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Abstract

This paper studies a class of infinitely repeated games with two players
in which the action space of each player is an interval, and the one-
shot payoff of each player is additively separable in their actions. We
define an immediately reactive equilibrium (IRE) as a pure-strategy
subgame perfect equilibrium such that the action of each player is a
stationary function of the last action of the other player. We show
that the set of IREs in the simultaneous move game is identical to
that in the alternating move game. In both games, IREs are com-
pletely characterized in terms of indifference curves associated with
what we call effective payoffs. A folk-type theorem using only IREs
is established in a special case. Our results are applied to a prisoner’s
dilemma game with observable mixed strategies and a duopoly game.
In the latter game, kinked demand curves with a globally stable steady
state are derived.
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1 Introduction

The standard folk theorem (Fudenberg and Maskin, 1986) indicates that
there are typically numerous subgame perfect equilibria in infinitely repeated
games. Facing many possibilities, one often focuses on stationary, or time-
invariant, subgame perfect equilibria. However, even such equilibria are of-
ten difficult to fully characterize. For example, in games with two players,
each player chooses a stationary function as his strategy, taking the station-
ary function of the other player as given (e.g., Maskin and Tirole, 1988a,
1988b); thus one faces a complicated functional fixed point problem.1 This
paper shows that in a certain class of infinitely repeated games, the problem
becomes manageable, and one can obtain a complete and graphical charac-
terization of a specific class of nontrivial stationary equilibria.

Specifically, we consider a class of infinitely repeated games in which the
action space of each player is an interval, and the one-shot payoff of each
player is additively separable in their actions. These assumptions hold for
various games, including a prisoner’s dilemma with observable mixed strate-
gies and a two country model of international trade in which each country
sets its tariff rate to maximize the sum of tariff revenue, consumer surplus,
and producer surplus;2 these and other examples are discussed in Subsec-
tion 2.2. It may also be reasonable to assume additively separable payoffs
when the sign of their cross partial derivatives is not clear. In this paper
we explore in depth the structure implied by additively separable payoffs for
both the simultaneous and the alternating move infinitely repeated games.
In addition to additive separability, we assume that each player’s one-shot
payoff is continuous, monotone in the other player’s action, and monotone
or unimodal in his own action.

We focus on the class of pure-strategy subgame perfect equilibria in which
each player’s action is a stationary function of the other player’s last action.
We call such an equilibrium an immediately reactive equilibrium (IRE). One
of the reasons why IREs may be of general interest is that they seem to
be the natural choice for alternating move games (e.g., Maskin and Tirole,

1For alternating move games with two players and with linear-quadratic payoffs, a
closed form solution for a Markov perfect equilibrium is available; see Maskin and Tirole
(1987) and Lau (1997).

2Furusawa and Kamihigashi (2006) study such a model, focusing on issues specific to
international trade. A preliminary version of Furusawa and Kamihigashi (2006) contained
some of the arguments in this paper, which now appear exclusively in this paper.
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1988a; Bhaskar and Vega-Redondo, 2002). Another reason is that IREs are
the simplest possible subgame perfect equilibria in which nontrivial dynamic
interactions are possible. The simplest possible type of subgame perfect equi-
librium is clearly a sequence of static Nash equilibria, which has no dynamic
interaction. The natural next step is to allow the action of each player to
depend on the last action of the other player in a stationary manner. This
is exactly the idea of IRE.

The concept of IRE is related to a few existing ones. First, in the al-
ternating move case, it is consistent with one definition of Markov perfect
equilibrium (Maskin and Tirole, 1988a, 1988b) though it is distinct from
another (Maskin and Tirole, 2001). Second, it is a special case of single-
period-recall equilibrium (Friedman and Samuelson, 1994a). Third, it is also
a special case of reactive equilibrium (Kalai, Samet, and Stanford, 1988).
More detailed discussions are given in Subsections 2.4 and 2.5.

Under the assumptions mentioned above, we show that the set of IREs
in the simultaneous move game is identical to that in the alternating move
game. Therefore, as far as IREs are concerned, the choice between simulta-
neous and alternating moves does not matter.3 In both games, we completely
characterize IREs in terms of indifference curves associated with what we call
effective payoffs. The effective payoff of a player is the part of his discounted
sum of payoffs that is directly affected by his current action. By additive
separability, the effective payoff consists of only two functions. This struc-
ture allows us to reduce each player’s dynamic maximization problem to a
virtually static one.4

We show that given a pair of effective payoffs, or the corresponding indif-
ference curves, there is an associated IRE if and only if two conditions are
met. First, the intersection of the areas on or above the indifference curves
must be nonempty. Second, the lowest point of each indifference curve must
not be too low relative to the other indifference curve. It is also shown that
in any IRE, the equilibrium paths stay on the associated indifference curves
except for the initial period.

3Section 4 discusses the relationship of this result to Lagunoff and Matsui’s (1997) anti-
folk theorem for alternating move games of pure coordination. See Haller and Lagunoff
(2000) and Yoon (2001) for further results on alternating move games.

4Effective payoffs are similar to what Kamihigashi and Roy (2006) call partial gains
in an optimal growth model with linear utility. Equations (2.19)–(2.21) in this paper
are similar to (3.7)–(3.9) in Kamihigashi and Roy (2006), but essentially this is the only
similarity in analysis between the two papers.
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In a special case in which each player’s payoff depends monotonically on
his own action, we provide a necessary and sufficient condition for an IRE to
be “effective efficient,” i.e., Pareto optimal among IREs in terms of effective
payoffs. The necessary and sufficient condition is that the intersection of
the areas strictly above the associated indifference curves be empty. In the
same special case, we also obtain the following folk-type theorem: if the
discount factors of both players are sufficiently close to one, then any “strictly
individually rational” action profile—or any pair of actions in which each
player’s payoff is strictly greater than his minimax payoff—can be supported
as a steady state of an IRE.

Our folk-type theorem is similar in spirit to those shown by Friedman
and Samuelson (1994a, 1994b). Their results show that the main idea of
the standard folk theorem (Fudenberg and Maskin, 1986) is valid even if one
confines oneself to continuous equilibria. In our case the equilibria that we
consider are stationary, continuous, and immediately reactive. In addition,
the punishment on a deviator is rather minimal since the IREs used in our
folk-type theorem have the property that in each period the players are in-
different between conforming to a given equilibrium path and choosing many
off-equilibrium alternatives.

We illustrate our results with a prisoner’s dilemma game with observ-
able mixed strategies and a rather specific duopoly game. In the prisoner’s
dilemma game, we show how the structure of IREs changes as the common
discount factor increases. In the duopoly game, we show among other things
that kinked demand is a necessary feature of effectively efficient IREs. More
precisely, in an effectively efficient IRE, there is a unique steady state, which
is globally stable. Each firm has a reaction curve kinked at the steady state.
If one of the firms raises its price, the other firm does not follow. If one of the
firms lowers its price, so does the other firm, but in the long run the prices rise
to the steady state levels. While there are game-theoretic models of kinked
demand in the literature,5 they typically require rather specific assumptions.
Though our model also requires specific assumptions,6 it allows one to derive
and visualize kinked demand curves as well as equilibrium dynamics in an
extremely simple manner.

The rest of the paper is organized as follows. Section 2 describes the one-

5See, for example, Maskin and Tiroel (1988b), Radner (2003), and Sen (2004). See
Bhaskar, Machin, and Reid (1991) for a survey of earlier theoretical models.

6In particular, the owners of the firms are assumed to be “risk-averse.”
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shot game and our assumptions, discusses several examples, and introduces
the simultaneous and the alternating move games. Section 3 characterizes
the best responses of a player given the other player’s strategy, developing
and utilizing various graphical tools. The main result of Section 3 has some
immediate implications on IREs, which are shown in Section 4. Section 5
discusses the dynamics induced by IREs. Section 6 gives a complete char-
acterization of IREs. Section 7 characterizes effectively efficient IREs in a
special case and shows a folk-type theorem. Section 8 applies our results to
a prisoner’s dilemma game and a duopoly model. Section 9 concludes the
paper. The appendix contains the proof of our main characterization result.

2 The Games

2.1 The One-Shot Game

Before introducing repeated games, let us describe the one-shot game. There
are two players, 1 and 2. Define

Q = {(1, 2), (2, 1)}. (2.1)

For (i, j) ∈ Q, let Si denote player i’s action space, πi : Si × Sj → R player
i’s payoff. The following assumptions are maintained throughout.

Assumption 2.1. For i = 1, 2, Si ⊂ R is an interval with nonempty interior.

Assumption 2.2. For (i, j) ∈ Q, there exist ui : Si → [−∞,∞) and vi :
Sj → R such that

∀(si, sj) ∈ Si × Sj, πi(si, sj) = ui(si) + vi(sj). (2.2)

Assumption 2.3. v1 and v2 are continuous. Either both are strictly increas-
ing or both are strictly decreasing.

Assumption 2.4. For i = 1, 2, ui is continuous, and there exists ŝi ∈ Si such
that ui is strictly increasing on Si∩ (−∞, ŝi) provided Si∩ (−∞, ŝi) 6= ∅, and
strictly decreasing on Si ∩ (ŝi,∞) provided Si ∩ (ŝi,∞) 6= ∅.7

Assumption 2.5. For i = 1, 2, ui is bounded above, and vi is bounded.

7We follow the convention that if ui(r) = −∞ for some r ∈ Si, then ui is continuous
at r if limsi→r ui(si) = −∞. Such r can only be min Si or max Si by Assumption 2.4.

4



Assumption 2.2 is our key assumption. Assumptions 2.4 and 2.5 imply
that (ŝ1, ŝ2) is the unique static Nash equilibrium. Assumption 2.2 allows ui

to be unbounded below because such cases are common in economic models.

2.2 Examples

Though Assumption 2.2 may appear rather strong as a restriction on general
games with two players, it is satisfied in various games. We provide specific
examples below. Our intention here is not to claim that our assumptions
are general, but to suggest that our framework is useful in analyzing certain
types of games as well as special cases of more general games.

2.2.1 Tariff War

Consider a two country world in which the payoff of each country is given by
the sum of its tariff revenue, consumer surplus, and producer surplus. Each
country is better off if the other country reduces its tariff rate, while each
country has an incentive to choose the tariff rate that maximizes the sum of
its tariff revenue and consumer surplus. To be more specific, let ŝi be this
maximizing tariff rate, and si be country i’s tariff rate imposed on imports
from country j. Under standard assumptions, country i’s producer surplus
is strictly decreasing in sj, while the sum of its tariff revenue and consumer
surplus is strictly increasing in si for si ≤ ŝi and strictly decreasing for
si ≥ ŝi. This game satisfies our assumptions, and is analyzed in detail in
Furusawa and Kamihigashi (2006).

2.2.2 Aggregative Games

Consider a game in which the payoff of player i can be written as a function
of si and si + sj, i.e., πi(si, sj) = π̃i(si, si + sj) for some π̃i. This type of
game is called an aggregative game (Corchon, 1994). For example, si can
be player i’s contribution to a public good, or his pollution emission. If π̃ is
additively separable and depends linearly on si + sj, then there are various
cases in which our assumptions are satisfied.

2.2.3 Bertrand Competition

Consider a game played by two firms, each producing a differentiated product
with a constant marginal cost ci and no fixed cost. Firm i faces a demand
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function Di(pi, pj) that depends on the prices pi and pj chosen by the two
firms. Firm i’s profit is Di(pi, pj)(pi − ci). Suppose Di is multiplicatively
separable: Di(pi, pj) = di

i(pi)d
j
i (pj) for some functions di

i and dj
i . Then the

profit maximization problem of firm i is equivalent to maximizing ui(pi) +
vi(pj), where

ui(pi) = ln di
i(pi) + ln(pi − ci), vi(pj) = ln dj

i (pj). (2.3)

This transformation is innocuous in the one-shot game, and our assumptions
are satisfied under reasonable assumptions on di

i and dj
i . In repeated games

the above transformation may be justified by assuming that the owners of
the firms are “risk averse” or, more precisely, prefer stable profit streams to
unstable ones.

2.2.4 Prisoner’s Dilemma

Though the action spaces are assumed to be intervals in this paper, our
framework applies to 2×2 games with mixed strategies. A case in point is the
prisoner’s dilemma game in Figure 1 (with a, c > 0), which is a parametrized
version of the game discussed by Fudenberg and Tirole (1991, p. 10, p. 111).
For i = 1, 2, let si be player i’s probability of choosing action C. Let πi(si, sj)
be player i’s expected payoff:

πi(si, sj) = sisjc + si(1− sj)(−a) + (1− si)sj(c + a) (2.4)

= −asi + (c + a)sj. (2.5)

Let S1 = S2 = [0, 1]. Then all our assumptions are clearly satisfied with
ŝ1 = ŝ2 = 0.8

2.2.5 General 2× 2 Games

The preceding example suggests that our framework applies to more general
2× 2 games. To see this, consider the 2 × 2 game in Figure 2. For i = 1, 2,
let si be player i’s probability of choosing action 1. Let πi(si, sj) be player

8Furusawa and Kawakami (2006) use a payoff function similar to (2.4) to analyze perfect
Bayesian equilibria in a model with stochastic outside options.
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c + a,−a 0, 0
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Figure 1: Prisoner’s dilemma
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2
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Player 1

Player 2

Figure 2: General 2× 2 game

i’s expected payoff:

πi(si, sj) (2.6)

= sisjp
11
i + si(1− sj)p

12
i + (1− si)sjp

21
i + (1− si)(1− sj)p

22
i (2.7)

= (p12
i − p22

i )si + (p21
i − p22

i )sj + (p11
i − p12

i − p21
i + p22

i )sisj + p22
i . (2.8)

It is easy to see that all our assumptions hold if and only if p12
i 6= p22

i , (p21
1 −

p22
1 )(p21

2 − p22
2 ) > 0, and p11

i − p12
i − p21

i + p22
i = 0. The last condition sug-

gests some form of additive separability. For example, it can be written as
p11

i − p21
i = p12

i − p22
i , i.e., player i’s choice has the same effect on his pay-

off independently of player j’s action. Alternatively, it can be written as
p11

i − p12
i = p21

i − p22
i , i.e., player j’s choice has the same effect on player i’s

payoff independently of player i’s action.

2.3 Normalizing Assumptions

To simplify the exposition, we introduce some assumptions that can be made
without loss of generality.
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Assumption 2.6. For i = 1, 2, inf Si = 0 and sup Si = 1.

This can be assumed without loss of generality since none of our assump-
tions is affected by strictly increasing, continuous transformations of Si. If
0 6∈ Si and/or 1 6∈ Si, we extend ui and vi to 0 and/or 1 as follows:

ui(0) = lim
s↓0

ui(s), ui(1) = lim
s↑1

ui(s), (2.9)

vi(0) = lim
s↓0

vi(s), vi(1) = lim
s↑1

vi(s). (2.10)

By the above and Assumption 2.5, the following can be assumed without loss
of generality.

Assumption 2.7. For i = 1, 2, ui : [0, 1] → [−∞,∞) and vi : [0, 1] → R are
continuous, and ui((0, 1]), vi([0, 1]) ⊂ R.

Strictly speaking, the next assumption is not a normalization, but it is
innocuous and is made merely for notational simplicity.9

Assumption 2.8. S1 = S2 = [0, 1].

The following is our last normalizing assumption.

Assumption 2.9. For i = 1, 2, vi is strictly increasing.

To see that this is a normalization, suppose v1 and v2 are both strictly
decreasing (recall Assumption 2.3). For (i, j) ∈ Q, define S̃i = [0, 1], s̃i =
1− si, ũi(s̃j) = ui(1− s̃j), and ṽi(s̃i) = vi(1− s̃i). Then ṽ1 and ṽ2 are strictly
increasing, and ũ1, ṽ1, S̃1, ũ2, ṽ2, and S̃2 satisfy all the other assumptions.

2.4 The Repeated Game with Simultaneous Moves

Consider the infinitely repeated game in which the stage game is given by
the one-shot game defined above. For i = 1, 2, let δi ∈ (0, 1) be player
i’s discount factor. We restrict ourselves to pure-strategy subgame perfect
equilibria in which player i’s action in period t, si,t, is a stationary function
fi of player j’s action in period t − 1, sj,t−1. Such strategies are a special
case of single-period-recall strategies (Friedman and Samuelson, 1994a) and
reactive strategies (Kalai et al., 1988). Single-period-recall strategies depend

9It is innocuous because removing 0 and/or 1 from Si does not affect our analysis.
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only on both players’ last actions, and reactive strategies depend only on the
other player’s past actions. We focus on stationary strategies that depend
only on the other player’s last action.

Let F be the set of all functions from [0, 1] to [0, 1]. Let (i, j) ∈ Q. Taking
player j’s strategy fj ∈ F as given, player i faces the following problem:

max
{si,t}∞t=1

∞∑
t=1

δt−1
i [ui(si,t) + vi(sj,t)] (2.11)

s.t. ∀t ∈ N, sj,t = fj(si,t−1), (2.12)

∀t ∈ N, si,t ∈ [0, 1]. (2.13)

We say that fi ∈ F is a best response to fj if for any (si,0, sj,0) ∈ [0, 1]2, the
above maximization problem has a solution {si,t}∞t=1 such that si,t = fi(sj,t−1)
for all t ∈ N. We call a strategy profile (f1, f2) ∈ F 2 an immediately reactive
equilibrium (IRE) if f1 is a best response to f2 and vice versa. Note that
f1 and f2 are not required to be continuous or even measurable, but the
maximization problem (2.11)–(2.13) is required to be well defined given fj.

10

2.5 The Repeated Game with Alternating Moves

Now consider the case of alternating moves. Player 1 updates his action in
odd periods, while player 2 updates his action in even periods.11 Define

T1 = {1, 3, 5, · · · }, T2 = {2, 4, 6, · · · }. (2.14)

As in the simultaneous move case, we restrict ourselves to subgame perfect
equilibria in which in each period t ∈ Ti, player i chooses an action si,t

according to a stationary function fi of player j’s last (or equivalently current)
action sj,t−1.

Let (i, j) ∈ Q. Given player j’s strategy fj ∈ F , player i faces the

10Our results are unaffected even if f1 and f2 are required to be continuous or upper
semi-continuous. The same remark applies to the alternating move game.

11In alternating move games, it is often assumed that the players play simultaneously
in the initial period and take turns afterwards. Such an assumption does not affect our
analysis, which is concerned only with stationary subgame perfect equilibria.
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following problem:

max
{si,t}∞t=1

∞∑
t=i

δt−i
i [ui(si,t) + vi(sj,t)] (2.15)

s.t. ∀t ∈ Tj, sj,t = fj(si,t−1), si,t = si,t−1, (2.16)

∀t ∈ Ti, si,t ∈ [0, 1], sj,t = sj,t−1. (2.17)

We say that fi ∈ F is a best response to fj if for any sj,i−1 ∈ [0, 1],12 the above
maximization problem has a solution {si,t}∞t=1 such that si,t = fi(sj,t−1) for
all t ∈ Ti. We call a strategy profile (f1, f2) ∈ F 2 an immediately reactive
equilibrium (IRE) if f1 is a best response to f2 and vice versa. This equilib-
rium concept is consistent with one definition of Markov perfect equilibrium
(Maskin and Tirole, 1988b, Section 2), but distinct from another (Maskin
and Tirole, 2001) due to additive separability of payoffs.

2.6 Effective Payoffs

We now introduce a function that plays a central role in our analysis. For
(i, j) ∈ Q, define wi : [0, 1]2 → R+ by

wi(si, sj) = ui(si) + δivi(sj). (2.18)

We call this function player i’s effective payoff since in both repeated games,
player i in effect seeks to maximize the discounted sum of effective payoffs.
Indeed, in both games, player i’s discounted sum of payoffs from period 1
onward is written as

∞∑
t=1

δt−1
i [vi(sj,t) + ui(si,t)] (2.19)

= vi(sj,1) +
∞∑

t=1

δt−1
i [ui(si,t) + δivi(sj,t+1)] (2.20)

= vi(sj,1) +
∞∑

t=1

δt−1
i wi(si,t, sj,t+1). (2.21)

In both games, player i has no influence on sj,1, so that player i’s problem is
equivalent to maximizing the discounted sum of effective payoffs.

12Notice that for i = 1, 2, the first period in which player i plays is period i.
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3 Characterizing Best Responses

Let (i, j) ∈ Q. This section takes player j’s strategy fj ∈ F as given, and
studies player i’s best responses. We show first a simple result that charac-
terizes them. The purpose of this section is to reexpress the result in terms of
indifference curves associated with effective payoffs so as to obtain a graphical
understanding of player i’s problem. The following result characterizes player
i’s best responses in both the simultaneous and alternating move games.

Proposition 3.1. In both the simultaneous and the alternating move games,
fi ∈ F is a best response to fj if and only if

∀sj ∈ [0, 1], fi(sj) ∈ argmax
si∈[0,1]

wi(si, fj(si)) ≡ M(fj). (3.1)

Proof. Consider the simultaneous move game. From (2.19)–(2.21) and (2.12),
player i’s discounted sum of payoffs is written as

∞∑
t=1

δt−1
i [ui(si,t) + vi(sj,t)] = vi(sj,1) +

∞∑
t=1

δt−1
i wi(si,t, fj(si,t)). (3.2)

Thus the maximization problem (2.11)–(2.13) is equivalent to maximizing
the right-hand side of (3.2), which is maximized if and only if si,t ∈ M(fj)
for all t ∈ N. Therefore, if fi ∈ F is a best response, then fi(sj,0) ∈ M(fj)
for all sj,0 ∈ [0, 1]; thus (3.1) holds. Conversely, if fi ∈ F satisfies (3.1), then
it is a best response since si,t = fi(sj,t−1) ∈ M(fj) for all t ∈ N.

Now consider the alternating move game. From (2.19)–(2.21), (2.16), and
(2.17), player i’s discounted sum of payoffs from period i onward is written
as

∞∑
t=i

δt−i
i [ui(si,t) + vi(sj,t)] (3.3)

= vi(sj,i) +
∑
t∈Ti

δt−i
i (1 + δi)wi(si,t, sj,t+1) (3.4)

= vi(sj,i) + (1 + δi)
∑
t∈Ti

δt−1
i wi(si,t, fj(si,t)). (3.5)

Thus the maximization problem (2.15)–(2.17) is equivalent to maximizing
the right-hand side of (3.5), which is maximized if and only if si,t ∈ M(fj)
for all t ∈ Ti. Hence the proposition follows as in the simultaneous move
case.
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To translate the above result into more usable forms, define

R(fi) = {fi(sj) | sj ∈ [0, 1]}. (3.6)

Note that R(fi) is the range of fi. The following is a simple restatement of
Proposition 3.1.

Corollary 3.1. fi ∈ F is a best response to fj if and only if R(fi) ⊂ Mi(fj).

This result can be better understood in terms of indifference curves as-
sociated with effective payoffs. Since vi is strictly increasing by Assumption
2.9, each indifference curve wi(si, sj) = ω can be expressed as the graph of a
function from si to sj. We denote this function by gω

j , i.e.,

ω = wi(si, g
ω
j (si)) = ui(si) + δivi(g

ω
j (si)). (3.7)

Depending on si and ω, however, gω
j (si) may or may not be defined. We

specify the domain of gω
j , denoted D(gω

j ), as follows:

D(gω
j ) = {si ∈ [0, 1] | ∃sj ∈ [0, 1], ui(si) + δivi(sj) = ω} (3.8)

= {si ∈ [0, 1] |ω − δivi(1) ≤ ui(si) ≤ ω − δivi(0)}. (3.9)

See Figure 3. It follows from (3.7) that

∀si ∈ D(gω
j ), gω

j (si) = v−1
i

(
ω − ui(si)

δi

)
. (3.10)

The following lemma collects useful observations on gω
j .

Lemma 3.1. Let Ω = [wi(ŝi, 0), wi(ŝi, 1)]. (i) For ω ∈ Ω, gω
j (·) is continuous

on D(gω
j ), ŝi ∈ D(gω

j ), and D(gω
j ) is a nonempty closed interval. (ii) If

ω, ω′ ∈ Ω with ω < ω′, then D(gω
j ) ⊂ D(gω′

j ) and

∀si ∈ D(gω′
j ), gω

j (si) < gω′
j (si). (3.11)

(iii) Let ω ∈ [wi(ŝi, 0), wi(ŝi, 1)). Then D(gω
j ) is a closed interval with

nonempty interior. Furthermore, gω
j (·) is strictly decreasing on D(gω

j )∩ [0, ŝi]
provided ŝi > 0, and strictly increasing on D(gω

j ) ∩ [ŝi, 1] provided ŝi < 1.
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0 1

1

si

sj
g

wi(ŝi,1)
j (si)

gω
j (si)

g
wi(ŝi,0)
j (si)

ŝi D(gω
j )

Figure 3: Indifference curve gω
j and D(gω

j )

Proof. Let ω ∈ Ω. The continuity of gω
j is obvious. Both inequalities in (3.9)

hold with si = ŝi since

ω ≤ wi(ŝi, 1) = ui(ŝi) + δivi(1), (3.12)

ω ≥ wi(ŝi, 0) = ui(ŝi) + δivi(0). (3.13)

Hence ŝi ∈ D(gω
j ). Note from Assumption 2.4 and (3.13) that

∀si ∈ [0, 1], ui(si) ≤ ui(ŝi) ≤ ω − δivi(0). (3.14)

Thus by (3.9),

D(gω
j ) = {si ∈ [0, 1] |ω − δivi(1) ≤ ui(si)}. (3.15)

It follows by Assumption 2.4 and (3.12) that D(gω
j ) is a nonempty closed

interval. We have verified (i).
To see (ii), note that the inequality in (3.11) is immediate from (3.10)

for si ∈ D(gω
j ) ∩ D(gω′

j ). Thus it suffices to show D(gω′
j ) ⊂ D(gω

j ). Let

si ∈ D(gω′
j ). Then the inequality in (3.15) holds with ω = ω′, so it holds for

any ω ≤ ω′. It follows that D(gω′
j ) ⊂ D(gω

j ).
To see (iii), let ω ∈ [wi(ŝi, 0), wi(ŝi, 1)). By (i), D(gω

j ) is a nonempty
closed interval. Since ω < wi(ŝi, 1) = ui(ŝi)+δivi(1), i.e., ω−δivi(1) < ui(ŝi),
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it follows by (3.15) that si ∈ D(gω
j ) for si sufficiently close to ŝi. Thus the

first conclusion in (i) holds. The second conclusion is immediate from (3.10)
and Assumptions 2.9 and 2.4.

To understand Corollary 3.1 in terms of indifference curves gω
j , define

w∗
i (fj) = sup

si∈[0,1]

wi(si, fj(si)). (3.16)

Since vi is strictly increasing by Assumption 2.9,

wi(ŝi, 0) ≤ w∗
i (fj) ≤ wi(ŝi, 1). (3.17)

By Lemma 3.1(i), a higher indifference curve is associated with a higher
effective payoff. Thus by (3.17),

g
wi(ŝi,0)
j (ŝi) ≤ g

w∗i (fj)
j (ŝi) ≤ g

wi(ŝi,1)
j (ŝi). (3.18)

See Figure 3 (with ω = w∗
i (fj)).

Now consider the maximization problem associated with (3.1) (or (3.16)),
which can equivalently be expressed as

max
si,sj∈[0,1]

wi(si, sj) s.t. sj = fj(si). (3.19)

The graph sj = fj(si) represents the set of feasible pairs (si, sj) for player i,
who takes sj = fj(si) as a constraint. Since the highest feasible indifference

curve is given by sj = g
w∗i (fj)
j (si),

∀si ∈ D(g
w∗i (fj)
j ), fj(si) ≤ g

w∗i (fj)
j (si). (3.20)

See Figure 4, which shows two ad hoc examples (recall that fj is arbitrary
here). It follows that the solution to (3.19) is to choose any pair (si, sj)

satisfying sj = fj(si) and sj = g
w∗i (fj)
j (si). More precisely,

Mi(fj) = {si ∈ D(g
w∗i (fj)
j ) | fj(si) = g

w∗i (fj)
j (si)}. (3.21)

See Figure 4 again. By Corollary 3.1 and (3.21),

R(fi) ⊂ Mi(fj) ⊂ D(g
w∗i (fj)
j ), (3.22)

whenever fi is a best response to fj. We are ready to restate Corollary 3.1
in terms of indifference curves gω

j .

14
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Figure 4: Mi(fj) and Ψωi
i (defined in (6.1)) with ωi = w∗

i (fj)
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Proposition 3.2. fi ∈ F is a best response to fj if and only if

∀si ∈ R(fi), si ∈ D(g
w∗i (fj)
j ), fj(si) = g

w∗i (fj)
j (si). (3.23)

Proof. This holds since (3.23) is equivalent to R(fi) ⊂ Mi(fj) by (3.21).

In Figure 4(a), Mi(fj) is a singleton, so by Corollary 3.1, there is a unique
best response, which is the constant function from sj to si corresponding to
the dotted vertical line. This function trivially satisfies (3.23). In Figure
4(b), Mi(fj) is an interval, so all functions from sj to si whose ranges are
confined to that interval are best responses. Notice that all those functions
satisfy (3.23).

4 Immediate Implications on IREs

The following result is immediate from Corollary 3.1, Proposition 3.2, and
the definitions of IRE in Subsections 2.4 and 2.5.

Theorem 4.1. In both the simultaneous and the alternating move games, a
strategy profile (f1, f2) ∈ F 2 is an IRE if and only if

∀(i, j) ∈ Q, R(fi) ⊂ Mi(fj), (4.1)

or, equivalently,

∀(i, j) ∈ Q, ∀si ∈ R(fi), si ∈ D(g
w∗i (fj)
j ), fj(si) = g

w∗i (fj)
j (si). (4.2)

An important implication of this result is that the simultaneous and the
alternating move games are equivalent as far as IREs are concerned. In other
words, the choice between simultaneous and alternating moves is unimpor-
tant when one restricts oneself to IREs.

This would appear in sharp contrast to the anti-folk theorem of Lagunoff
and Matsui (1997) for alternating move games of pure coordination. They
showed that there is a considerable difference between the simultaneous and
the alternating move games in the case of pure coordination. If ui(si) = vj(si)
and vi(sj) = uj(sj) for all si, sj ∈ [0, 1] and (i, j) ∈ Q, then the one-shot game
described in Subsection 2.1 becomes a pure coordination game. Theorem 4.1
of course applies to this case (which is consistent with our assumptions), but
does not contradict Lagunoff and Matsui’s result. This is because their result

16
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ŝ2
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g
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Figure 5: Static Nash equilibrium

deals with all subgame perfect equilibria, while Theorem 4.1 deals only with
IREs.13

For the remainder of the paper, we do not distinguish between the two
games except when we explicitly consider dynamics. The differences in dy-
namics between the two games are discussed in Section 5.

To illustrate Theorem 4.1, let (f1, f2) be given by fi(sj) = ŝi for sj ∈
[0, 1] and (i, j) ∈ Q. This strategy profile corresponds to the static Nash

equilibrium. Figure 5 shows that f2 and g
w∗1(f2)
2 coincide on R(f1), which

consists only of ŝ1, and that likewise f1 and g
w∗2(f1)
1 coincide on R(f2). Thus

(f1, f2) satisfies (4.2), so it is an IRE by Theorem 4.1.
To consider less trivial IREs, we define an IRE associated with (ω1, ω2) ∈

R2 as an IRE (f1, f2) such that

∀(i, j) ∈ Q, ωi = w∗
i (fj). (4.3)

13Theorem 4.1 suggests that the concept of IRE has some resemblance to that of con-
jectural variation equilibrium. The main difference between the two concepts is that while
a conjectural variation equilibrium consists of an equilibrium point and supporting con-
jectures that are typically required to satisfy certain local properties, an IRE consists of
two functions that represent the players’ actual reactions. See Tidball et al. (2000) for a
survey on conjectural variations.
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ŝ1
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f1(s2) (= g
w∗2 (f1)
1 (s2))

f2(s1) (= g
w∗1 (f2)
2 (s1))

Figure 6: Example of IRE satisfying (4.4) and (4.3).

Notice that any IRE (f1, f2) is associated with (w∗
1(f2), w

∗
2(f1)).

Proposition 4.1. Let ω1, ω2 ∈ R. Suppose

∀(i, j) ∈ Q, D(gωi
j ) = [0, 1]. (4.4)

Then there exists an IRE associated with (ω1, ω2). In particular, (gω2
1 , gω1

2 ) is
such an IRE.

Proof. Let fj = gωi
j for (i, j) ∈ Q. For (i, j) ∈ Q and si ∈ [0, 1], we have

wi(si, fj(si)) = wi(si, g
ωi
j (si)) = ωi, so ωi = w∗

i (fj). To verify (4.2), let (i, j) ∈
Q and si ∈ R(fj). Then si ∈ [0, 1] = D(g

w∗i (fj)
j ) and fj(si) = g

w∗i (fj)
j (si). Thus

(4.2) holds, so (f1, f2) is an IRE by Theorem 4.1.

See Figure 6 for an example of an IRE satisfying (4.4) and (4.3). Since

f1 = g
w∗2(f1)
1 and f2 = g

w∗1(f2)
2 , the example trivially satisfies (4.2).

5 Dynamics

Before we turn to a detailed characterization of IREs, it is useful to have a
basic understanding of their dynamics. This section takes an IRE (f1, f2) ∈
F 2 as given and studies its dynamic properties.
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Consider first the alternating move game. Recall that in each period
t ∈ N, player i with t ∈ Ti updates his action as a function of player j’s last
(or current) action. So the “state variable” in each period t ∈ Ti is player j’s
last action sj,t−1 ∈ [0, 1]. Given an initial condition s2,0 ∈ [0, 1], the entire
path {s1,t, s2,t}∞t=1 of the game is uniquely determined by

∀(i, j) ∈ Q, ∀t ∈ Ti, si,t+1 = si,t = fi(sj,t−1). (5.1)

In step-by-step form,

s1,1 = f1(s2,0), s2,2 = f2(s1,1), s1,3 = f1(s2,2), · · · . (5.2)

For the alternating move game, we define an IRE path associated with (f1, f2)
as a sequence {s1,t, s2,t}∞t=0 satisfying (5.1). See Figure 6 for an example an
IRE path.

Now consider the simultaneous move game. The state variable in each
period t ∈ N is the pair of both players’ last actions (s1,t−1, s2,t−1) ∈ [0, 1]2.
Given an initial condition (s1,0, s2,0) ∈ [0, 1]2, the entire path {s1,t, s2,t}∞t=1 of
the game is uniquely determined by

∀(i, j) ∈ Q, ∀t ∈ N, si,t = fi(sj,t−1). (5.3)

For the simultaneous move game, we define an IRE path associated with
(f1, f2) as a sequence {s1,t, s2,t}∞t=0 satisfying (5.3). Any IRE path can be
decoupled into two sequences, one originating from s2,0, the other from s1,0:

s1,1 = f1(s2,0), s2,2 = f2(s1,1), s1,3 = f1(s2,2), · · · , (5.4)

s2,1 = f2(s1,0), s1,2 = f1(s2,1), s2,3 = f2(s1,2), · · · . (5.5)

Obviously, given s2,0 ∈ [0, 1], the sequences given by (5.2) and (5.4) are
identical. The sequence given by (5.5) can be viewed as an IRE path for the
alternating move game in which player 2 moves first. Hence an IRE path for
the simultaneous move game is equivalent to a pair of IRE paths for the two
alternating move games in one of which player 1 moves first and in the other
of which player 2 moves first.

The following result is a simple consequence of Theorem 4.1.

Theorem 5.1. Any IRE path {s1,t, s2,t}∞t=0 associated with (f1, f2) for the
simultaneous move game satisfies

∀t ≥ 2,∀(i, j) ∈ Q, si,t = g
w∗j (fi)

i (sj,t−1). (5.6)
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Furthermore, any IRE path {s1,t, s2,t}∞t=0 associated with (f1, f2) for the al-
ternating move game satisfies

∀t ≥ 2,∀(i, j) ∈ Q, t ∈ Ti ⇒ si,t = g
w∗j (fi)

i (sj,t−1). (5.7)

Proof. Consider the simultaneous move game. Let {s1,t, s2,t}∞t=0 be an IRE
path associated with (f1, f2). Let (i, j) ∈ Q and t ≥ 2. Then sj,t−1 ∈ R(fj).

Hence si,t = g
w∗j (fi)

i (sj,t−1) by (5.3) and (4.2). Thus (5.6) follows. The proof
for the alternating move game is similar.

The above result shows that any IRE path is characterized by the cor-

responding pair of indifference curves (g
w∗2(f1)
1 , g

w∗1(f2)
2 ) except for the initial

period. To better understand this result, consider the alternating move game.
The initial period must be excluded in (5.7) because s2,0 is an arbitrary ini-
tial condition that need not be optimal for player 2 given f1, i.e., it need not

satisfy s1,1 = g
w∗2(f1)
1 (s2,0). Since all subsequent actions must be individually

optimal, they must be on the optimal indifference curves. In Figure 6, any
IRE path satisfies the equality in (5.7) for all t ≥ 1. In Figure 5, by contrast,
an IRE path (not shown in the figure) violates the equality for t = 1 unless
s2,0 = ŝ2, but trivially satisfies it for t ≥ 2.

Theorem 5.1 also shows that in both cases the dynamics of an IRE associ-
ated with (ω1, ω2) ∈ R2 are essentially characterized by the same dynamical
system:

∀t ∈ T1, s1,t+2 = gω2
1 (gω1

2 (s1,t)). (5.8)

To be precise, the simultaneous move game has another equation, s2,t+2 =
gω1
2 (gω2

1 (s2,t)) for t ∈ T2, but this system is equivalent to (5.8) in terms of
dynamics. Hence one can obtain conditions for dynamic properties such
as monotonicity and chaos by applying numerous results available on one-
dimensional dynamical systems (e.g., Devaney, 1989).14

6 Characterizing IREs

Now we seek to characterize all IREs in terms of effective payoffs, or asso-
ciated indifference curves. We need additional notation. For (i, j) ∈ Q and

14See Rand (1978) for an early example of complex dynamics in an “adaptive” dynamic
model that has a structure similar to Figure 6. See Rosser (2002) for a recent survey of
adaptive duopoly/oligopoly models that generate complex dynamics. This paper does not
consider complex dynamics, which should be left to more specialized studies.
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ωi, ωj ∈ R, define

Ψωi
i = {(si, sj) ∈ [0, 1]2 |wi(si, sj) ≥ ωi} (6.1)

= {(si, sj) ∈ [0, 1]2 | si ∈ D(gωi
j ), sj ≥ gωi

j (si)}. (6.2)

The set Ψωi
i is the collection of all pairs (si, sj) with player i’s effective payoff

at least as large as ωi. In the (si, sj) space, it is the area on or above the
graph sj = gωi

j (si); see Figure 4.

Provided Ψωi
i ∩Ψ

ωj

j 6= ∅,15 define

s
(ωi,ωj)
i = max{si ∈ [0, 1] | ∃sj ∈ [0, 1], (si, sj) ∈ Ψωi

i ∩Ψ
ωj

j }, (6.3)

s
(ωi,ωj)
i = min{si ∈ D(gωi

j ) | gωi
j (si) ≤ s

(ωj ,ωi)
j }. (6.4)

By (6.2) and continuity, gωi
j (s

(ωi,ωj)
i ) ≤ s

(ωj ,ωi)
j . Hence s

(ωi,ωj)
i exists as long as

Ψωi
i ∩ Ψ

ωj

j 6= ∅. See Figure 7. In the case of Figure 6, s
(ω1,ω2)
1 = s

(ω2,ω1)
2 = 1

and s
(ω1,ω2)
1 = s

(ω2,ω1)
2 = 0. It follows from Lemma 3.1(iii) that

∀(i, j) ∈ Q, s
(ωi,ωj)
i ≤ ŝi ≤ s

(ωi,ωj)
i . (6.5)

See Figure 7 again.16 The following result characterizes all IREs in terms of
effective payoffs.

Theorem 6.1. There exists an IRE associated with (ω1, ω2) ∈ R2 if and only
if

Ψω1
1 ∩Ψω2

2 6= ∅, (6.6)

∀(i, j) ∈ Q, ŝj ∈ D(g
ωj

i ), s
(ωi,ωj)
i ≤ g

ωj

i (ŝj). (6.7)

In particular, under (6.6) and (6.7), (f1, f2) ∈ F 2 is an IRE associated with
(ω1, ω2) if for (i, j) ∈ Q,

fi(sj) =

{
min{gωj

i (sj), s
(ωi,ωj)
i } if sj ∈ D(g

ωj

i ),

s
(ωi,ωj)
i otherwise.

(6.8)

15Here it is understood that the coordinates of Ψωj

j (or Ψωi
i ) are interchanged so that

Ψωi
i and Ψωj

j have the same order of the coordinates. Similar comments apply to similar
expressions below.

16The first inequality in (6.5) is immediate from (6.4) and Lemma 3.1(iii). To formally
verify the second inequality, let (i, j) ∈ Q and suppose si < ŝi. (We omit superscripts
here.) By (6.2) and (6.3), sj ≥ gj(si) and si ≥ gi(sj). Since gj is strictly decreasing at
si by Lemma 3.1(iii), both inequalities continue to hold even if si is slightly increased,
contradicting (6.3).
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Figure 7: si, si, and IRE given by (6.8)

Proof. See Appendix A.

See Figure 7 for an example of an IRE given by (6.8). One can easily see
that the example satisfies (4.2). We call (6.6) the nonemptiness condition,
and (6.7) the no-sticking-out condition. The nonemptiness condition says
that the intersection of the two sets Ψω1

1 and Ψω2
2 must be nonempty. The

no-sticking-out condition says that the graph of g
ωj

i must not “stick out” of
the straight line si = si.

These conditions can be better understood by considering examples in
which they are violated. In Figure 8(a), the nonemptiness condition (6.6) is
violated. In this case, if an IRE exists, any IRE path for the alternating move
game must behave like the path depicted in the figure (except for the initial
period) by Theorem 5.1. But since such a path cannot stay on the indifference
curves forever, it cannot be an IRE path, a contradiction. In Figure 8(b), the
no-sticking-out condition (6.7) is violated for (i, j) = (1, 2). In this case, if an

IRE exists, there is s2,0 such that f1(s2,0) ≤ gω2
1 (s2,0) < s

(ω1,ω2)
1 .17 As shown

in the figure, the IRE path from such s2,0 cannot stay on the indifference
curves forever, contradicting Theorem 5.1.

17The first inequality holds by (3.20). In Figure 8(b), f1(s2,0) = gω2
1 (s2,0).
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Figure 8: Examples with no IRE
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We should mention that the strategy profile given by (6.8) is not the only

IRE under (6.6) and (6.7). In fact, for sj 6∈ [s
(ωj ,ωi)
j , s

(ωj ,ωi)
j ], fi(sj) is arbitrary

as long as it does not affect R(fi). However, any IRE satisfies one restriction:

Proposition 6.1. Let (f1, f2) be an IRE associated with (ω1, ω2) ∈ R2. Then

∀(i, j) ∈ Q, ∀sj ∈ [0, 1], fi(sj) ≤ s
(ωi,ωj)
i . (6.9)

Proof. Immediate from (A.2), (A.12), and (6.3).

To see the idea of this result, suppose the inequality in (6.9) is violated
for (i, j) = (1, 2). Consider the alternating move game. Then for some s2,0,

s1,1 = f1(s2,0) > s
(ω1,ω2)
1 . If this path is continued, it behaves like the one

depicted in Figure 7 by Theorem 5.1. But such a path cannot be an IRE
path since it cannot stay on the indifference curves forever.

In what follows, we say that an IRE (f1, f2) is effectively efficient if there
is no IRE (f̃1, f̃2) such that w∗

1(f2) ≤ w∗
1(f̃2) and w∗

2(f1) ≤ w∗
2(f̃1) with at

least one of them holding strictly. That is, (f1, f2) is effectively efficient if it
is not Pareto dominated by any other IRE in terms of effective payoffs. For
(i, j) ∈ Q and ωi, ωj ∈ R, define

Ψ̃ωi
i = {(si, sj) ∈ [0, 1]2 |wi(si, sj) > ωi}. (6.10)

It is clear from Theorem 6.1 and Lemma 3.1(ii) that an IRE associated with
(ω1, ω2) ∈ R2 is effectively efficient if

Ψ̃ω1
1 ∩ Ψ̃ω2

2 = ∅. (6.11)

See Figures 9 and 8(a).
One might conjecture that (6.11) is also necessary for effective efficiency.

Unfortunately it is not the case. This is because the no-sticking-out condition
(6.7), a necessary condition for an IRE, is not stable under small perturba-
tions to (ωi, ωj). In other words, even when (6.11) does not hold, (6.7) can
be violated if either ωi or ωj is increased. For example, when (6.7) holds with
equality for (i, j) = (1, 2), it can be violated after ω2 is slightly increased,
depending on how fast the two sides of the inequality in (6.7) vary with ω2.

Even if (6.7) holds with strict inequality, (6.7) can be violated after small

perturbations to (ωi, ωj), since s
(ωi,ωj)
i need not be continuous in (ωi, ωj).

Figure 10 illustrates this point. There is an IRE in Figure 10(a), but there
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Figure 9: Effectively efficient IRE

is no IRE in Figure 10(b) due to violation of (6.7). Note that both s
(ω1,ω2)
1

and s
(ω2,ω1)
2 are discontinuous in this example. Though in fact Figure 10

shows that the IRE in (a) is only “locally” effectively efficient, it should be
clear that one can easily construct a fully specified example of an effectively
efficient IRE that violates (6.11).

7 Effective Efficiency and a Folk-Type Theo-

rem: A Special Case

The anomaly in Figure 10 is largely due to the fact that the indifferent
curves are unimodal there. The purpose of this section to provide a complete
characterization of effective efficiency and to show a folk-type theorem under
the assumption that both indifference curves are “upward sloping.” More
precisely, we focus on the case in which the following assumption holds.

Assumption 7.1. For i = 1, 2, ŝi = 0 or, equivalently, ui is strictly decreas-
ing.18

18If one chooses to normalize vi in the opposite direction, i.e., if one chooses to assume
that vi is strictly decreasing for i = 1, 2 in Assumption 2.9, then the case considered here
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Figure 10: Effectively efficient IRE violating (6.11)
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This assumption holds, for example, in the prisonner’s dilemma game
in Subsection 2.2.4. More generally, it holds whenever an increase in si is
costly to player i but beneficial to player j. Assumption 7.1 is maintained
throughout this section. The following result simplifies Theorem 6.1 and
facilitates subsequent analysis.

Proposition 7.1. There exists an IRE associated with (ω1, ω2) ∈ R2 if and
only if the nonemptiness condition (6.6) holds and

∀(i, j) ∈ Q, 0 ∈ D(g
ωj

i ). (7.1)

Proof. By Theorem 6.1, it suffices to show that (7.1) is equivalent to the no-
sticking-out condition (6.7) under (6.6). By Assumption 7.1, (6.7) implies
(7.1). Conversely, assume (6.6) and (7.1). Let (i, j) ∈ Q. By Assumption

7.1 and (6.5), s
(ωi,ωj)
i = 0. Since 0 ∈ D(g

ωj

i ), we have s
(ωi,ωj)
i = 0 ≤ g

ωj

i (0) =
g

ωj

i (ŝj) by Assumption 7.1. Now (6.7) follows.

The above proof shows that under (6.6) and (7.1), the inequality in the
no-sticking-out condition (6.7) automatically holds. This implies that if an
IRE exists such that Ψ̃ω1

1 ∩Ψ̃ω2
2 6= ∅, then an IRE continues to exist when both

indifference curves are slightly shifted upward. Therefore an IRE cannot be
effectively efficient if Ψ̃ω1

1 ∩ Ψ̃ω2
2 6= ∅. This is the idea of the following result.

Theorem 7.1. Suppose an IRE associated with (ω1, ω2) ∈ R2 exists. Then
it is effectively efficient if and only if (6.11) holds, i.e., Ψ̃ω1

1 ∩ Ψ̃ω2
2 = ∅.

Proof. The “if” part is obvious, as mentioned earlier. To see the “only if”
part, suppose there is an IRE associated with (ω1, ω2) ∈ R2 that is effectively
efficient. Suppose (6.11) does not hold, i.e.,

Ψ̃ω1
1 ∩ Ψ̃ω2

2 6= ∅. (7.2)

Since for (i, j) ∈ Q, gωi
j (·) is strictly increasing by (3.10) and Assumption 7.1,

(7.1) and (7.2) imply 0 ≤ gωi
j (0) < 1 for (i, j) ∈ Q. Since gωi

j is continuous and
strictly increasing in ωi by (3.10), it follows that there is (ω̃1, ω̃2) À (ω1, ω2)
such that 0 < gω̃i

j (0) < 1 and Ψ̃ω̃1
1 ∩ Ψ̃ω̃2

2 6= ∅ for (i, j) ∈ Q. Hence (6.6) and
(7.1) hold with ω̃1 and ω̃2 replacing ω1 and ω2. But this implies that the
given IRE cannot be effectively efficient, a contradiction.

corresponds to the case ŝi = 1 for i = 1, 2.
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Let us now develop a folk-type theorem. The following result gives an
alternative characterization of IREs that proves useful.

Proposition 7.2. There exists an IRE associated with (ω1, ω2) ∈ R2 if and
only if there exists (s1, s2) ∈ [0, 1]2 such that

∀(i, j) ∈ Q, ωi = wi(si, sj), (7.3)

(s1, s2) ∈ Ψ
w1(0,0)
1 ∩Ψ

w2(0,0)
2 . (7.4)

Proof. First we observe from (3.7), (6.1), and Lemma 3.1(ii) that

(7.3) ⇔ ∀(i, j) ∈ Q, si ∈ D(gωi
j ), sj = gωi

j (si), (7.5)

(7.3) ⇒ (s1, s2) ∈ Ψω1
1 ∩Ψω2

2 . (7.6)

If: Let (ω1, ω2) ∈ R2. Suppose there exists (s1, s2) ∈ [0, 1]2 satisfying
(7.3) and (7.4). Then by (7.6), the nonemptiness condition (6.6) holds. By
Proposition 7.1, it suffices to verify (7.1). Let (i, j) ∈ Q. By (7.4) and
(6.1), wi(si, sj) ≥ wi(0, 0). Since ui is strictly decreasing by Assumption 7.1,
ωi = wi(si, sj) ≤ wi(0, 1). It follows that

ui(0) + δivi(0) ≤ ωi ≤ ui(0) + δivi(1), (7.7)

which can be written as

ωi − δivi(1) ≤ ui(0) ≤ ωi − δivi(0). (7.8)

Hence (7.1) holds by (3.9).
Only if: Let there be an IRE associated with (ω1, ω2) ∈ R2. By (7.1),

gωi
j (0) ≥ 0 for (i, j) ∈ Q. Thus if the graphs of gω1

2 and gω2
1 have no intersec-

tion, then the nonemptiness condition (6.6) does not hold, a contradiction.
Hence the graphs of gω1

2 and gω2
1 have an intersection (s1, s2) ∈ [0, 1]2, i.e.,

sj = gωi
j (si) for (i, j) ∈ Q. Thus (7.3) holds by (7.5). We have (7.4) by (7.3),

(7.6), (4.3), (3.17), Assumption 7.1, and (6.1).

See Figure 11 for an illustration of Ψ
w1(0,0)
1 ∩ Ψ

w2(0,0)
2 . Note that both

indifference curves g
w2(0,0)
1 and g

w1(0,0)
2 emanate from the origin because they

correspond to the effective payoffs associated with the action profile (0, 0).
Given an IRE (f1, f2), we say that (s1, s2) ∈ [0, 1]2 is a steady state if

s1 = f1(s2) and s2 = f2(s1). In other words, any intersection of f1 and f2 is
a steady state. Needless to say, the IRE path starting from a steady state
remains there forever.
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Figure 11: Ψ
w1(0,0)
1 ∩Ψ

w2(0,0)
2 and lower bounds of Ψ̃∗

i

(wi = wi(0, 0) in this figure)

Proposition 7.3. There exists an IRE such that (s1, s2) ∈ [0, 1]2 is a steady
state if and only if (7.4) holds.

Proof. Let there be an IRE such that (s1, s2) ∈ [0, 1]2 is a steady state.
Define ω1 and ω2 by (7.3). Then (7.4) holds as in the proof of Proposition
7.2. Conversely, let (s1, s2) ∈ R2 satisfy (7.4). Define ω1 and ω2 by (7.3). By
Proposition 7.2, an IRE associated with (ω1, ω2) exists. Thus (6.6) and (6.7)
hold by Theorem 6.1. Let (f1, f2) be the IRE given by (6.8). By (7.5), (a)

sj = gωi
j (si) for (i, j) ∈ Q. Since (s1, s2) ∈ Ψω1

1 ∩Ψω2
2 by (7.6), (b) si ≤ s

(ωi,ωj)
i

for (i, j) ∈ Q. Thus by (a) and (b), for (i, j) ∈ Q, gωi
j (si) = sj ≤ s

(ωj ,ωi)
j ,

so fj(si) = gωi
j (si) by (6.8). This together with (a) shows that (s1, s2) is a

steady state.

By this result, the set Ψ
w1(0,0)
1 ∩ Ψ

w2(0,0)
2 can be viewed as the collection

of all steady states supported by IREs. For (i, j) ∈ Q, define

Ψ̃∗
i = {(si, sj) ∈ [0, 1]2 |ui(si) + vi(sj) > ui(0) + vi(0)}. (7.9)

Since ui(0)+vi(0) is player i’s minimax payoff in the one-shot game, Ψ̃∗
1∩ Ψ̃∗

2

may be called the set of “strictly individually rational” action profiles without
randomization.
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Note that the definition of Ψ̃ωi
i in (6.10) becomes identical to (7.9) if

δi = 1 and ωi = ui(0) + vi(0). It follows from (3.10) that for (i, j) ∈ Q,

∀si ∈ D(g
wi(0,0)
j ), g

wi(0,0)
j (si) = v−1

i

(
vi(0) +

ui(0)− ui(si)

δi

)
. (7.10)

Thus the graph of g
wi(0,0)
j shifts downward as δi increases; see Figure 11. The

idea of our folk-type theorem is that as δi ↑ 1, Ψ̃
w1(0,0)
1 ∩ Ψ̃

w2(0,0)
2 “converges”

to Ψ̃∗
1 ∩ Ψ̃∗

2, so by Proposition 7.3, any point in Ψ̃∗
1 ∩ Ψ̃∗

2 can be supported as
a steady state of an IRE for (δ1, δ2) sufficiently close to (1, 1).

Theorem 7.2. Let
(s1, s2) ∈ Ψ̃∗

1 ∩ Ψ̃∗
2. (7.11)

Then for (δ1, δ2) ¿ (1, 1) sufficiently close to (1, 1), there exists an IRE such
that (s1, s2) is a steady state.

Proof. Assume (7.11). By (7.9), for (δ1, δ2) close enough to (1, 1),

∀(i, j) ∈ Q, ui(si) + δivi(sj) > ui(0) + δivi(0), (7.12)

so (7.4) holds by (6.1). Now the theorem follows by Proposition 7.3.

This result is similar in spirit to the folk-type theorems shown by Fried-
man and Samuelson (1994a, 1994b). Their results show that the main idea
of the standard folk theorem (Fudenberg and Maskin, 1986) is valid even
if one confines oneself to continuous equilibria with additional restrictions.
Since the IREs given by (6.8) are continuous, any (s1, s2) ∈ Ψ̃∗

1∩ Ψ̃∗
2 is in fact

supported as a steady state of a continuous IRE for (δ1, δ2) sufficiently close
to (1, 1) here. In addition the punishment on a deviator imposed by an IRE
satisfying (6.8) is rather minimal since in each period, player i is indifferent

between conforming to a given IRE path and choosing any si ∈ [0, s
(ωi,ωj)
i ]

(recall that s
(ωi,ωj)
i = 0 here by the proof of Proposition 7.1).

8 Applications

8.1 Prisoner’s Dilemma

Consider the alternating move game associated with the prisoner’s dilemma
game in Subsection 2.2.4.19 For simplicity, we assume directly that the one-

19The simultaneous move game can be analyzed similarly; recall Proposition 6.1 and
Section 5.
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shot payoff of player i is given by (2.5),20 and that both players have the
same discount factor: δ1 = δ2 = δ ∈ (0, 1). The effective payoff of player i is
given by

wi(si, sj) = −asi + δesj, (8.1)

where e = c + a. Replacing wi(si, sj) with ωi and solving for sj, we see that
the indifference curve associated with ωi ∈ R, or gωi

j , is linear:

gωi
j (si) =

ωi

δe
+

a

δe
si. (8.2)

Since Assumption 7.1 holds here, all the results in Section 7 apply.
We consider three cases separately. First suppose δ < a/e, i.e., the slope

of gωi
j is strictly greater than one. By (7.1), g

ωj

i (0) ≥ 0 for (i, j) ∈ Q in any

IRE. Thus if g
ωj

i (0) > 0 for either (i, j) ∈ Q, the nonempiness condition (6.6)
will be violated; see Figure 12. Hence in any IRE, g

ωj

i (0) = 0 for (i, j) ∈ Q.
It follows that there is a unique IRE, which corresponds to the static Nash
equilibrium, i.e., fi(sj) = 0 for all sj ∈ [0, 1] and (i, j) ∈ Q. This is because

by Proposition 6.1, fi(sj) ≤ s
(0,0)
i = 0 for all sj ∈ [0, 1] and (i, j) ∈ Q. See

Figure 12 again. This IRE is effectively efficient by Theorem 7.1 (or simply
by uniqueness).

Now suppose δ = a/e, i.e., the slope of gωi
j is equal to one. In this knife

edge case, the two indifference curves emanating from the origin coincide.
The above argument still shows g

ωj

i (0) = 0 for (i, j) ∈ Q. Though, as in the
previous case, there is an IRE corresponding to the static Nash equilibrium,
there are many other IREs here. See Figure 13 for an example.

Finally, suppose δ > a/e, i.e., the slope of gωi
j is strictly less than one.

In this case, there are many pairs of effective payoffs supported by IREs. A
“typical” case is depicted in Figure 14, where there is a unique and globally
stable steady state. The existence of a unique and globally stable steady
state is a general property of this case by (5.8) and (8.2).

Figure 15 shows a symmetric IRE that is effectively efficient. In this case
the effective payoff of each player corresponds to the action profile (1, 1), and

20Alternatively one may assume that player i’s mixed action in period t ∈ Ti is observable
to player j at the beginning of period t + 1. In this case, the expected one-shot payoff of
player i in period t is −asi,t + (c + a)rj,t−1, where si,t is player i’s probability of choosing
C, and rj,t−1 is player j’s realized action in period t − 1. Since rj,t−1 does not affect
player i’s preferences over his actions from period t onward, all our results hold even in
this case. This argument is unnecessary for the simultaneous move game, where rj,t−1

must be replaced by sj,t−1.
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Figure 12: Prisoner’s dilemma with δ < a/e
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Figure 13: Prisoner’s dilemma with δ = a/e
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s1
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f2(s1)

f1(s2)

s2,0

s′2,0

Figure 14: Prisoner’s dilemma with δ > a/e: “typical” case

full cooperation is achieved in the long run. Figure 16 shows an effectively
efficient IRE in which player 1 receives the highest possible effective payoff,
while player 2 receives the minimax effective payoff w2(0, 0). In this case only
player 2 fully cooperates in the long run.

By Theorem 7.2, any strictly individually rational action profile (s1, s2),
which by definition satisfies −asi + esj > 0 for (i, j) ∈ Q, is supported as
a steady state of an IRE for δ sufficiently close to one. Notice that the set
of payoff profiles supported by strictly individually rational action profiles is
convex here, so that this set coincides with the set of “strictly individually
rational” payoff profiles (Fudenberge and Maskin, 1986). Thus our folk-type
theorem coincides with the standard folk theorem in this example.

8.2 Duopoly

Consider the alternating move game associated with the duopoly game of
Subsection 2.2.3.21 For simplicity we assume that the firms are symmetric.
Let c and δ denote their common marginal cost and discount factor. Recall
that firm i’s one-shot profit is given by Di(pi, pj)(pi− c). We parametrize Di

21Once again, the dynamics of the simultaneous move game can be analyzed similarly.
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Figure 16: Effectively efficient IRE in which player 2 receives minimax
effective payoff
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as follows:
∀(i, j) ∈ Q, Di(pi, pj) = (p− pi)pj, (8.3)

where p > c. Let (i, j) ∈ Q. Recalling (2.3), we see that the effective payoff
of firm i is given by

wi(pi, pj) = ln(p− pi) + ln(pi − c) + δ ln pj. (8.4)

Replacing wi(pi, pj) with ωi and solving for pj, we obtain

gωi
j (pi) = exp[{ωi − ln(p− pi)− ln(pi − c)}/δ]. (8.5)

Note that gωi
j (c) = gωi

j (p) = ∞. Direct calculation of the second derivative
shows that gωi

j is strictly convex. It is easy to see that given pj, firm i’s one-
shot profit, as well as its effective payoff, is maximized at pi = p̂ ≡ (c + p)/2.
This is the price charged by both firms in the unique static Nash equilibrium.

Figure 17 illustrates a symmetric IRE in which both firms receive the ef-
fective payoff corresponding to the static Nash equilibrium. The indifference
curves in this figure are similar to those in Figure 5, which shows the IRE
corresponding to the static Nash equilibrium. Figure 17 shows an alternative
IRE given by (6.8). In this IRE, there is a steady state in which both firms
charge the static Nashu price, as in Figure 5. In Figure 17, however, there
is another steady state with a higher symmetric price. At this steady state,
each firm faces a “kinked demand curve.” If one of the firms raises its price,
the other does not follow. Proposition 6.1 implies that this kinked feature
is a rather general property in the sense that in any IRE, the firms never
charge prices higher than those given by the highest intersection of the two
indifference curves. On the other hand, if one of the firms lowers its price,
this triggers price war, and the prices converge to the lower steady state.
Figure 17 shows an example of an IRE path after a small price cut by firm
2 in period 0 (which is taken as the initial condition of the model).

Clearly the above properties of the two steady states continue to hold
even if the firms receive higher effective payoffs, as long as there are two
steady states. It is easy to see that there can be at most two steady states
by strict concavity of gωi

j , provided that the firms receive effective payoffs
at least as large as the level associated with the static Nash equilibrium.
Note that effective payoffs higher than the static Nash level correspond to
indifference curves higher than those depicted in Figure 17.

If there is only one steady state, then the IRE is effectively efficient by
(6.11). Figure 18 illustrates a symmetric, effectively efficient IRE. At the
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Figure 17: Symmetric IRE in which each firm receives effective payoff equal
to static Nash level

unique steady state, each firm faces a kinked demand curve once again. This
steady state, however, is globally stable. If one of the firms raises its price,
the other does not follow, as in Figure 17. If one of them lowers its price,
the other lowers its price too but by a smaller degree. Eventually the prices
return to the initial high levels. This process is shown in Figure 18 assuming
that firm 2 cuts its price to the static Nash level in period 0. It follows from
Theorem 5.1 that the global stability of the unique steady state is a general
property of any effectively efficient IRE here.

9 Concluding Comments

This paper offers a complete and graphical characterization of immediately
reactive equilibria (IREs) for infinitely repeated games with two players in
which the action space of each player is an interval, and the one-shot payoff
of each player consists of two continuous functions, one unimodal in his
own action, the other strictly monotone in the other player’s action. IREs
are simplest subgame perfect equilibria with nontrivial dynamic interactions.
Though IREs constitute only a small subset of the subgame perfect equilibria,
the structure of IREs is rich enough to allow us to show a folk-type theorem
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Figure 18: Symmetric effectively efficient IRE

in a special case.
The additive separability of payoffs is critical to our analysis, including

the definition of IRE. Although additive separability may appear rather re-
strictive, there are various interesting games that satisfy it. We have analyzed
two such games and characterized their IREs by applying our general results.
We believe that our results are useful not only in analyzing games that sat-
isfy our assumptions, but also in constructing completely tractable special
cases of more general games. Such special cases, which are fully rational and
dynamic, would enhance understanding of various interesting problems.

Appendix A Proof of Theorem 6.1

Throughout the proof, we omit the superscripts ωi, ωj, (ωi, ωj), and (ωj, ωi).

A.1 Sufficiency

The “if” part of the proposition follows from the following.

Lemma A.1. Let ω1, ω2 ∈ R satisfy (6.6) and (6.7). Then the strategy
profile (f1, f2) given by (6.8) is an IRE associated with (ω1, ω2).
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Proof. It suffices to show R(fi) ⊂ Mi(fj) for (i, j) ∈ Q by Theorem 4.1. Let
(i, j) ∈ Q. By (3.21) and (6.8),

Mi(fj) = {si ∈ D(gj) | gj(si) ≤ sj}. (A.1)

By (6.3) and (6.2), gj(si) ≤ sj, so si ∈ Mi(fj). By (6.4), gj(si) ≤ sj, so
si ∈ Mi(fj). Let si ∈ R(fi). By (6.7), Lemma 3.1(iii), and (6.8), si ≤
gi(ŝj) ≤ si ≤ si. Thus si ∈ Mi(fj) since si, si ∈ Mi(fj) and Mi(fj) is an
interval by (A.1) and Lemma 3.1(iii). It follows that R(fi) ⊂ Mi(fj).

A.2 Necessity

We show the “only if” part in a few steps. Throughout we take as given an
IRE (f1, f2) associated with (ω1, ω2) ∈ R2. For (i, j) ∈ Q, define

ri = inf R(fi), ri = sup R(fi), (A.2)

r̃i = min{si ∈ D(gj) | gj(si) ≤ rj}. (A.3)

Lemma A.2. For (i, j) ∈ Q,

ri, ri ∈ D(gj), (A.4)

gj(ri), gj(ri) ∈ D(gi), (A.5)

ri ≤ gi(gj(ri)), ri ≥ gi(gj(rj)). (A.6)

Proof. Let (i, j) ∈ Q. Recall from (3.22) that

R(fi) ⊂ Mi(fj) ⊂ D(gj). (A.7)

Since D(gj) is closed by (3.17) and Lemma 3.1(i), (A.4) follows from (A.7)
and (A.2). Note from (4.2) and (A.7) that

∀sj ∈ R(fj), fi(sj) = gi(sj). (A.8)

Hence
ri ≤ inf

sj∈R(fj)
gi(sj), ri ≥ sup

sj∈R(fj)

gi(sj). (A.9)

By (A.8) and (A.7) (with i and j interchanged),

∀si ∈ R(fi), gj(si) = fj(si) ∈ R(fj) ⊂ D(gi). (A.10)

Thus (A.5) follows by continuity of gj and closeness of D(gi).
To see (A.6), let si ∈ R(fi). By (A.10), gj(si) ∈ R(fj). Hence by (A.9),

ri ≤ gi(gj(si)) and ri ≥ gi(gj(si)). Thus (A.6) follows by continuity of gi and
gj.
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When (i, j) ∈ Q is given, we interchange the coordinates in Ψj so that Ψi

and Ψj have the same coordinates, i.e., we redefine

Ψj = {(si, sj) ∈ [0, 1]2 | sj ∈ D(gi), si ≥ gi(sj)}. (A.11)

This is identical to (6.2) with i and j interchanged, except for the order of
the coordinates; recall footnote 15.

Lemma A.3. For (i, j) ∈ Q,

(ri, gj(ri)) ∈ Ψi ∩Ψj, (A.12)

(a) ŝj ∈ D(gi), (b) r̃i ≤ gi(ŝj). (A.13)

Proof. Let (i, j) ∈ Q. Since ri ∈ D(gj) by (A.4), we have (ri, gj(ri)) ∈ Ψi by
(6.2) (with sj = gj(ri) and si = ri). By (A.5) and (A.6), gj(ri) ∈ D(gi) and
ri ≥ gi(gj(ri)). So by (A.11), (ri, gj(ri)) ∈ Ψj. Thus (A.12) follows.22

It remains to show (A.13). Note that (A.13)(a) is immediate from (3.17)
and Lemma 3.1(i). By (A.2), fj(si) ≤ rj for si ∈ [0, 1]. Thus by (3.21),

∀si ∈ Mi(fj), gj(si) = fj(si) ≤ rj. (A.14)

Hence Mi(fj) ⊂ {si ∈ D(gj) | gj(si) ≤ rj} ≡ B. Thus by (3.20) and (4.1),

gi(ŝj) ≥ fi(ŝj) ∈ Mi(fj) ⊂ B. (A.15)

Since r̃i = min B by (A.3), (A.13)(b) follows.

Let us now complete the “only if” part of the proof. We have (6.6) by
(A.12). Let (i, j) ∈ Q. By (A.12) and (6.3), rj ≤ sj. Thus the set in (6.4)
includes the set in (A.3), so sj ≤ r̃j . This together with (A.13) shows (6.7).
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