainty may cause young consumers to demand risk-free assets as liquidity to en-
able them to respond flexibly to the arrival of new information. Employing the CRRA
preference, Epstein (1980) demonstrates that young consumers with strong intertemporal
substitution or ¢ > 1 do indeed have such liquidity demand. As uncertainty is expected
to be resolved more (as p increases in our setup), consumers allocate more resources from
current consumption to risk-free savings.

Second, as a result of adopting Kreps-Porteus preferences, the third period expected
utility {EHI(R{H@H + Rf_l_Q:z;j:_l_l)l_W}o(ol—__l”) is not added in a linear manner in equation
(1) unless oy = 1. This feature of preferences generates an additional motive for liquidity
demand. Miyazaki and Saito (2003) prove that consumers with large elasticities of in-
tertemporal substitution in combination with strong preferences for early resolution have
motives to temporarily hold liquid assets until uncertainty is resolved to some extent. More
concretely, Miyazaki and Saito establish the following sufficient conditions: when o > 1
and oy > 1, young consumers save more as p is closer to one® . Thus, the introduction
of Kreps-Porteus preferences helps to substantially expand the potential opportunities for
liquidity demand.

An equilibrium risk-free rate is determined endogenously by the lending-borrowing pro-

3 To be precise, the sufficient conditions for liquidity demand include the case where ¢ < 1 and o4+ < 2.
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cess between young and middle-aged consumers. Using dynamic programming techniques,

we can derive the optimal asset demand af, aj,,, and xj , as:

a; = [, 2)
a§+1 = gi(az:szvazf-l—h}/ﬂ_ﬁ, and (3)

v = Wlal B RL Vi), W

where the information set €); is recursively defined as: Q; = {Q,_y,21=%,a'=%, a1, R], R?,Y;}.
(See the appendix for more detailed descriptions of f%, ¢' and h‘.) Then, an equilibrium
risk-free rate le is determined such that:
ai + aj_l = 0. (5)

3. A Numerical Investigation This section presents the numerical results of several
experiments in order to demonstrate how an equilibrium risk-free rate is influenced by
both the riskiness of investment opportunities and the resolution of uncertainty within the
framework constructed in the previous section. In this section, decreases in risk-free rates
driven by risk-averse behavior are called risk premiums, while decrements in risk-free rates
caused by resolution of uncertainty are called liguidity premiums. More concretely, on the
one hand, risk premiums correspond to the extent to which risk-free rates are driven by
mean-preserving spreads of risky returns 7, from the perspective of a young consumer
born at date . On the other hand, liquidity premiums are defined as the extent to which
risk-free rates change due to degrees of resolution of uncertainty or changes in p. Note
that in this OLG model, ex-ante excess returns (premiums) can be defined as the difference
between exogenously-given unconditional means of risky returns and equilibrium risk-free
rates, because risk-free rates are determined in equilibrium before the interim message is
realized.

This section considers the following cases. In the first case, hereafter referred to as

Case 0, there is no resolution at all, and p = 0 for all generations. In this case, only risk
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premiums can be examined through the effects of mean-preserving spreads of risky returns
on risk-free rates. In contrast with Case 0, the second case, (Case 1), takes the resolution of
uncertainty into consideration. That is, all generations with identical preferences receive the
interim message when they are middle-aged. In principle, Case 1 can explore how liquidity
premiums are determined within a general equilibrium framework. As shown below, in
Case 1, liquidity demand does indeed emerge due to increases in p, but such demand is
not reflected in risk-free rates in a significant manner. A major reason for this is that
the resolution of uncertainty enhances the demand of young consumers for risk-free assets,
but it also promotes a shift from safe assets to risky assets among middle-aged consumers
and lowers their demand for safe assets. Consequently, liquidity impacts on risk-free rates
are cancelled out by decreases in safe-asset demand from middle-aged consumers and are
somewhat negligible.

We prepare an additional case to highlight liquidity effects on risk-free rates. In the third
case, (Case 2), only a particular generation can receive the interim message, p > 0 for a
particular generation, and p = 0 for the other generations. In other words, intergenerational
heterogeneity is introduced into the parameter p. The numerical procedures of the above
three cases are described briefly in the appendix.

For quantitative experiments, we choose admissible values of parameters 3, B9, R, a,
wog, wy, 0, v, and p. The choice of parameters here is motivated, not by attempts to mimic
a real economy, but by efforts to explore the qualitative implications of the above OLG
model. 3 is set to be 1/1.02 throughout the experiments. Both R¢ and R’ are chosen
such that the unconditional mean is equal to 1.1. Our numerical procedure begins with
the setup where RBY = 1.2, R* = 1.0, and a = 0.5 (E(R*) = 1.1). In terms of endowment,
wo and w; are assumed to be 30 and 100, respectively. Such an assumption concerning
initial endowment would promote young consumption instead of young savings without any
liquidity demand.

With respect to preference parameters, the elasticity of intertemporal substitution o

takes values between 1/3 and 8, while v changes from 1 to 8. Accordingly, the choice of
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preference parameters cover both preference for early resolution (o > 1) and late resolution
(oy < 1). The degree of resolution of uncertainty p takes a value of either 0.0 or 0.8. In
most examples, therefore, liquidity premiums are defined as the difference in risk-free rates

between cases where p = 0.0 and where p = 0.8.

3.1. Case 0: no resolution of uncertainty Table 1 summarizes the numerical results
of Case 1 where p = 0 for all generations. A steady-state equilibrium emerges as an
immediate consequence of fixed risky investment opportunities. As mentioned before, a
risk premium is defined as F(R®) — R/, and decreases in risk-free rates result in increases
in risk premiums.

Beginning with the assumption that B¢ = 1.2, B> = 1.0, and a = 0.5, when a degree
of risk aversion v increases, given elasticity of intertemporal substitution o, middle-aged
consumers increase their risk-free investments, but decrease their risky investments * . This
means that middle-aged consumers with greater risk aversion shift funds from risky to safe
assets. Consequently, the risk-free rate declines.

When o increases, given ~, dissavings of young consumers decline, and risky investment
increases. A young consumer with large elasticity of intertemporal substitution tends to
allocate more to future consumption, given that risk-free rates are higher than time prefer-
ence rates (which are equal to 2% throughout the numerical exercises). Such consumption
allocation in turn raises demand for risk-free bonds from middle-aged consumers through
wealth effects. An increase in demand for safe assets from both young and middle-aged
consumers jointly contributes to decreases in equilibrium risk-free rates. However, the effect
of o on risk-free rates is not so strong as that of ~.

Nevertheless, we conjecture that the above monotonic depressing (increasing) effect
of risk aversion on risk-free rates (risk premiums) may be weakened when risk-free rates
are below time preference rates as a result of the introduction of large risks. When the

riskiness of the future investment opportunity is extremely large, young consumers may

4 Exceptionally, risky investment increases when 5 changes from one to two, given that ¢ = 8.
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consume currently instead of transferring resources to the future. Such a tendency may
be more pronounced for those with both stronger intertemporal substitution and larger
risk aversion, as these individuals tend to be more interested in choosing the timing of
consumption and are more averse to future consumption volatilities.

Figure 1 raises riskiness to R = 1.3 and R® = 0.9 by mean-preserving spreads and
compares it with B = 1.2 and R® = 1.0. According to this figure, additional risk pre-
miums are still monotonically increasing in risk aversion for those with relatively weak
intertemporal substitution® . For those with o = 8, however, additional risk premiums are
decreasing when ~ is above four. This kind of finding is not available from an expected

utility framework where it is impossible to increase o and ~ simultaneously.

3.2. Case 1: with resolution of uncertainty Unlike Case 0, Case 1, where all gen-
erations receive the interim message (p > 0), generates a stationary Markov equilibrium.
That is, risk-free rates change over time depending on which state of Y9 or Y? is real-
ized, and investment and consumption plans are influenced by the movement of risk-free
rates. (See the appendix for a more detailed characterization of this stationary Markov
equilibrium.)

Table 2 reports the unconditional means of risk-free rates and investment plans under
p = 0.8.5 In addition, the last column of Table 2 presents liquidity premiums, defined as
differences in risk-free rates between such rates under p = 0.8 (reported in the third column
of Table 3) and under p = 0.0 (reported in the third column of Table 1). Figure 2 depicts
how demand functions for risk-free assets from young consumers change as resolution of
uncertainty is greater under o = v = 3.

As shown by Miyazaki and Saito (2003), large elasticities of intertemporal substitution

(o0 > 1) and strong preferences for early resolution (o > 1) jointly contribute to increases

5 In Figure 1, additional risk premiums happen to be close to one another for various values of o at
~ = 3, but they are still different from one another in rigorous terms.

 For this calculation, 5200 random variables of the interim message and risky returns are generated
and, given this fixed random seed, equilibrium risk-free rates and investment plans are derived numerically.
The unconditional means of these variables are computed after dropping the first 200 observations.
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in liquidity demand in the current setup. Figure 2 demonstrates that liquidity demand
from young consumers is boosted as p is closer to one. Nevertheless, Table 2 documents
negative liquidity premiums. In other words, although liquidity demand is generated, such
demand is not reflected directly in the equilibrium behavior of risk-free rates.

A major reason for the above asymmetry between demand and risk-free rates is that a
larger p raises liquidity demand from the young consumers of the current generation, but it
promotes a shift from risk-free assets to risky assets among the middle-aged consumers of
the previous generation as a result of the resolution of uncertainty. In other words, stronger
liquidity demand from young consumers is largely cancelled out by weaker demand for risk-
free assets from middle-aged consumers. Therefore, liquidity effects on risk-free rates are
not observed clearly in the numerical result of Case 1. As previously suggested, Case 2
introduces intergenerational heterogeneity in order to highlight liquidity impacts on risk-

{ree rates.

3.3. Case 2: intergenerational heterogeneity in p In Case 2, only one particular
generation can receive the interim message, while the other generations do not. More con-
cretely, only the generation born at date I receives the interim message Yy 1 with p; = 0.8.
On the other hand, preference parameters ¢ and v are common among all generations.
For simplicity, it is assumed that generation ¢ < [ does not know that generation [ re-
ceives the interim message, and that generation ¢ > [ does not expect the arrival of any
interim messages at all. Based on this setup, demand for risk-free assets from middle-aged
consumers of generation I — 1 is completely independent of the resolution of uncertainty.
Accordingly, liquidity demand from young consumers of generation I may be translated
almost straight into equilibrium risk-free rates. Note that ex-ante excess returns (premi-
ums) are still defined as the deviation of unconditional means of risky returns from risk-free
rates, because risk-free rates are determined in equilibrium before the arrival of the interim
message. One possible interpretation of this setup is that a particular generation happens
to face resolvable uncertainty.

Table 3 presents the numerical result of date-I risk-free rates and investment plans (R{,
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al(= —al™"), and 237') under p; = 0.8. In addition, the last column of Table 3 reports

liquidity premiums, which are defined as differences in risk-free rates between values under
p = 0.8 and under p = 0.0. Figure 3 depicts liquidity premiums for various values of o when
1 < ~ < 8, while Figure 4 plots liquidity premiums when 0 < v < 1. Comparing these
liquidity premiums with the demand for safe assets from young consumers (ag) in Table
1 (also reported in parentheses in the fourth column of Table 3), it is possible to explore
whether liquidity demand is indeed promoted by the resolution of uncertainty.

The numerical results are summarized as follows. First, if the elasticity of intertempo-
ral substitution o is equal to one, then demand for safe assets from young consumers is
completely independent of the resolution of uncertainty, and there are no liquidity premi-
ums. Second, when o is greater than one, and early resolution is preferred (oy > 1), then
liquidity demand emerges and positive liquidity premiums are generated. In particular, as
shown in Figure 3, liquidity premiums increase with the degree of relative risk aversion,
v, given o > 1. The second feature is consistent with Miyazaki and Saito’s (2003) finding
that liquidity demand emerges when o > 1 and oy > 1 (a sufficient condition). Consistent
with Epstein’s (1980) result, even CRRA preferences yield positive liquidity premiums as
long as o is larger than one (¢ =3,y =1/3 and 0 =8,y = 1/8 in Figure 4). However, as
discussed in the introduction, only tiny premiums are generated under rather low values

of v. Third, even if o is less than one, liquidity premiums, though extremely small, are

1

5 in Figures 3 and 4).

yielded as long as both o and v are small (see the case where o =
The third observation is again consistent with Miyazaki and Saito’s finding that another
sufficient condition for liquidity demand is that ¢ < 1 and o + v < 2.7

Inferring from the result of Case 0, we reasonably expect that large risks associated with
investment opportunities may have an additional impact on risk-free rates or premiums.

Given extremely risky investment, young consumers with strong intertemporal substitution

and large risk aversion may consume instead of saving, thereby canceling out liquidity

7 According to Figure 3, even if % 4+~ > 2, hquidity premiums are still positive as long as ~ is relatively
small. However, this is not necessarily inconsistent with Miyazaki and Saito (2003) because they derive
only sufficient conditions for liquidity demand.
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demand. Suppose that generation I faces values of B¢ = 1.3 and R* = 0.9 with p = /1/2,
and that the other generations experience values of B¢ = 1.2 and R® = 1.0 with p = 0.
p= \/m is chosen such that the conditional volatility for generation [ is exactly equal to
the unconditional volatility for the other generations without any interim message in terms
of average absolute deviations. One possible interpretation of this setup is that a particular
generation happens to face large, but resolvable, uncertainty.

Table 4 presents the numerical results of the above case. In addition, Figure 5 plots
liquidity premiums, which are defined as the deviations from the risk-free rate of Case 0
with B9 = 1.2 and R® = 1.0. As Figure 5 demonstrates, when elasticity of intertemporal
substitution is large (0 = 8), liquidity demand is cancelled out largely by a disincentive
for young consumers to save when ~ is beyond four, and premiums (risk-free rates) are
decreasing (increasing) in risk aversion.

In sum, young consumers with strong preferences for early resolution, as well as large
elasticities of intertemporal substitution, generate liquidity demand, and such demand is
reflected directly in equilibrium risk-free rates. Extreme riskiness of investment opportu-
nities, on the other hand, dampens liquidity demand to some extent, and tends to raise

risk-free rates for those with both strong intertemporal substitution and high risk aversion.

4. Discussion In this paper, we have presented an overlapping generations framework
where an ex-ante excess return over a risk-free rate can be divided into a risk premium
component and a liquidity premium component. In this framework, an incentive to post-
pone consumption (irreversible expenditures) until uncertainty is resolved, to some extent,
triggers liquidity demand. Such demand may result in decreases in risk-free rates or in-
creases in liquidity premiums. By nature, such liquidity premiums, which are caused by
consumers waiting for uncertainty to be resolved, are fairly different from risk premiums
driven by riskiness of investment opportunities. OQur numerical examples have shown that
consumers with large elasticities of intertemporal substitution, as well as strong preferences
for early resolution of uncertainty, generate vigorous liquidity demand, thereby resulting in

positive liquidity premiums.
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In addition, our numerical investigation sheds light on the advantage of Kreps-Porteus
preferences in dynamic asset pricing models. As investigated in Weil (1989), if investment
opportunities are fixed over time, then the Kreps-Porteus preference does not play any
active role in determining excess returns. This is because, in an expected utility frame-
work, premiums are determined mainly by degrees of relative risk aversion and are almost
independent of intertemporal substitution. However, Kandel and Stambaugh (1991), and
others, demonstrate that not only risk aversion, but also intertemporal substitution plays an
important role in determining premiums and risk-free rates when investment opportunities
are time-varying in terms of first and second moments.

If changes in conditional moments of risky returns can be regarded as consequences of
the arrival of new messages, then, as discussed in this paper, we may analyze the role of
intertemporal substitution in determining excess returns via the economic mechanism of
liquidity demand and liquidity premiums. As the additional experiments of Case 0 and
Case 2 suggest, one caveat for this interpretation is that extreme riskiness of investment
opportunities may weaken liquidity demand from consumers with both strong intertemporal

substitution and high risk aversion.
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Appendix: In this appendix, we provide a description of optimal decision functions (2),

(3), and (4) discussed in Section 2, and the numerical procedures adopted in Section 3.

Optimal decision functions This subsection briefly explains how to derive optimal

decision functions from the maximization problem (1) in Section 2. As usual, these decision

functions are solved by backward induction. Consider a consumer born at date :. When

he is middle-aged, the consumer maximizes the following objective function contingent on

Qi-l—l:

a—1

{(wl + Rfaﬁ - a§+1 - $§:+1)T + 08 [Ei+1(R{+1a§:+1 + Rf+2$§+1)l_w} e } . (6)
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where ;4, contains al, R{, sz+17 and Y;,1, but not aj“, xj+1, or RY_,. The first order

conditions with respect to a!,; and al,, yield:

at,y = (wi + Rlal) Dy (R'Dy — R°D,), and

$§:+1 = (wl + Rfaﬁ) Dy - sz+1 ’ (Dg - Db)v
where

Do(RL 1. Yi1) = [Dy(Rl, — B") + Dy(R* — RL,) + R (R — R")] ™",
7(Yier) )?
RL, — R

T(YVi)? (L= 7 (Vi) ]
(sz+1 — RS (R - sz-l—l)T

Dy(Rly1,Yip) = (ﬁR{“(Rg - Rb))g (

X

L=

o (1—n(Yie)\?
f _ f b +1
Dy(Rly,,Yiun) = (BRI, (R - R")) (r_ Rf+1)

w(Yipr) (1—7(Yipr)) ]
(sz+1 — RS (R — sz-l—l)T

ptall—p) if Yi =V
a(l —p) if Vi, =Y?

L2

X

m(Yipr) =

Given at, R{, sz+1 and Y;;;, demand functions for safe and risky assets, g(a, sz, sz-l—lv Yii)
and h(a, sz, R{+17}/2'+1)7 are characterized analytically. When the intergenerational het-
erogeneity is introduced, an upper subscript i is added, such as g'(a, R{, R{+17Yi+1) and
hi(az:v szv sz-l—lv Yi—l-l)'

Substituting these decision functions into equation (6) leads to the middle-aged value

function,

(wl —I_ szaz:)f/i(sz-l—h}/i-l-l)v
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where

a

‘N/i(R{+1’1/i+1) = Do- sz+1 (R R) [1 +6 {W(YH—I)D;_W +(1- W(KH))D;_W}U“_W)] -

Substituting the above value function into equation (1), the objective function maxi-

mized by a young consumer of generation ¢ is as follows:

a

{(wo —a))F + B(wy + Ra)) T E {‘N/i(szHv Yiﬂ)%l}] o

Note that §2; contains a and R{, but not Y41 and sz-l—l' The first-order condition with

K3

respect to a yields:

Wo {ﬁszEz {‘N/i(szHv Yi+1)UT_IHU — W

BRIEAVIRL, Vi) )| + R

a. =

The decision function of a!, denoted as f or f!, depends not only on R{, but also on the

a—1

conditional expectation of ‘N/i(RZf_I_l, Yig) = .

In the following cases, the decision functions f, g, or h may be expressed in a simpler

manner. First, if o =1, then £, {\N/i(ﬁ’zf_l_l, YH_l)UT_l} reduces to 1 + 3, and f is accordingly
equal to ﬁl(j_;f_)ﬁlgo — Rf(lj-ug-m?)' That is, even if the interim message is expected to arrive,

the young consumer’s demand for safe assets does not ever change in this case. In addition,
~ is irrelevant in determining the young saving-consumption decision. Second, if p = 0,
then the decision functions g and & do not depend on Y, ;. As a result, f is explained
solely by le and the conditional expectation of sz-l—l' Third, when all generations have
identical preferences and R/ is constant over time, as in Case 0, the decision functions
are described as ag = f(R'), a1 = ¢g(ap, R'), and z; = h(ag, RY). TFourth, when all
generations have identical preferences, and sz+1 follows a stationary transition function
of le and Y;;q, as in Case 1, then the decision functions are described as ag = f(RZf),
a; = g(ao, R{,R{+1,K+1), and x; = h(ao,R{,R{H,KH). These properties of the decision

functions are used in calculating equilibrium risk-free rates in the numerical experiment.
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4.1. Numerical procedures This subsection briefly explains how to obtain the nu-

merical results reported in Section 3. A basic procedure is as follows:

1. Guess a sequence of risk-free rates.

2. Given the above guess, solve the dynamic optimization problem in the manner de-
scribed in the previous subsection. Apply a grid method to the numerical derivation

of the decision functions.

3. Update a new sequence of the risk-free rate using the numerically derived decision
functions and the market-clearing condition (5). Use a spline interpolation to find

the equilibrium risk-free rate that satisfies equation (5).

4. Iterate the above steps until a sequence of risk-free rates converges.

In terms of the market clearing condition (5), f(RY)+g(f(R'), /) = 0 in Case 0 where
a steady state equilibrium obtains, whereas f(RZf) + g(f(RZf_l), R!  R!, Y:) =0 in Case 1
where a stationary Markov equilibrium emerges.

In Case 2, the equilibrium is neither stationary nor in a steady state because of the
intergenerational heterogeneity. Any generation where ¢ < [ follows the same decision
functions as in Case 0. For generations where ¢ > [, an equilibrium is influenced, which
results in the state of Y71 being realized, and aj can be denoted as fi(Ri, Yii1) for o > 1.
Given these equilibrium conditions, R{ is determined such that the sum of a!™' and af is

equal to zero.
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Table 1: The numerical result of Case 0 with R = 1.2 and R* = 1.0

o~ Rf(%) ag = —ay 1
/3 1 9.373 -13.191  29.172
1/3 2 8.764 -13.252  28.148
1/3 3 8.156 -13.297  28.171
/3 4 7.561 -13.341  28.195
1/3 5 6.982 -13.384  28.219
1/3 6 6.424 -13.425  28.243
/3 7 5.889 -13.465  28.268
/3 8 5.381 -13.502  28.293

1 1 9.326 -11.294  32.098

1 2 8.665 -11.483  31.844

1 3 8.022 -11.670  31.595

1 4 7401 -11.852  31.352

1 5 6.806 -12.028  31.117

1 6 6.240 -12.198  30.892

17 5704 -12.360  30.677

1 8 5.200 -12.514  30.474

3 1 9.205 -5.855 40.485

3 2 8.428 -6.479 42.676

3 3 T7.702 -7.121 41.510

3 4 7.022 -7.737  40.392

3 5 6.390 -8.324 39.330

3 6 5.807 -8.880 38.328

3 7 5271 -9.402 37.387

3 8 4.780 -9.890 36.506

8 1 8.996 5.513 57.992

8 2 8.078 4.356 68.318

8 3 T7.224 2.679 64.811

8 4 6.453 1.056 61.441

8 5 5764 -0.490 58.250

8 6 5.153 -1.942 55.265

8 7 4.615 -3.292 52.498

8 8 4.142 -4.538 49.949

19



Table 2:

The numerical result of Case 1 with R = 1.2 and R* = 1.0

Risk premiums versus liquidity premiums

o v RI(%) ay=—a; ) liquidity premium (%)
/3 1 9.760 -13.182 29.208 -0.387
/3 2 9.537 -13.227  28.154 -0.773
/3 3 9.307 -13.244  28.162 -1.151
/3 4 9.073 -13.260  28.170 -1.512
/3 5 8.832 -13.277  28.179 -1.850
1/3 6 8.583 -13.295  28.187 -2.159
/3 7 8.326 -13.313  28.196 -2.437
/3 8 8.060 -13.331  28.204 -2.680

1 1 9.743 -11.434  31.962 -0.416

1 2 9.494 -11.502  31.870 -0.829

1 3 9.240 -11.572  31.776 -1.218

14 8977 -11.642  31.680 -1.576

15 8706 -11.713  31.584 -1.900

1 6 8.425 -11.787  31.484 -2.186

1 7 8134 -11.862  31.382 -2.430

1 8 7.833 -11.939  31.277 -2.633

3 1 9.697 -6.458 39.779 -0.492

3 2 939 -6.606 42.791 -0.967

3 3 9.081 -6.850 42.343 -1.379

3 4 8753 -7.098 41.888 -1.732

3 5 8411 -7.354 41.419 -2.021

3 6 8.064 -7.616 40.938 -2.248

3 7 7.686 -7.886 40.442 -2.415

3 8 7.307 -8.164 39.933 -2.527

8 1 9.623 2.824 54.282 -0.627

8 2 9.268 3.410 66.982 -1.190

8§ 3 8.881 2.817 65.747 -1.656

8 4 8.470 2.218 64.497 -2.017

8 5 8.037 1.608 63.227 -2.273

8 6 7.583 0.976 61.916 -2.430

8 7 T.115 0.315 60.553 -2.500

8 8 6.639 -0.371 59.141 -2.497
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Table 3: The numerical result of Case 2 with R = 1.2 and R* = 1.0

Risk premiums versus liquidity premiums

o R{(%) ab = —al™? 17t liquidity premium (%)
/3 1 9372 -13.144 (-13.191) 29.219 0.001
1/3 2 8764 -13.239 (-13.252) 28.160 0.001
1/3 3 8.157 -13.306 (-13.297) 28.162 -0.001
1/3 4 7563 -13.371 (-13.341) 28.165 -0.002
1/3 5 6.987 -13.434 (-13.384) 28.168 -0.005
1/3 6 6432 -13.495 (-13.425) 28.173 10008
1/3 7 5901 -13.553 (-13.465) 28.178 -0.011
1/3 8 5.395 -13.608 (-13.502) 28.186 -0.015

1 19326 -11.294 (-11.294) 32.098 0.000

1 2 8665 -11.483(-11.483) 31.844 0.000

I 3 8022 -11.670(-11.670) 31.595 0.000

1 4 7401 -11.852(-11.852) 31.352 0.000

1 5 6.806 -12.028 (-12.028) 31.117 0.000

I 6 6.240 -12.198 (-12.198) 30.892 0.000

1 7 5704 -12.360 (-12.360) 30.677 0.000

1 8 5200 -12.514 (-12.514) 30.474 0.000

3 1 9.204 -5.810 (-5.855)  40.529 0.001

3 2 8423 -6.320 (-6.479)  42.835 0.006

3 3 7.690 -6.896 (-7.121)  41.733 0.012

3 4 7.002 -7.451 (-7.737)  40.677 0.019

3 5 6.362 -7.982 (-8.324)  39.671 0.028

3 6 5.770 -8.485 (-8.880)  38.720 0.037

3 7 5.225 -8.961 (-9.402)  37.824 0.046

3 8 4.726 -9.408 (-9.890)  36.984 0.054

8 1 8994 5.674 (5.513) 58.154 0.003

8 2  8.053 5.286 (4.356) 69.251 0.025

8§ 3 T.178 3.853 (2.679) 65.988 0.046

8§ 4 6.381 2.465 (1.056) 62.853 0.072

8 5 5.664 1.139 (-0.490) 59.879 0.100

8 6 5.026 -0.115 (-1.942)  57.088 0.128

8 7 4.461 -1.293 (-3.292)  54.487 0.154

8§ 8 3.964 -2.394 (-4.538)  52.076 0.178

(1) The numbers in parentheses in the fourth column are the risk-free savings of young

consumers reported in Table 1.
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Table 4: The numerical result of the case with large, but resolvable uncertainty for gen-

eration I (RY = 1.3 and R® = 0.9 with p = /1/2 for generation I versus RY = 1.2 and
RY = 1.0 with p = 0.0 for all generations)

o R{(%) at = —afl J}%_l liquidity premium (%)
1/3 1 9.384 -13.696 (-13.191) 28.666 -0.011 (0.001)
1/3 2 8780 -13.615 (-13.252) 27.783 20.016 (0.001)
1/3 3 8174 -13.577 (-13.297) 27.890  -0.018 (-0.001)
1/3 4 7.580 -13.567 (-13.341) 27.968  -0.019 (-0.002)
1/3 5 7.000 -13.565 (-13.384) 28.037  -0.018 (-0.005)
1/3 6 6440 -13.565 (-13.425) 28.103  -0.016 (-0.008)
1/3 7 5902 -13.562 (-13.465) 28.169  -0.012 (-0.011)
1/3 8 5388 -13.558 (-13.502) 28.237  -0.008 (-0.015)

I 1 0326 -11.204 (-11.294) 32.008 0.000 (0.000)

|2 8665 -11.483 (-11.483) 31.844 0.000 (0.000)

|3 8022 -11.670 (-11.670) 31.595 0.000 (0.000)

I 4 7401 -11.852 (-11.852) 31.352 0.000 (0.000)

|5 6.806 -12.028 (-12.028) 31.117 0.000 (0.000)

16 6240 -12.198 (-12.198) 30.892 0.000 (0.000)

|7 5704 -12.360 (-12.360) 30.677 0.000 (0.000)

18 5200 -12.514 (-12.514) 30.474 0.000 (0.000)

3 1 9.173 -4.228 ( 5.855) 42.112 0.032 (0 001)

3 2 8.384 -5.252 (-6.479)  43.901 0.044 (0.006)

33 7651 6.148 (-T.121)  42.479 0.051 (0.012)

34 6969 -6.953 (-T.737)  41.173 0.053 (0.019)

35 6340  -7.706 (-8.324)  39.945 0.051 (0.028)

3 6 5763 -8.417 (-8.880) 38.787 0.043 (0.037)

37 5238  -9.086 (-9.402)  37.700 0.033 (0.046)

38 4760 -9.711 (-9.890)  36.684 0.020 (0.054)

S 1 8925 9.699 (5.513)  62.179 0.072 (0.003)

S 2 7067 8494 (4.356)  72.474 0.111 (0.025)

8 3  7.086 6.183 (2.679) 68.330 0.138 (0.046)

g 4 6.303 4.005 (1.056) 64.399 0.150 (0.072)

8 5 5.619 1.887 (-0.490) 60.629 0.145 (0.100)

S 6 5028 -0.148 (-1.942)  57.055 0.125 (0.128)

8 7 4.520 -2.061 (-3.292) 53.721 0.095 (0.154)

8 8 4.082  -3.822 (-4.538)  50.658 0.060 (0.178)

(1) The numbers in parentheses in the fourth column are the risk-free savings of the young
consumers reported in Table 1.
(2) The numbers in parentheses in the sixth column are the liquidity premiums reported

in Table 3.



Figure 1: Additional risk premiums due to more volatile risky returns (Case 0)
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(1) The above figure plots differences in risk premiums between under R9 = 1.3
and R® = 0.9 and under R% = 1.2 and R” = 1.0 in Case 0.
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Figure 2: Demand functions for safe assets from young consumers and resolution
of uncertainty (Case 1)
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(1) The above figure plots demand functions for safe assets from young con-
sumers with p = 0.0, 0.4, and 0.8 under 0 = 3 and v = 3.
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Figure 3: Liquidity premiums based on p = 0.0 versus p = 0.8 (Case 2)
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(1) The above figure plots differences in risk-free rates between with p = 0.8
and with p = 0.0 under R9 = 1.2 and R° = 1.0.
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Figure 4: Liquidity premiums based on p = 0.0 versus p = 0.8 with v < 1 (Case
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(1) The above figure plots differences in risk-free rates between with p = 0.8
and with p = 0.0 under RY = 1.2 and R° = 1.0.
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Figure 5: Liquidity premiums with large, but resolvable uncertainty
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(1) The above figure plg§s differences in risk-free rates between under R9 = 1.3
and R? = 0.9 with p = 1/2 for generation I, and under R? = 1.2 and R =1.0
with p = 0.0 for all generations.
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