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Abstract
We examine the possibility of constructing social ordering func-

tions, each of which associates a social ordering over the feasible pairs
of allocations and allocation rules with each simple production econ-
omy. Three axioms on the admissible class of social ordering func-
tions are introduced, which embody the values of procedural fair-
ness, non-welfaristic egalitarianism, and welfaristic consequentialism,
respectively. The logical compatibility of these axioms and their lexi-
cographic combinations subject to constraints are examined. Two so-
cial ordering functions which give priority to procedural values rather
than to consequential values are identified, which can uniformly ra-
tionalize a nice allocation rule in terms of the values of procedural
fairness, non-welfaristic egalitarianism, and Pareto efficiency.
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1 Introduction

Even in the developed market economies with matured market mechanisms
and assured basic liberties, the issue of providing each individual with eq-
uitable standard of living without undue sacrifice of social efficiency and/or
individual autonomy still remains largely unresolved. There is a wide social
consensus that the uncompromising pursuit of economic efficiency, individ-
ual autonomy, and the equitable provision of decent living standard is a
hardly sustainable target, but there remains a further issue of forming a so-
cial agreement on the priority to be assigned to the plural moral principles
pursuing, respectively, social efficiency, individual autonomy, and equitable
provision of decent living standard. This paper is devoted to the problem
of combining these plural moral principles lexicographically as well as con-
ditionally without falling into the impasse of logical inconsistency. In this
context, it is worthwhile to recollect that John Rawls (1971, 1993) made
an interesting proposal to combine plural moral principles lexicographically.
However, his proposal had to be confronted with a criticism by Amartya Sen
and Bernard Williams (1982) who pointed out that the lexicographic combi-
nation of plural moral principles may be logically inconsistent. Our present
analysis represents an attempt to circumscribe the conditions under which
the logical coherence of philosophical scenario articulated by Rawls and Sen
can be rigorously ascertained.
To lend concreteness to the problem at hand, we focus on the following

three moral principles in the context of defining a fair allocation rule as a
game form in a class of simple production economies. The first principle is
procedural in nature, and it requires that all individuals in the society should
be assured of the minimal extent of autonomy in choosing his contribution to
cooperative production. This principle is due originally to Lawrence Kranich
(1994). Our articulation of allocation rules in terms of game forms seems
to be appropriate from the viewpoint of individual autonomy. Indeed, indi-
vidual autonomy has a natural expression in the game form articulation of
allocation rules by means of the spontaneous strategic choice of individual
actions. The second principle is consequential in nature, and it requires the
Pareto efficiency of equilibrium social outcomes. The third principle is meant
to capture an aspect of non-welfaristic egalitarianism along the line of Rawls
and Sen, which is formally articulated in terms of the maximin assignment of
individual capabilities rather than in terms of individual utilities. This prin-
ciple was formulated and characterized by Reiko Gotoh and Naoki Yoshihara
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(1999, 2003). The logical coherence of one lexicographic combination or the
other of these moral principles, with or without further constraints on their
applicability, can be verified by examining the existence, or the lack thereof,
of a fair allocation rule as a game form thereby defined.
Two rather novel features of our analysis may deserve further clarifica-

tions. The first novel features is the capability maximin rule which is meant
to give substance to our conception of equitable provision of decent living
standard. Instead of using Rawls’s own formulation of the difference princi-
ple articulated in terms of what he christened the social primary goods, or its
social choice theoretic formulation in terms of interpersonally level compara-
ble utilities along the line of Sen (1970, Chapter 6*; 1997), we are identifying
the least advantaged individual by means of what Sen (1980, 1985) chris-
tened capabilities, which are meant to capture the freedom individuals can
enjoy in pursuit of their own lives they have reasons to choose. The gist of
this approach is to shift the focus of our attention from the subjective hap-
piness or satisfaction enjoyed by individuals to the objective opportunities in
the functioning space to which individuals can rightfully access. Note that
the game form articulation of capability maximin allocation rule is useful,
if not indispensable, in clarifying the role of strategic interactions among
individuals in the social determination of individual opportunities in pur-
suit of their objective well-being. The second novel feature is the use we
make of the extended social ordering function which associates a social or-
dering over the pairs of feasible resource allocations and allocation rules as
game forms with each economic environment, capitalizing on the pioneering
work by Prasanta Pattanaik and Kotaro Suzumura (1994; 1996). It is this
analytical device that enables us to treat a procedural principle requiring
individual autonomy, a welfaristic principle requiring the Pareto efficiency of
social outcomes, and a non-welfaristic but consequential principle in the form
of capability maximin rules simultaneously within a unified framework. It is
also this analytical device which allows us to talk sensibly about rationality
and uniform rationality of allocation rules as game forms.
Apart from this introduction, this paper consists of four sections and an

appendix. In Section 2. we introduce a class of simple production economies,
allocation rules as game forms, and extended social ordering functions. In
Section 3, we formulate three basic axioms of fair allocation rules, and exam-
ine the existence of an allocation rule which is qualified to be fair in terms
of these axioms. Section 4 defines the three basic axioms on extended social
ordering functions and presents our possibility theorems. Section 5 concludes
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this paper with several final remarks. All the involved proofs are relegated
into the Appendix at the end of the paper for the sake of simplicity of expo-
sition.

2 The Basic Framework

2.1 Economic Environments and Allocation Rules

Consider an economy with the population N = {1, 2, . . . , n}, where 2 ≤ n <
+∞. One good y ∈ R+ is produced from the vector of labor inputs x =
(x1, . . . , xn) ∈ Rn+,1 where xi denotes the labor time supplied by i ∈ N . The
production process of this economy is described by the production function
f : Rn+ → R+, which maps each x ∈ Rn+ into y = f(x) ∈ R+. It is assumed
that f satisfies continuity, strict increasingness, concavity, and f(0) = 0.
All individuals are assumed to have the common upper bound x of labor-

leisure time, where 0 < x̄ < +∞. For each individual i ∈ N , his consumption
vector is denoted by zi = (xi, yi) ∈ [0, x] × R+, where xi is his labor time
and yi is his share of output. Each i ∈ N is characterized by his preference
ordering on [0, x] × R+, which can be represented by a utility function ui :
[0, x] × R+ → R. We assume that ui is strictly monotonic (decreasing in
labor time and increasing in the share of output) on [0, x)×R++, continuous
and quasi-concave on [0, x]×R++. It is also assumed that ui (zi) > ui(xi, 0)
for all zi ∈ [0, x) × R++ and all xi ∈ [0, x]. We denote the class of utility
functions satisfying these assumptions by U .
Since the production function f is fixed throughout this paper, we may

identify one economy simply by u ∈ Un, where u = (u1, . . . , un). A feasible
allocation in our economy is a vector z = (zi)i∈N = (xi, yi)i∈N ∈ ([0, x]×R+)n
such that f(x) ≥

P
N yi, where x = (x1, . . . , xn). Let Z be the set of all

feasible allocations.
To complete the description of how our simple economy functions, what

remains is to specify an allocation rule which assigns, to each i ∈ N , how
many hours he/she works, and how much share of output he/she receives in
return. In this paper, an allocation rule is modelled as a game form which
is a pair γ = (M, g), where M = M1 × · · · ×Mn is the set of admissible
profiles of individual strategies, and g is the outcome function which maps

1In what follows, R+, Rn+ and Rn++ denote, respectively, the set of non-negative real
numbers, the non-negative orthant, and the positive orthant in the Euclidean n-space.
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each strategy profile m ∈ M into a unique outcome g (m) ∈ Z. For each
m ∈ M , g (m) = (gi (m))i∈N , where gi (m) = (gi1 (m) , gi2 (m)) and gi1 (m)
∈ [0, x] and gi2 (m) ∈ R+ for each i ∈ N , represents a feasible allocation
resulting from the strategic interactions among individuals represented by
the strategy profile m. Let Γ be the set of all game forms representing
allocation rules of our economy. Given an allocation rule γ = (M, g) ∈ Γ
and an economy u ∈ Un, we obtain a fully-fledged specification of a non-
cooperative game (N, γ,u). Since the set of players N is fixed throughout
this paper, we may omit N and describe a game as (γ,u) ∈ Γ×Un without
ambiguity.
An important juncture in our analysis of the performance of game forms

as social decision-making rules is the specification of the equilibrium concept.
Throughout this paper, we will focus on the Nash equilibrium concept. To
describe an equilibrium outcome of a game (γ,u), where γ = (M,g), de-
fine m−i = (m1, . . . ,mi−1,mi+1, . . . ,mn) for each m ∈ M and i ∈ N , which
is an element of a set M−i := ×j∈N\{i}Mj. Given an m−i ∈ M−i and an
m0
i ∈ Mi, (m0

i;m−i) may be construed as an admissible strategy profile ob-
tained from m by replacing mi with m0

i. Given a game (γ,u) ∈ Γ× Un, an
admissible strategy profile m∗ ∈ M is a pure strategy Nash equilibrium if
ui(gi(m

∗)) ≥ ui(gi(mi;m
∗
−i)) holds for all i ∈ N and all mi ∈Mi. The set of

all pure strategy Nash equilibria of the game (γ,u) is denoted by NE(γ,u).
A feasible allocation z∗ ∈ Z is a pure strategy Nash equilibrium allocation of
the game (γ,u) if z∗ = g(m∗) holds for some m∗ ∈ NE(γ,u). The set of all
pure strategy Nash equilibrium allocations of the game (γ,u) is denoted by
ANE(γ,u).

2.2 Extended Social Ordering Functions

In our comprehensive framework of analysis for social choice of allocation
rules as game forms, a crucial role is played by the concept of extended
social ordering functions, which are defined over the set of extended social
alternatives, viz., pairs of feasible allocations and allocation rules as game
forms. The intended interpretation of an extended social alternative, viz.,
a pair (z, γ) ∈ Z × Γ, is that a feasible allocation z is attained through an
allocation rule γ.2

2The concept of an extended social alternative was introduced by Pattanaik and Suzu-
mura (1994; 1996), capitalizing on the thought-provoking suggestion by Arrow (1951,
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As we explained in section 1, the concept of extended social ordering
functions enables us to treat the principle of individual autonomy, the Pareto
principle on resource allocations, and the principle of equal provision of in-
dividual objective well-being in a unified framework. Indeed, the definition
of social ordering by means of the standard binary relation over the set of
allocations would not enable us to treat the axiom of individual autonomy in
choice procedure appropriately, since the information of such an aspect is not
contained in the description of allocations per se. Likewise, if we adopt the
definition of social ordering by means of the binary relation over the set of
game forms, such a framework would not provide us with the informational
basis for discussing the Pareto principle as an outcome morality as well as
the principle of equal opportunity, which is procedural in nature.
Note that a feasible allocation z ∈ Z may or may not be realizable through

an allocation rule γ ∈ Γ. Indeed, an extended social alternative (z, γ) ∈ Z×Γ
is realizable only when an economy u ∈ Un is given and z ∈ ANE(γ,u) holds.
Thus, an extended social alternative can be judged realizable only when
a profile of individual preference orderings over consequential outcomes is
specified in sharp contrast with the traditional social choice framework. Let
R(u) denote the set of realizable extended social alternatives under u ∈ Un.
What we call an extended social ordering function (ESOF) is a function

Q : Un → (Z × Γ)2 such that Q(u) is an ordering on R(u) for every u ∈
Un.3 The intended interpretation of Q(u) is that, for any extended social
alternatives (z1, γ1), (z2, γ2) ∈ R(u), ((z1, γ1), (z2, γ2)) ∈ Q(u) holds if and
only if attaining a feasible allocation z1 through an allocation rule γ1 is at
least as good as attaining a feasible allocation z2 through an allocation rule γ2

according to the social judgments embodied in Q(u).4 The asymmetric part

pp.89-91). See, also, Suzumura (1996; 1999; 2000) for further clarifications on the use and
usefulness of this approach.

3A binary relation R on a universal set X is a quasi-ordering if it satisfies reflexivity
and transitivity. An ordering is a quasi-ordering satisfying completeness as well.

4Note that this concept of an ESOF enables us to accommodate both consequential
values and procedural values in the social evaluation of feasible allocations and alloca-
tion rules. If an ESOF Qc is such that, for each u ∈ Un, ((z, γ1), (z, γ2)) ∈ I(Qc(u))
holds for all (z, γ1), (z, γ2) ∈ R(u), it represents a social evaluation that cares only about
consequential outcomes of resource allocations. In this sense, Qc may be christened the
purely consequential ESOF. In contrast, an ESOF Qp such that, for each u ∈ Un,
((z1, γ), (z2, γ)) ∈ I(Qp(u)) holds for all (z1, γ), (z2, γ) ∈ R(u) embodies a social evalua-
tion that cares only about procedural features of resource allocations. In this sense, Qp
may be christened the purely procedural ESOF. In between these two polar extreme cases,
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and the symmetric part of Q(u) will be denoted by P (Q(u)) and I(Q(u)),
respectively. The set of all ESOFs will be denoted by Q.
Once an ESOF Q ∈ Q is specified, the set of best extended social alter-

natives is given, for each u ∈ Un, by

B(u : Q) ≡ {(z, γ) ∈ R(u) | ∀(z0, γ0) ∈ R(u) : ((z, γ), (z0, γ0)) ∈ Q(u)}.

The set of socially chosen allocation rules is then given by

D(u : Q) ≡ {γ ∈ Γ | ∃z ∈ Z : (z, γ) ∈ B(u : Q)}.

We say that an allocation rule γ ∈ Γ is uniformly rationalizable5 by means
of the ESOF Q ∈ Q if and only if

γ ∈ ∩
u∈Un

D(u : Q)

holds. By definition, such an allocation rule γ applies uniformly to each
and every u ∈ Un without violating the values embodied in the ESOF
Q. This implies that once γ ∈ ∩

u∈Un
D(u : Q) exists and is socially chosen,

it will prevail no matter how frivolously the profile u undergoes a change.
Since the allocation rule as a game form is nothing other than the formal
method of specifying the legal structure prevailing in the society prior to the
realization of the profile of individual utility functions, it seems desirable, if
at all possible, to design ESOF Q ∈ Q satisfying the requirement of uniform
rationalizability.

3 Fair Allocation Rules as Game Forms

In this section, we will discuss what properties qualify a game form to be a
“fair” allocation rule, and examine the existence of such a rule. Let us begin

there is a wide range of ESOFs which embody both consequential values and procedural
values.

5Recollect that a pair (z, γ) ∈ B(u : Q) is said to be rationalizable by an ordering Q(u)
on R(u) if and only if (z, γ) is judged to be at least as good as any other pair in R(u) in
terms of the ordering Q(u). By a slight abuse of terminology, we may say in this case that
γ ∈ D(u : Q) is rationalizable by Q(u). Then an allocation rule γ ∈ ∩

u∈Un
D(u : Q) may

be said to be uniformly rationalizable, as it is rationalizable by virtue of Q(u) no matter
which u ∈ Un may materialize.
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with three conditions for allocation rules as game forms, which embody a
value of individual autonomy, a value of economic efficiency, and a value of
equal opportunity for individual objective well-being, respectively.
First, we introduce a condition for individual autonomy. If a game form

satisfies this property, then every individual can secure whatever level of his
labor time at the social outcome of strategic interactions among individuals
by an appropriate choice of his own strategy.

Definition 1 [Kranich (1994)]: An allocation rule γ = (M,g) ∈ Γ is labor-
sovereign if, for all i ∈ N and all xi ∈ [0, x], there exists mi ∈Mi such that,
for all m−i ∈M−i, gi1(mi,m−i) = xi.

Let ΓLS denote the subclass of Γ which consists solely of allocation rules
satisfying labor sovereignty.
The next condition requires the Pareto efficiency of equilibrium outcomes.

That is, the Nash equilibrium allocations of the games defined by fair allo-
cation rules as game forms should be Pareto efficient. For each u ∈ Un,
let6

PO(u) ≡ {z ∈ Z | ∀z0 ∈ Z,∃i ∈ N : ui(zi) ≥ ui(z0i)}.
Definition 2: An allocation rule γ = (M,g) ∈ Γ is efficient if, for any
u ∈ Un, z ∈ ANE(γ,u) implies z ∈ PO(u).

Let ΓPE denote the subclass of Γ which consists solely of efficient allocation
rules.

3.1 Functioning and Capability

Our next condition for a fair allocation rule is meant to capture an aspect of
non-welfaristic egalitarianism. It hinges on an objective concept of individual
well-being in the spirit of the functioning and capability approach proposed
by Sen (1980, 1985).
Suppose that there are s basic functionings in the economy, which are

relevant for all individuals in describing their objective well-beings, such as
being healthy and free from diseases, having enough longevity, being well-
informed, being able to participate in community life. These functionings are

6Note that PO(u) is the set of Pareto efficient allocations by virtue of the strict
monotonicity of every utility function.
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attainable by means of consumption vectors. We assume that these s func-
tionings can be measured by means of adequate non-negative real numbers.
Thus, an achievement of functioning k, where k = 1, 2, · · · , s, by individual
i is denoted by bik ∈ R+. Individual i’s achievement of basic functionings is
given by listing bik: bi = (bi1, · · · , bis) ∈ Rs+. For each i ∈ N , i’s capability
correspondence is defined as ci : [0, x]×R+ ³ Rs+ which associates with each
zi ∈ [0, x] × R+ a non-empty subset ci(zi) of Rs+. This ci(zi) is called i’s
capability at his consumption vector zi, which is the opportunity set of basic
functionings when his consumption vector is zi.
In what follows, we assume that the capability correspondences satisfy

the following requirements:

(a) For all zi = (xi, yi), z0i = (x0i, y
0
i) ∈ [0, x] × R+ such that xi = x0i and

yi ≤ y0i (resp. yi < y0i), ci(zi) ⊆ ci(z0i) (resp. ci(zi) ( coi (z
0
i) ) hold, where

coi (z
0
i) stands for the interior of ci(z

0
i) in Rs+;7

(b) For all zi ∈ [0, x]×R+, ci(zi) is compact and comprehensive in Rs+; and
(c) ci is continuous on [0, x]×R+.
Let us denote the universal class of capability correspondences which meet
the above three requirements by C. Given a profile of individual capability
correspondences c ∈ Cn and for each z = (zi)i∈N ∈ Z, c(z) = (ci(zi))i∈N
denotes a feasible assignment of individual capabilities.

3.2 J-Based Capability Maximin Allocations

We are now ready to introduce the third condition for a fair allocation rule
as a game form, which requires that every Nash equilibrium allocation of
the game defined by the allocation rule should guarantee a maximal level of
capability to the least advantaged individual, where the identification of the
least advantaged individual is made in terms of individual capabilities.
To be more precise, we introduce an ordering over capabilities, which

represents an evaluation on the impersonal well-ness of capabilities, in order
to identify who is the least advantaged in terms of capability assignments.
Let the universal set of capabilities be

K ≡
©
C ⊆ Rs+ | ∃c ∈ C & ∃z ∈ [0, x]×R+ : c(z) = C

ª
.

7For all vectors a = (a1, . . . , ap) and b = (b1, . . . , bp) ∈ Rp, a ≥ b if and only if ai ≥ bi
(i = 1, . . . , p); a > b if and only if a ≥ b and a 6= b; a À b if and only if ai > bi
(i = 1, . . . , p).
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Suppose that the society has an evaluation on the impersonal well-ness of
capabilities, which is represented by an ordering relation J ⊆ K×K satisfying
completeness: [for all C,C 0 ∈ K, (C,C 0) ∈ J or (C 0, C) ∈ J ] and transitivity:
[for all C,C 0, C 00 ∈ K, if (C,C 0) ∈ J & (C 0, C 00) ∈ J , then (C,C 00) ∈ J ]. P (J)
and I (J) denote, respectively, the asymmetric part and symmetric part of
J .
At this juncture, let us introduce an appropriate topology into the space

K in terms of the Hausdorffmetric.8 Equipped with this topology, we suppose
that the ordering J satisfies the following intuitively plausible axioms:

(3.1.1) Monotonicity: For any C,C 0 ∈ K, if C ⊇ C 0 then (C,C 0) ∈ J , and
if C0 ⊇ C 0, then (C,C 0) ∈ P (J), where C0 denotes the interior of C in Rs+.
(3.1.2) Dominance: For anyC,C 0, C 00 ∈ K, if [(C,C 0) ∈ P (J) and (C,C 00) ∈
P (J)], then (C,C 0 ∪ C 00) ∈ P (J).

(3.1.3) Continuity: For any C ∈ K and any sequence of capabilities
{Cr}∞r=1 such that Cr ∈ K for all r and C∗ = limr→∞Cr ∈ K, if (Cr, C) ∈ J
for all r, then (C∗, C) ∈ J .

The following characterization of the ordering J ⊆ K×K is due to Xu (2003).

Proposition 1 [Xu (2003)]: If the ordering J ⊆ K×K satisfies Monotonic-
ity, Dominance, and Continuity, then there exists a continuous and increasing
function η : Rs+ → R such that for all C,C 0 ∈ K,

(C,C 0) ∈ J ⇔
∙
max
b∈C

η (b) ≥ max
b0∈C0

η (b0)

¸
.

Denote the admissible class of evaluations which meet all of (3.1.1), (3.1.2),
and (3.1.3) by J .
Given the evaluation J ∈ J and the profile of capability correspondences

c ∈ Cn, let us define the subset CJmin (z) ⊆ K for each feasible allocation

8For any compact sets C, C0 ⊆ Rs+, the Hausdorff metric between C and C 0 is defined
by

d(C,C0) ≡ max{max{δ(b, C) | b ∈ C 0},max{δ(b, C 0) | b ∈ C}},
where δ(b, C) ≡ min

b0∈C
k b,b0 k, and k b,b0 k is the Euclidean distance between b and b0.
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z = (z1, . . . , zn) ∈ Z by: ci (zi) ∈ CJmin (z) if and only if (cj (zj) , ci (zi)) ∈ J
for all j ∈ N . For any J ∈ J and any x ∈ [0, x]n, we now define9

Z(x; J) ≡
©
(x,y) ∈ Z | ∀(x,y0) ∈ Z :

¡
CJmin (x,y) , CJmin (x,y0)

¢
∈ J

ª
.

The set Z(x;J) consists of feasible allocations which are maximal in terms
of the evaluation J for the given x ∈ [0, x]n. In this sense, this set may be
construed to consist of J-reference capability maximin allocations for the
given x ∈ [0, x]n. We are now ready to define the third condition as follows:

Definition 3: An allocation rule γ = (M, g) ∈ Γ is called the J-reference
capability maximin rule if, for any u ∈ Un, z ∈ ANE(γ,u) implies z ∈
Z(x;J), where z = (x,y).10

Let ΓJCM denote the subclass of Γ which consists solely of J-reference capa-
bility maximin allocation rules.

3.3 Existence of Fair Allocation Rules as Game Forms

Let us now discuss the existence of a fair allocation rule as a game form which
is labor sovereign, Pareto efficient, and J-reference capability maximin. A
game form γ = (M,g) is said to be Nash-solvable if ANE(γ,u) 6= ∅ for each
and every u ∈ Un. Denote the set of Nash solvable game forms by ΓNS.

Assumption 1: The utility function ui of each and every agent has the
following property: ∀zi ∈ [0, x)×R++, ui(zi) > 0, and ui(x, 0) = 0.

Assumption 2: The production function f is continuously differentiable.

Theorem 1: Under Assumption 1 and Assumption 2, and for any given
evaluation J ∈ J , there exists an allocation rule γ∗ ∈ ΓLS∩ΓPE∩ΓJCM∩ΓNS.

In this theorem, Assumption 1 can be weakened to the claim that ui is
bounded from below. Moreover, Assumption 2 is not essential: it is intro-
duced just to simplify the argument. Indeed, we can construct an allocation

9The use of the expression
¡
CJmin (z) , CJmin (z0)

¢
∈ J in this definition is slightly abusive.

The rigorous expression should go as follows: for any ci (zi) ∈ CJmin (z) and any cj
¡
z0j
¢
∈

CJmin (z0),
¡
ci (zi) , cj

¡
z0j
¢¢
∈ J holds.

10This type of allocation rule originates in Gotoh and Yoshihara (1999, 2003).
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rule having the property of Theorem 1 even without Assumption 2, al-
though the construction of such an allocation rule will be more complicated
than the current method.
Although Gotoh and Yoshihara (1999, 2003) proposed and character-

ized the class of allocation rules ΓLS ∩ ΓJCM , it was unclear whether or not
there exists an element of this class which also belongs to ΓPE. Here, how-
ever, Theorem 1 asserts that if the method of ranking capability sets is
constrained by the three plausible conditions (3.1.1), (3.1.2), and (3.1.3)
introduced by Xu (2002, 2003), we can successfully find an allocation rule in
ΓLS ∩ ΓPE ∩ ΓJCM ∩ ΓNS.

4 ESOFs for Rationalizing Fair Allocation Rules

4.1 Three Basic Axioms on ESOFs and Their Compat-
ibility

In what follows, we will examine the possibility of an ESOF embodying
the three distinct values of individual autonomy, economic efficiency, and
equal opportunity for individual objective well-being, along with uniform
rationalizability of the allocation rule γ∗. To begin with, let us formulate
three basic axioms of ESOFs, which go as follows:

Labor Sovereignty (LS): For any u ∈ Un and any (z, γ), (z0, γ0) ∈ R(u),
if γ ∈ ΓLS and γ0 ∈ Γ \ ΓLS, then ((z, γ), (z0, γ0)) ∈ P (Q(u)).

Respect of the J-Reference Least Advantaged (J-LA): For any u ∈
Un and any (z, γ), (z0, γ0) ∈ R(u), if z = (x,y), z0 = (x0,y0) and x = x0,
then:

((z, γ), (z0, γ0)) ∈ Q(u)⇔
¡
CJmin (z) , CJmin (z0)

¢
∈ J ,

((z, γ), (z0, γ0)) ∈ P (Q(u))⇔
¡
CJmin (z) , CJmin (z0)

¢
∈ P (J) .

Pareto in Allocations (PA): For any u ∈ Unand any (z, γ), (z0, γ0) ∈
R(u), if ui(zi) > ui(z0i) for all i ∈ N , then ((z, γ), (z0, γ0)) ∈ P (Q(u)), and
if ui(zi) = ui(z0i) for all i ∈ N , then ((z, γ), (z0, γ0)) ∈ I(Q(u)).

Among the above three axiom, LS is the requirement of purely procedural
fairness, as it imposes some constraints on the admissible class of ESOFs
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without having recourse to the nature of consequential outcomes. J-LA is
the requirement of non-welfaristic egalitarianism, which attempts to enable
the least advantaged individual, where being least advantaged is identified
in terms of his capability through the social value judgements J , to secure
as large capability as possible by choosing a feasible allocation appropriately.
Finally, PA, being a variant of Paretianism, is based squarely on welfaristic
consequentialism.
It may well be asked why J-LA imposes the premise x = x0. The reason

is twofold. First, the choice of individual labor hours is a matter to be left to
individual responsibility, and social value judgements should respect individ-
ual choices on a matter of this nature. Second, since J is a complete ordering,
if the requirement of J-LA is applied to ESOFs without the premise x = x0,
then it gives us a complete ordering by this axiom only, leaving no room for
applying the Paretian axiom at all.
It is of little surprise that for any J ∈ J , there exists no social ordering

function which satisfies any two of the basic LS, J-LA, and PA. When two
or more basic principles irrevocably conflict with each other and yet we do
not want to discard any one of these principles altogether, a natural step
to follow is to introduce a priority rule among these principles and define
their lexicographic combinations. This idea has been explored repeatedly in
the literature of normative economics, the most recent example being Koichi
Tadenuma (2003).
To explore this intuitive idea systematically in our present context, take

any distinct α,β,γ ∈ {LS, J-LA,PA} and define a subclass Qα`β`γ of
ESOFs as follows: any Q ∈ Qα`β`γ implies that, for any (z, γ), (z0, γ0) ∈
R(u), ((z, γ), (z0, γ0)) ∈ Q (u) (resp. P (Q (u))) if (1) the axiom α requires
it; (2) the axiom β requires it, given that the axiom α keeps silence; or (3)
the axiom γ requires it, given that the axioms α and β keep silence.11 Let
us define Qlex ≡ ∪Qα`β`γ over all distinct α,β, γ ∈ {LS, J -LA, PA}, in
11Recollect that LS, J-LA, and PA are expressed in the conditional form of “if (A),

then (B)” style. Thus, whenever the condition (A) is not satisfied for Axiom α, where
α ∈ {LS, J-LA,PA}, Axiom α has nothing to offer and must keep silence. This being
the case, an ESOF Q ∈ Qα`β`γ , where α,β,γ ∈ {LS, J-LA,PA}, simply implies that
Axiom β can have a bite only when the condition (A) is not satisfied for Axiom α,
thereby forcing Axiom α to keep silence; and Axiom γ can have a bite only when the
condition (A) is not satisfied for Axiom α as well as for Axiom β, thereby forcing
Axiom α and Axiom β to keep silence. In other words, in Q ∈ Qα`β`γ , Axiom α has
a lexicographic priority to Axiom β and Axiom γ, and Axiom β has a lexicographic
priority to Axiom γ.

13



which each Q ∈ Qlex applies the three basic axioms lexicographically.
Even these lexicographic combinations of the basic three axioms are in-

compatible, as the following proposition holds.

Proposition 2: Qlexis empty.

It is not difficult to check the consistency of the lexicographic combination of
LS and J -LA as well as that of LS and PA. This being the case, the culprit
of the impossibility result, viz., Proposition 2, should be attributed to
the impossibility of lexicographically combining J -LA and PA. The essence
of the proof of Proposition 2 can be presented in terms of the following
example, which illustrates the impossibility of lexicographically combining
J -LA and PA.

Example 1: Let there be two types of relevant functionings, and let N =
{1, 2} and x = 3. The production function is given by f(x1, x2) = x1 + x2
for all (x1, x2) ∈ R2+. Individuals have the same capability correspondence c
which is defined as follows: For any z ∈ [0, x]×R+

c(z) ≡
©
(b1, b2) ∈ R2+ | ∃z1, z2 ∈ [0, x]×R+: z1 + z2 ≤ z, bk = ak(zk) (k = 1, 2)

ª
where a1(x, y) ≡ (x − x)

2
3 · y 13 and a2(x, y) ≡ (x − x)

1
3 · y 23 for any (x, y) ∈

[0, x]×R+. Note that the mapping ak(·) assigns to each consumption vector
an achievement of functioning k. Thus, bk = ak(z

k) implies that if the
consumption vector zk is utilized for functioning k, then it is attained at the
level of bk.
Consider two feasible allocations z∗ = ((1, 1), (1, 1)) and z∗∗ = ((2, 2), (2, 2)).

For some θ ∈ (0, 1), let z∗(θ) = ((1, 1 + θ), (1, 1 − θ)) and z∗∗(θ) = ((2, 2 −
θ), (2, 2+θ)). It is easy to check that, for any J ∈ J ,

¡
CJmin (z∗) , CJmin (z∗(θ))

¢
∈

P (J) and
¡
CJmin (z∗∗) , CJmin (z∗∗(θ))

¢
∈ P (J), since J satisfies (3.1.1). Indi-

vidual 1’s utility function u1 is defined for all (x, y) ∈ [0, x]×R++ by

u1(x, y) = (1− θ) · (x− x) + y,

whereas individual 2’s utility function u2 is defined for all (x, y) ∈ [0, x]×R++
by

u2(x, y) =

½
(1− θ) · (x− x) + y if x ∈ [0, 1)
(1 + θ) · (x− x) + y if x ∈ [1, x] .

14



This situation is described in the consumption space and in the functioning
space in Figure 1.

Insert Figure 1 around here

Let γ∗, γ∗(θ), γ∗∗, and γ∗∗(θ) be the allocation rules in Γ\ΓLS which
generate the realizable allocations z∗, z∗(θ), z∗∗, and z∗∗(θ), respectively,
when the economy is defined by u = (u1, u2) ∈ U2.
Take any ESOF Q ∈ Qlex. Then, compare (z∗, γ∗) with (z∗(θ), γ∗(θ)),

and (z∗∗, γ∗∗) with (z∗∗(θ), γ∗∗(θ)). Since γ∗, γ∗(θ), γ∗∗, γ∗∗(θ) ∈ Γ\ΓLS, and
z∗ (resp. z∗∗) and z∗(θ) (resp. z∗∗(θ)) are Pareto non-comparable, LS and
PA keep silence for any Q ∈ Qlex. In contrast, by J-LA, we have, for any
Q ∈ Qlex,

((z∗, γ∗), (z∗(θ), γ∗(θ))) ∈ P (Q(u)), ((z∗∗, γ∗∗), (z∗∗(θ), γ∗∗(θ))) ∈ P (Q(u)).

Next, compare (z∗∗, γ∗∗) with (z∗(θ), γ∗(θ)), and (z∗∗(θ), γ∗∗(θ)) with (z∗, γ∗).
In this case, not only LS but also J-LA keep silence, since x∗∗ 6= x∗(θ) and
x∗∗(θ) 6= x∗. In contrast, by PA, we have, for any Q ∈ Qlex,

((z∗(θ), γ∗(θ)), (z∗∗, γ∗∗)) ∈ I(Q(u)), ((z∗∗(θ), γ∗∗(θ)), (z∗, γ∗)) ∈ I(Q(u)),

since u1(z∗1(θ)) = u1(z
∗∗
1 ) = 3− θ, u2(z∗2(θ)) = u2(z

∗∗
2 ) = 3 + θ, u1(z∗∗1 (θ)) =

u1(z
∗
1) = 3 − 2θ, and u2(z∗∗2 (θ)) = u2(z∗2) = 3 + 2θ. Thus, any Q ∈ Qlex is

not a consistent binary relation,12 hence it cannot be an ordering.

4.2 Existence of ESOFs Uniformly Rationalizing γ∗

To secure the existence of a compatible lexicographic combination of our basic
axioms, further concession seems to be indispensable in view of Proposition
2. For each given J ∈ J , let us introduce the following conditional variants
of J-LA and PA, respectively:
12A finite subset {x1, · · · , xt} of a universal set X, where 2 ≤ t < +∞, satisfying

(x1, x2) ∈ P (R), (x2, x3) ∈ R, · · ·, (xt, x1) ∈ R is called an incoherent cycle of order t of
a binary relation R on X. R is said to be consistent if there exists no incoherent cycle
of any order. A binary relation R∗ is called an extension of R if and only if R ⊆ R∗

and P (R) ⊆ P (R∗). It is shown in Suzumura (1983, Theorem A(5)) that there exists an
ordering extension of R if and only if R is consistent.
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J-LA ∩ PO: For any u ∈ Un and any (z, γ), (z0, γ0) ∈ R(u) with z, z0 ∈
PO(u), if z = (x,y), z0 = (x0,y0), and x = x0, then:

((z, γ), (z0, γ0)) ∈ Q(u)⇔
¡
CJmin (z) , CJmin (z0)

¢
∈ J ,

((z, γ), (z0, γ0)) ∈ P (Q(u))⇔
¡
CJmin (z) , CJmin (z0)

¢
∈ P (J) .

PA ∩ Z(J): For any u ∈ Un and any (z, γ), (z0, γ0) ∈ R(u) such that z =
(x,y) ∈ Z(x;J) and z0 = (x0,y0) ∈ Z(x0;J), if ui(zi) > ui(z0i) for all i ∈ N ,
then ((z, γ), (z0, γ0)) ∈ P (Q(u)), and if ui(zi) = ui(z

0
i) for all i ∈ N , then

((z, γ), (z0, γ0)) ∈ I(Q(u)).

Observe that z, z0 ∈ PO(u) implies that z and z0 are Pareto noncomparable.
This implies that J-LA∩PO requires the applicability of J-LA in the special
case where PA keeps silence. Also, observe that z = (x,y) ∈ Z(x; J) and
z0 = (x0,y0) ∈ Z(x0;J) imply x 6= x0 as we will show below. This implies
that PA ∩ Z(J) requires the applicability of PA in the special case where
J-LA keeps silence.
Now, for each given J ∈ J , let us consider two subclasses of ESOFs,

viz., QLS`J-LA`(PA∩Z(J)) and QLS`PA`(J-LA∩PO). Note that QLS`J-LA`PA ⊆
QLS`J-LA`(PA∩Z(J)) and QLS`PA`J-LA ⊆ QLS`PA`(J-LA∩PO). This is because
Q ∈ QLS`J-LA`(PA∩Z(J)) implies that for any (z, γ), (z0, γ0) ∈ R(u), ((z, γ), (z0, γ0)) ∈
Q (u) (resp. P (Q (u))) holds if (1) LS requires it; or (2) J-LA requires it,
given that LS keeps silence; or (3) PA requires it, given that not only LS and
J-LA keep silence, but also z = (x,y) ∈ Z(x;J) and z0 = (x0,y0) ∈ Z(x0;J)
hold. Also, Q ∈ QLS`PA`(J-LA∩PO) implies that for any (z, γ), (z0, γ0) ∈ R(u),
((z, γ), (z0, γ0)) ∈ Q (u) (resp. P (Q (u))) holds if (1) LS requires it; or (2)
PA requires it, given that LS keeps silence; or (3) J-LA requires it, given
that not only LS and PA keep silence, but also z, z0 ∈ PO(u) holds.
Thus, although both QLS`J-LA`PA and QLS`PA`J-LA are empty as is

shown in Proposition 2, it may well be expected that QLS`J-LA`(PA∩Z(J))
and QLS`PA`(J-LA∩PO) might be non-empty. The following theorems show
that this is indeed the case.

Theorem 2: For any J ∈ J , there exists Q∗J ∈ QLS`J-LA`(PA∩Z(J)) such
that ∩

u∈Un
D(u : Q∗J) = ΓLS ∩ ΓPE ∩ ΓJCM ∩ ΓNS.

Theorem 3: For any J ∈ J , there exists Q∗∗J ∈ QLS`PA`(J-LA∩PO) such
that ∩

u∈Un
D(u : Q∗∗J ) = ΓLS ∩ ΓPE ∩ ΓJCM ∩ ΓNS.
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According to Theorem 2 and Theorem 3, there exist two types of ESOFs
which not only combine lexicographically two conditional variants of our
three basic moral principles, but also uniformly rationalize a fair allocation
rule identified by Theorem 1. In other words, the three intrinsic values of
individual autonomy, economic efficiency, and equitable provision of decent
living standard can be made compatible, subject to constraints, in construct-
ing a fair allocation rule as a game form, as well as in constructing a fair
extended social ordering function.13 Note that Theorem 1 demonstrated
the existence of a fair allocation rule as a game form which is identified by
our three moral principles, together with the Nash solvability of the game
form. In contrast, Theorem 2 and Theorem 3 demonstrated the existence
of two types of ESOFs which enable us not only to identify the optimal allo-
cation rule in the sense of Theorem 1, but also to identify the suboptimal
allocation rules subject to some common constraints imposed on the set of
labor sovereign game forms.
Another interesting feature of Theorem 2 and Theorem 3 seems to

be worthwhile to point out. In general, the difference in the order of lexico-
graphically combining various axioms should lead to the difference of rational
choices thereby identified. In view of this fact, a conspicuous feature of The-
orem 2 and Theorem 3 is that the ESOFs identified by these theorems
can commonly yield a set of the first-best allocation rules as game forms
including γ∗ in Theorem 1 as their uniformly rational game forms.

5 Conclusion

In the concrete context of a simple production economy, this paper iden-
tified three moral principles on the desirability of resource allocation rules
as game forms. The first principle is procedural in nature, and it requires

13Q∗J in Theorem 2 and Q∗∗J in Theorem 3 commonly confer priority to LS. LS
being an axiom of procedural fairness, Q∗J and Q

∗∗
J belong to the subclass of ESOFs

which give priority to procedural considerations vis-à-vis consequential considerations. We
can likewise consider the possible subclass of ESOFs which give priority to consequential
considerations vis-à-vis procedural considerations. To be precise, it can be shown that:

Theorem*: For any J ∈ J , QJ-LA`(PA∩Z(J))`LS (resp.QPA`(J-LA∩PO)`LS) 6= ∅.
However, there is no real parallelism between Theorem 2 and Theorem 3, on the one

hand, and Theorem*, on the other. This is because an ESOF Q in Theorem* may
well fail to assure the non-emptiness of B(u : Q).
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that all individuals should be assured of the minimal extent of autonomy in
choosing his contribution to cooperative production. The second principle is
purely consequential in nature, and it requires that the consequential social
outcomes should be Pareto efficient. The third principle requires that the
consequential social outcome should warrant each and every individual of an
equitable provision of decent living standard, which may be formally iden-
tified by means of the maximin assignment of individual capabilities in the
sense of Sen.
It goes without saying that each one of these principles, in isolation, is

a highly appealing moral claim. In combination, however, they represent a
moral claim which is logically too demanding to be satisfied. A natural re-
sponse to this logical impasse in the light of Rawls’s (1971, 1993) thoughtful
suggestion is to combine these principles lexicographically. In a related but
distinct context of the equity-efficiency trade-off, Tadenuma (2002) success-
fully exploited this idea and has shown that the equity-first and efficiency-
second lexicographic combination of these two moral principles can resolve
the equity-efficiency trade-off, whereas the efficiency-first and equity-second
lexicographic combination thereof cannot serve as a resolvent of the equity-
efficiency trade-off. In our present context, however, we have shown that any
one of the possible lexicographic combinations of our three moral principles
still represent a moral claim which is logically too demanding to be satisfied.
In this sense, Sen and Williams’s (1982) acute warning is fully justified in our
analytical setting. We are thus led to examine the conditional versions of the
component moral principles and their lexicographic combinations. Theorem
2 and Theorem 3, which represent our possibility theorems in this paper,
are on the workability of lexicographic combinations of conditional moral
principles. It is true that the workable lexicographic combinations of condi-
tional moral principles are far more complex than the simple lexicographic
combinations of moral principles à la Rawls. This being the case, it is all
the more noteworthy that these conditional moral principles can neverthe-
less uniformly rationalize in common the set of fair allocation rules as game
forms, whose existence is established by Theorem 1.
Let us conclude by pointing out an open question. It is one thing to

show the existence of a social ordering function which may identify a fair
resource allocation rule as a game form, and it is quite another to show how
such a social ordering function can be generated through democratic social
decision-making procedures. However, an analysis to the latter effect requires
altogether distinct conceptual development, which cannot but be left as one
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of our future agendas.

6 Appendix

6.1 Proof of Theorem 1

Let the set of feasible assignments of capabilities be defined by

C (Z) ≡ {c (z) ∈ Kn | z ∈ Z} ,

which is compact in the Hausdorff topological space Kn. Define a compact-
valued and continuous correspondence Y : [0, x]n ³ Rn+ by Y (x) ≡ {y =
(yi)i∈N ∈ Rn+ | f(x) ≥

P
N yi} for each x ∈ [0, x]n. Then, we can show, given

J ∈ J and the profile of capability correspondences c ∈ Cn, the following
lemmas.

Lemma 1: For each x ∈ [0, x]n, Z (x; J) is non-empty and compact.

Proof. For each x ∈ [0, x]n, letC ({x} × Y (x)) ≡ {c (x,y) ∈ C (Z) | y ∈ Y (x)}
andMC (x) ≡

©
c (x,y) ∈ C (Z) | ∀y0 ∈ Y (x) :

¡
CJmin (x,y) , CJmin (x,y0)

¢
∈ J

ª
.

Since J is continuous on K and C ({x} × Y (x)) is compact, we are assured
that MC (x) is non-empty and compact. Thus, Z (x;J) is non-empty and
compact.

Lemma 2: For each x ∈ [0, x]n, z ∈ Z (x;J) implies (ci (zi) , cj (zj)) ∈ I (J)
for all i, j ∈ N .

Proof. Suppose there exist x ∈ [0, x]n and z ∈ Z (x;J) such that (ci (zi) , cj (zj)) ∈
P (J) for some i, j ∈ N . Then,

¡
ci (zi) , C

J
min (z)

¢
∈ P (J) holds. Consider an

alternative allocation z0 ∈ Z in which

z0i = (xi, yi − ε) for some small enough ε > 0,

z0j =

µ
xj, yj +

ε

#N (CJmin (z))

¶
for all j ∈ N

¡
CJmin (z)

¢
, and

z0h = (xh, yh) for any other h ∈ N\
¡
N
¡
CJmin (z)

¢
∪ {i}

¢
,

where N
¡
CJmin (z)

¢
≡
©
j ∈ N | cj (zj) ∈ CJmin (z)

ª
. Then, by the conditions

(a) and (c) of capability correspondences, we can see that
¡
cj
¡
z0j
¢
, cj (zj)

¢
∈
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P (J) for all j ∈ N
¡
CJmin (z)

¢
, and so that

¡
CJmin (z0) , CJmin (z)

¢
∈ P (J) holds,

which is a contradiction.

Lemma 3: For each x ∈ [0, x]n, Z (x; J) is singleton.

Proof. Suppose there exist x ∈ [0, x]n and z, z0 ∈ Z (x; J) such that
z 6= z0, which implies y 6= y0. Thus, there exists at least two individuals
i, j ∈ N such that yi > y0i and yj < y0j. Then, by the condition (a) of
capability correspondences, coi (zi) ) ci (z

0
i) and cj (zj) ( coj

¡
z0j
¢
. By these

set-inclusion relations, (3.1.1) of J , and Lemma 2, (ci (zi) , cj (zj)) ∈ I (J)
and

¡
cj
¡
z0j
¢
, ci (z

0
i)
¢
∈ P (J) should hold. However, since z0 ∈ Z (x;J),¡

ci (z
0
i) , cj

¡
z0j
¢¢
∈ I (J) should also hold by Lemma 2, which is a contradic-

tion.

Let us define an ordering RJ ⊆ Z × Z as follows: for all z, z0 ∈ Z,
(z, z0) ∈ RJ (resp. P (RJ))⇔

¡
CJmin (z) , CJmin (z0)

¢
∈ J (resp. P (J)). Since c

is continuous, RJ is continuous on Z.

Lemma 4: ∪
x∈[0,x]n

Z(x;J) has a closed graph in Z.

Proof. Let a sequence {(xλ,yλ)}+∞λ=1 be such that (xλ,yλ) → (x,y) as
λ → +∞, and (xλ,yλ) ∈ Z(xλ; J) for every λ = 1, . . ., ad. inf. Sup-
pose that (x,y) /∈ Z(x;J). Then, there exists (x,y0) ∈ Z(x; J) such that
((x,y0), (x,y)) ∈ P (RJ), because Z(x;J) is the set of maximal element of RJ
over {x}×Y (x). Since Y is l.h.c., there exists a sequence {(xλ,y

0λ)}+∞λ=1 such
that (xλ,y

0λ) ∈ {xλ}×Y (xλ) for every λ = 1, . . ., ad. inf., and (xλ,y
0λ) →

(x,y0) (λ→ +∞). Then, for a large enough λ, ((xλ,y
0λ), (xλ,yλ)) ∈ P (RJ)

by continuity of RJ on {x} × Y (x), which is a contradiction. It follows that
∪

x∈[0,x]n
Z(x;J) has a closed graph in Z.

Proposition 3 [Yoshihara (2000)]14: let Assumption 1 hold. Let h :
[0, x]n → Rn+ be a continuous function such that, for each x ∈ [0, x]n, h(x) =
y and f(x) =

P
N yi. Then, for any u ∈ Un, there exists x∗ ∈ [0, x]n such

that (x∗, h(x∗)) is a Pareto efficient allocation for u.

14Corchón and Puy (1998; Theorem 1) showed the same result under a stronger assump-
tion than that in this proposition.
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Proof. Given u ∈ Un, let S(u) be the utility possibility set of feasible
allocations, and ∂S(u) be its boundary. Since every utility function is strictly
increasing, ∂S(u) is the set of Pareto efficient utility allocations.
By Assumption 1, 0 /∈ ∂S(u). Thus, Σuh > 0 for every u = (ui)i∈N ∈

∂S(u), and the mapping

bv : ∂S(u)→4n−1 such that bv(u) = u

Σuh

is well-defined and continuous on ∂S(u), where 4n−1 is an n−1-dimensional
unit simplex. By Arrow and Hahn (1971; Lemma 5.3, p.114), bv is a homeo-
morphism. Denote its inverse by bu. Define a correspondencecW : 4n−1 ³ Z by cW (bu(v)) ≡ {z ∈ Z | ui(zi) ≥ bui(vi)(∀i ∈ N)}.
By Arrow and Hahn (1971; Theorem 4.5, Corollary 5, p.99), cW is upper
hemi-continuous with non-empty, compact and convex values.
Given a continuous function h and z = (xi, yi)i∈N ∈ Z, let Ei(x, yi) ≡

hi(x)− yi. Then, we define the following optimization problem:

max
v∈4n−1

X
vi · Ei(x, yi).

By Berge’s maximum theorem, we can define an upper hemi-continuous cor-
respondence Θ : Z ³ 4n−1 by

Θ(z) ≡ {v∗∈ 4n−1 | v∗ ∈ arg max
v∈4n−1

X
vi ·Ei(x, yi)}.

Note that Θ is non-empty, compact and convex-valued.
Now, we define a correspondence Φ : 4n−1 × Z ³ 4n−1 × Z by

Φ(v, z) ≡ Θ(z)×cW (bu(v)),
which is upper hemi-continuous with non-empty, compact and convex values.
By Kakutani’s fixed point theorem,

∃(v∗, z∗) ∈ 4n−1 × Z s.t. (v∗, z∗) ∈ Φ(v∗, z∗).

By definition, bu(v∗) = (ui(z∗i ))i∈N , so that z∗ is Pareto efficient for u. Finally,
we show that z∗ = (x∗, h(x∗)). To do this, it is sufficient to show Ei(x∗, y∗i ) =
0 for all i ∈ N . Assume that there exists j ∈ N such that Ej(x∗, y∗j ) > 0.
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Then, since z∗ is Pareto efficient, there exists l ∈ N such that El(x∗, y∗l ) < 0.
To maximize

P
vi ·Ei(x, yi), we obtain v∗l = 0. Then, ul(z∗l ) = bul(v∗l ) = 0, so

that, by the strict monotonicity of ul and Assumption 1, we obtain either
(1) x∗l = x and y∗l > 0, or (2) x∗l ≤ x and y∗l = 0. First, (1) is impossible
because z∗ is Pareto efficient for u. In fact, the vector (1, 0) is a unique price
which supports z∗l of case (1) as an expenditure minimizing consumption.
However, (1, 0) cannot be consistent with any profit maximizing production
except the origin. Second, (2) impliesEl(x∗, y∗l ) ≥ 0, which is a contradiction.
Thus, Ei(x∗, y∗i ) = 0 for all i ∈ N , as was to be verified.

Lemma 5: Let Assumption 1 hold. Then, for each u ∈ Un, there exists a
Pareto efficient allocation z∗ ∈ Z such that z∗ ∈ ∪

x∈[0,x]n
Z(x; J).

Proof. Let a correspondence hJ : [0, x]n ³ Y ([0, x]n) be such that {x}×hJ(x) =
Z(x;J) for each x ∈ [0, x]n. Since Y ([0, x]n) is compact, hJ is u.h.c. by
Lemma 4. Moreover, for each x ∈ [0, x]n, hJ(x) is singleton, since Z(x;J)
is singleton by Lemma 3. Thus, hJ is a continuous function. Then, un-
der Assumption 1, we can obtain the desired result by the application of
Proposition 3.

Proposition 4 [Yoshihara (2000)]: Let Assumption 1 and Assumption
2 hold. Let h : [0, x]n → Rn+ be a continuous function such that, for each
x ∈ [0, x]n, h(x) = y and f(x) =

P
N yi, and for any i, j ∈ N with ci =

cj, xi = xj implies hi(x) = hj(x). Then, there exists a game form γ =
(([0, x]×R+)n, g) ∈ ΓLS such that, for any u ∈ Un, z ∈ ANE(γ,u) holds if
and only if z = (x, h(x)), and it is Pareto efficient.

Proof. By Proposition 3, the continuous function h attains some Pareto
efficient allocations for each u ∈ Un. In other words, for any u ∈ Un, there
exists x∗ ∈ [0, x]n such that (x∗, h(x∗)) is a Pareto efficient allocation for
u. Let us denote by P (h : u) the set of all such Pareto efficient allocations
which are attained by h under u ∈ Un. Note that ([0, x]n, h) ∈ ΓLS. For h,
we sometimes use notation like hi(x), which refers to the i-th component of
the vector h(x).

Step 1: For each bz ∈ P (h : u), we construct an outcome function hbz :
[0, x]n → Rn+ such that

¡
[0, x]n, hbz¢ ∈ ΓLE and bz ∈ ANE ¡¡[0, x]n, hbz¢ ,u¢.
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By Assumption 2, we can define a continuous function f 0i : [0, x]n → R+
by f 0i(x) ≡ ∂f(x)

∂xi
for all x ∈ [0, x]n. Given u ∈ Un, bz = (bx, by) ∈ P (h : u), and

i, j ∈ N , let

λij(bx) ≡
( byi+·f 0i(bx)·(bxj−bxi)−hi(bx−i,bxj)

(bxj−bxi)2 if bxj 6= bxi
0 if bxj = bxi .

Given u ∈ Un, bz ∈ P (h : u), and x ∈ [0, x]n, define for each i ∈ N ,
Ψi(x) =

( byi + f 0i(bx) · (xi − bxi) if xi ∈ (bxi − εi(bx), bxi + εi(bx))byi + hf 0i(bx) · (xi − bxi)− µij∗(xi)(bx) · (xi − bxi)2i otherwise ,
where

εi(bx) ≡ min
j 6=i, bxj 6=bxik bxj, bxi k , j∗(xi) = max

j 6=i

½
arg min

j 6=i
k bxj, xi k¾ ,

and

µij∗(xi)(bx) = ½ λij∗(xi)(bx) if 0 ≤ λij∗(xi)(bx)
0 otherwise

.

By construction of Ψi(x), we have (i) Ψi(x) = byi if xi = bxi; (ii) Ψi(x) ≤ byi+
f 0i(bx)·(xi−bxi) if xi 6= bxi; and (iii)Ψi(x) = min{hi(bx−i, xi), byi+f 0i(bx)·(xi−bxi)}
if xi = bxj for some j 6= i.
For each i ∈ N , define

ζi(x) = min {max (0,Ψi(x)) , f(x)} .

Moreover, for each i ∈ N and each x ∈ [0, x]n, define

n(x, xi) ≡ #{j ∈ N | xj = xi}.

Then, given u ∈ Un and bz ∈ P (h : u), define a function hbz : [0, x]n → Rn+ as
follows: for each x ∈ [0, x]n, and for each i ∈ N ,

hbzi (x)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ζi(x) if ∀j 6= i, xj = bxj,
[f(x)− n(x, xj) · ζj(x)] · 1

n−n(x,xj) if ∃j 6= i, ∀l 6= j, xl = bxk, & xj 6= bxi
ζj(x) if ∃j 6= i, ∀l 6= j, xl = bxl, & xj = bxi
hi(x) otherwise.
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This hbz has the following properties: (I) ¡[0, x]n, hbz¢ ∈ ΓLE; and (II)bz ∈ ANE ¡¡[0, x]n, hbz¢ ,u¢ whenever bz ∈ P (h : u). The property (II) follows
from the property (ii) of (Ψi)i∈N .

Step 2: We construct two outcome functions h0 and hm such that ([0, x]n, h0),¡
[0, x]n × Rn+, hm

¢
∈ ΓLS.

Let us introduce two functions h0 and hm as follows:

(1) h0 : [0, x]n → Rn+ by h0 (x) = 0 for each (x,y) ∈ [0, x]n ×Rn+,
and
(2) hm : [0, x]n ×Rn+ → Rn+ by,

hmi (x,y) =

(
f(x)

#(maxN(y))
if i ∈ Nm(y)

0 if k /∈ Nm(y)
,

for each (x,y) ∈ [0, x]n × Rn+, and for all i ∈ N , where Nm(y) ≡ {i ∈ N |
∀j ∈ N : yi ≥ yj}.

It is clear that ([0, x]n, h0) ,
¡
[0, x]n ×Rn+, hm

¢
∈ ΓLS. Note that for any

u ∈ Un, there is no Nash equilibrium for the game defined by
¡
[0, x]n × Rn+, hm

¢
.

Step 3: We construct a game form γ∗ = (([0, x]×R+)n, g∗), in which g∗ is
defined by using {hbz}bz ∈ ∪

u∈Un
P (h:u), h0, and hm.

Given x ∈ [0, x]n and y ∈ Rn+, let ρ(x,y : h) ≡ {u ∈ Un | (x, h(x)) ∈
P (h : u) & h(x) = y}. Let us call (x,y) ∈ Z a potential P h-allocation if
ρ(x,y : h) 6= ∅. Given x ∈ [0, x]n and y ∈ Rn+, let

N(x,y) ≡ {l ∈ N | ∃(x0l, y0l)(6= (xl, yl)) ∈ [0, x]×R+ : ρ((x0l,x−l), (y0l,y−l) : h) 6= ∅}.

The set N(x,y) will be used in defining γ∗ below as the set of potential
deviators. That is, if ρ(x,y : h) = ∅, and there is some j ∈ N(x,y), then
this j may be interpreted as deviating from P (h : u) for some u ∈ Un.
Given j ∈ N , x ∈ [0, x]n, and y ∈ Rn+, let

Xj(x−j,y−j) ≡
©
x0j ∈ [0, x] | ρ

¡¡
x0j, hj(x

0
j,x−j)

¢
, (x−j,y−j) : h

¢
6= ∅

ª
, and

Z(xj,x−j,y−j) ≡
©¡¡
x0j, hj(x

0
j,x−j)

¢
, (x−j,y−j)

¢
∈ Z | x0j ∈ Xj(x−j,y−j)

ª
.

Moreover, given j ∈ N , x ∈ [0, x]n, and y ∈ Rn+, let

bz(xj,x−j,y−j) ≡ arg min
((x0j ,y

0
j),(x−j ,y−j))∈Z(xj ,x−j ,y−j)

y0j + f
0
j(x

0
j,x−j) · (xj − x0j).
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Note that the above three notations will be used in defining γ∗ below to
punish a unique potential deviator. If ρ(x,y : h) = ∅ and {j} = N(x,y),
then we can identify j as the unique potential deviator. Then, by definition
of N(x,y), Xj(x−j,y−j) is non-empty, so that Z(xj,x−j,y−j) is non-empty.
Note that Z(xj,x−j,y−j) is the set of potential P h-allocations which would
be implemented if j were not to deviate. Then, by selecting bz(xj,x−j,y−j)
from this set, we will consider the outcome function g∗ in order to punish j
in such a situation.
Given x ∈ [0, x]n, let No(x) ≡ {i ∈ N | xi ∈ [0, x)}, maxNo(x) ≡ {i ∈

No(x) | @j ∈ No(x) s.t. xj > xi}, and maxN(x) ≡ {i ∈ N | @j ∈ N s.t.
xj > xi}. Now, let us define a labor sovereign and equal treatment of equals
rule γ∗ = (([0, x]×R+)n, g∗) in the following way: given a strategy profile
(x,y) ∈ ([0, x]× R+)n,

Rule 1: if ρ(x,y : h) 6= ∅, then g∗(x,y) = (x, hbz(x)), where bz = (x, h(x)).
Rule 2: if ρ(x,y : h) = ∅ and there exists a non-empty N(x,y), then
2-1: if #N(x,y) > 1, then g∗(x,y) = (x, h0(x)),
2-2: if N(x,y) = {j}, then g∗j (x,y) = (xj, h

bz(xj ,x−j ,y−j)
j (x)) and for all i 6= j,

g∗i (x,y) =

⎧⎨⎩ (xi, h
0
i (x)) if {j} = maxN(x) ∩maxNo(x),

(xi, h
bz(xj ,x−j ,y−j)
i (x)) otherwise.

Rule 3: in all other cases, g∗(x,y) = (x, hm(x,y)).

In this γ∗, if a strategy profile (x,y) is consistent with a potential P h-
allocation, then Rule 1 applies, and (x,y) becomes the outcome; if (x,y)
is inconsistent with any potential P h-allocation, and a unique potential de-
viator j is identified, then Rule 2-2 applies and identifies some potential
P h-allocation bz(xj,x−j,y−j) = (bzj, (x−j,y−j)), which would be the outcome
if j were not to deviate. Thus, j is punished by hbz(xj ,x−j ,y−j)j (x) under Rule
2-2. If (x,y) corresponds to neither of the above two cases, then hm or h0 is
applied in order to punish all potential deviators. It is clear that γ∗ ∈ ΓLS,
since in every case of strategy profile, the value of g∗ is that of either hm, hm,
or hbz-types.
Step 4: We show that ANE(γ∗,u) = P (h : u) for all u ∈ Un.
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(1) First, we show that ANE(γ∗,u) ⊇ P (h : u) for all u ∈ Un. Let
z = (x,y) ∈ P (h : u). Then, if a strategy profile of every agent is (x,y) =
(xi, yi)i∈N∈[0, x]n × Rn+, then g∗(x,y) = (x, hz(x)) = (x, h(x)) = (x,y) by
Rule 1. Suppose that individual j ∈ N deviates from (xi, yi) to (x0j, y

0
j).

Then, if j induces Rule 2-1, then g∗j ((x0j,x−j), (y0j,y−j)) = 0. If j in-
duces Rule 1, he cannot be better off, since y0j = f(x0j,x−j) −

P
l 6=j yl

holds true, and z is Pareto efficient for u. If j induces Rule 2-2, then
g∗j ((x

0
j,x−j), (y

0
j,y−j)) = (x

0
j, h

bz(x0j ,x−j ,y−j)
j (x0j,x−j)). Since z ∈ Z(x0j,x−j,y−j)

holds true, it follows that if bz(x0j,x−j,y−j) = ((bxj,x−j), (byj,y−j)), then
h
bz(x0j ,x−j ,y−j)
j (x0j,x−j) ≤ byj + f 0j((bxj,x−j)) · (x0j − bxj) ≤ yj + f 0j(x) · (x0j − xj).
This implies that j cannot be better off by this deviation. Note that j cannot
induce Rule 3. Thus, ANE(γ∗,u) ⊇ P (h : u) holds.
(2) Second, we show that ANE(γ∗,u) ⊆ P (h : u). Let (x,y) = (xi, yi)i∈N

be a Nash equilibrium of the game (γ∗,u). Note that (x,y) cannot corre-
spond to Rule 3. This is because every agent j can get everything in Rule
3 by changing from yj to large enough y0j > max

n
max {yi}i6=j , f(x)

o
. Also,

(x,y) cannot correspond to Rule 2-2, since, in Rule 2-2, there is an agent
j ∈ N\N(x,y) who can induce Rule 3 by changing from yj to large enough
y0j > max

n
max {yi}i6=j , f(x)

o
, thereby getting everything. Finally, (x,y)

cannot correspond to Rule 2-1 either, since every agent l ∈ N(x,y) can
induce Rule 2-2 by changing from yl to y0l = f(x) + ε, so that l can obtain
positive output.
Suppose that (x,y) corresponds toRule 1. Then, for z = (x,y) = (x, h(x)),

g∗(x,y) = (x, hz(x)) = z ∈ ANE(γ∗,u). Suppose that z is not Pareto effi-
cient. Then, there is at least one individual i ∈ N who changes slightly from
xi to x0i, so that ui(xi, h

z
i (x)) < ui(x

0
i, h

z
i (x

0
i,x−i)). Note that if x

0
i = xi + ²

where the value | ² | is small enough, then hzi (x0i,x−i) = yi+ f 0i(x) · (x0i− xi),
and bz(x0i,x−i,y−i) = z also holds by the concavity of f . Thus, by changing
from (xi, yi) to (x0i, y

0
i), where y

0
i = f(x0i,x−i) + ε, i can induce Rule 2-2

and obtain g∗i ((x
0
i,x−j), (y

0
i,y−i)) = (x

0
i, h

z
i (x

0
i,x−i)). This is a contradiction,

since z ∈ ANE(γ∗,u). Thus, z is Pareto efficient for u.

Proof of Theorem 1: Given J ∈ J , for each u ∈ Un, let PMJ(u) ≡
PO(u)∩

∙
∪

x∈[0,x]n
Z(x;J)

¸
. Note that if z = (x,y) ∈ PMJ(u), then hJ(x) =
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y. Moreover,
¡
[0, x]n, hJ

¢
∈ ΓLS holds true. It follows from the property

of Z(·; J) that {(x,y)} = Z(x; J), ci = cj, and xi = xj for some i, j ∈ N
imply yi = yj. Thus, by Proposition 4, there exists an allocation rule
γ∗ = (([0, x]×R+)n, g∗) ∈ ΓLS such that ANE(γ∗,u) = PMJ(u) holds for
all u ∈ Un.

6.2 Proofs of Theorem 2 and Theorem 3

Proof of Theorem 2: Given u ∈ Un, let S(u) be the utility possibility set of
feasible allocations, and ∂S(u) be its boundary. Since every utility function
is strictly increasing, ∂S(u) is the set of Pareto efficient utility allocations.
Now we define an ordering V (u) over S(u) as follows:

1) if u,u0 ∈ ∂S(u), then (u,u0) ∈ I (V (u)),
2) for any u,u0 ∈ S(u), there exist µ, µ0 ∈ [1,+∞) such that µ · u, µ0 · u0 ∈
∂S(u) and (u,u0) ∈ V (u) if and only if µ ≤ µ0. This ordering V (u) is
continuous over S(u).
Given J ∈ J and u ∈ Un, let us define a complete ordering Ru,J over
∪

x∈[0,x]n
Z (x; J) as follows: for any z, z0 ∈ ∪

x∈[0,x]n
Z (x; J), (z, z0) ∈ Ru,J ⇔

(u(z),u(z0)) ∈ V (u). This ordering Ru,J is continuous on ∪
x∈[0,x]n

Z (x;J),

and its maximal element consists of z ∈ PMJ(u), where PMJ(u) = PO(u)∩∙
∪

x∈[0,x]n
Z(x;J)

¸
, which is non-empty by Lemma 5. Given J ∈ J , letRJ (x)

be the restriction of RJ into ({x} × Y (x))2.
Consider a binary relation Ru,J ∪

∙
∪

x∈[0,x]n
RJ(x)

¸
over Z. It is easy to

see that this binary relation is consistent, so that there exists an ordering

extension R∗u,J of Ru,J ∪
∙
∪

x∈[0,x]n
RJ(x)

¸
by Suzumura’s (1983) extension

theorem. Based upon this R∗u,J , let us consider an ordering function Q
∗
J as

follows: for each u ∈ Un and all (z, γ), (z0, γ0) ∈ R(u),
1) if γ ∈ ΓLS and γ0 ∈ Γ \ ΓLS, then ((z, γ), (z0, γ0)) ∈ P (Q∗J(u));
2) if either γ, γ0 ∈ ΓLS or γ, γ0 ∈ Γ \ ΓLS, then

((z, γ), (z0, γ0)) ∈ Q∗J(u)⇔ (z, z0) ∈ R∗u,J ,
((z, γ), (z0, γ0)) ∈ P (Q∗J(u))⇔ (z, z0) ∈ P (R∗u,J).

Note that Q∗J(u) is complete and transitive, and Q
∗
J ∈ QLS`J-LA`(PA∩Z(J)) by

the definition. Finally, we can see that Q∗J uniformly rationalizes γ
∗ ∈ ΓLS as
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well as any γ∗∗ ∈ ΓLS ∩ΓNS whose every Nash equilibrium allocation always
belongs to PMJ(u) for any u ∈ Un.

Proof of Theorem 3: Given u ∈ Un and ∪
x∈[0,x]n

Z (x; J), let us define an

ordering R0u,J over PO(u) as follows: for all z, z
0 ∈ PO(u),

1) if x = x0, then (z, z0) ∈ R0u,J (resp. P
¡
R0u,J

¢
) ⇔

¡
CJmin (z) , CJmin (z0)

¢
∈ J

(resp. P (J)); and

2) if x 6= x0, then (z, z0) ∈ R0u,J (resp. P
¡
R0u,J

¢
) ⇔

max
b∈CJ

min
(z)

η(b)

max
b∈CJ

min
(Z(x;J))

η(b)
≥

(resp. >)
max

b∈CJ
min(z

0) η(b)

max
b∈CJ

min(Z(x
0;J)) η(b)

.

Note that the set of maximal elements of the ordering R0u,J over PO(u)
coincides with PMJ(u).
Next, given u ∈ Un, let us define the strict Pareto preference relation

(resp. the Pareto indifference relation) SPu ⊆ Z × Z (resp. IPu ⊆ Z × Z)
by (z, z0) ∈ SPu ⇔ ui(zi) > ui(z

0
i) for all i ∈ N (resp. (z, z0) ∈ IPu ⇔

ui(zi) = ui(z
0
i) for all i ∈ N). Then, define a quasi-ordering Pu ⊆ Z × Z as

Pu ≡ SPu ∪ IPu.
Consider a binary relation Pu ∪ R0u,J on Z. It is easy to see that this

binary relation is consistent, so that there exists an ordering extension R∗∗u,J
of Pu∪R0u,J by Suzumura’s (1983) extension theorem. Based upon this R∗∗u,J ,
let us consider an ordering function Q∗∗J as follows: for each u ∈ Un and all
(z, γ), (z0, γ0) ∈ R(u),
1) if γ ∈ ΓLS and γ0 ∈ Γ \ ΓLS, then ((z, γ), (z0, γ0)) ∈ P (Q∗∗J (u));
2) if either γ, γ0 ∈ ΓLS or γ, γ0 ∈ Γ \ ΓLS, then

((z, γ), (z0, γ0)) ∈ Q∗∗J (u)⇔ (z, z0) ∈ R∗∗u,J ,
((z, γ), (z0, γ0)) ∈ P (Q∗∗J (u))⇔ (z, z0) ∈ P (R∗∗u,J).

Note that Q∗∗J (u) is complete and transitive, and Q
∗∗
J ∈ QLS`PA`(J-LA∩PO) by

the definition. Finally, we can see that Q∗∗J uniformly rationalizes γ∗ ∈ ΓLS
as well as any γ∗∗ ∈ ΓLS ∩ ΓNS whose every Nash equilibrium allocation
always belongs to PMJ(u) for any u ∈ Un.
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Example 1 in the consumption space 
 

 

Example 1 in the functioning space 
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