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Abstract

This paper develops a simple test for the null hypothesis of stationarity in heterogeneous
panel data with cross-sectional dependence in the form of a common factor in the distur-
bance. We do not estimate the common factor but mop-up its e¤ect by employing the same
method as the one proposed in Pesaran (2007) in the unit root testing context. Our test
is basically the same as the KPSS test but the regression is augmented by cross-sectional
average of the observations. We also develop a Lagrange multiplier (LM) test allowing
for cross-sectional dependence and, under restrictive assumptions, compare our augmented
KPSS test with the extended LM test under the null of stationarity, under the local alter-
native and under the �xed alternative, and discuss the di¤erences between these two tests.
We also extend our test to the more realistic case where the shocks are serially correlated.
We use Monte Carlo simulations to examine the �nite sample property of the augmented
KPSS test.
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1. Introduction

Since the beginning of the 90�s, the theoretical and empirical econometrics literature

witnessed a formidable output on testing unit root and stationarity in panel data with large

T (time dimension) and N (cross-section dimension). The main motive for applying unit

root and stationarity tests to panel data is to improve the power of the tests relative to their

univariate counterparts. This was supported by the ensuing applications and simulations.

The early theoretical contributions are by Breitung and Meyer (1994), Choi (2001), Hadri

(2000), Hadri and Larsson (2005), Im, Pesaran and Shin (2003), Levin, Lin and Chu (2002),

Maddala and Wu (1999), Phillips and Moon (1999), Quah (1994) and Shin and Snell (2006).

On the application side, the early contributions were the work of O�Connell (1998), Oh

(1996), Papell (1997, 2002), Wu (1996) and Wu and Wu (2001), who focused on testing the

existence of purchasing power parity. Culver and Papell (1997) applied panel unit root tests

to the in�ation rate for a subset of OECD countries. They have also been employed in testing

output convergence and more recently in the analysis of business cycle synchronization,

house price convergence, regional migration and household income dynamics (cf. Breitung

and Pesaran (2005)). All these "�rst generation" panel tests are based on the incredible

assumption that the cross-sectional units are independent or at least not cross-sectionally

correlated. Banerjee (1999), Baltagi and Kao (2000), Baltagi (2001) provide comprehensive

surveys on the �rst generation panel tests. However, in most empirical applications this

assumption is erroneous. O�Connell (1998) was the �rst to show via simulation that the panel

tests are considerably distorted when the independence assumption is violated, whether the

null hypothesis is a unit root or stationarity. Banerjee, Marcellino and Osbat (2001, 2004)

argued against the use of panel unit root tests due to this problem. Therefore, it became

imperative that in applications using panel tests to account for the possibility of cross-

sectional dependence. This led, recently, to a �urry of papers accounting for cross-sectional

dependence of di¤erent forms or second generation panel unit root tests. The most noticeable

proposals in this area are by Chang (2004), Phillips and Sul (2003), Bai and Ng (2004), Moon

and Perron (2004), Choi and Chue (2007) and Pesaran (2007) for unit root panel tests. For
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panel stationarity tests, the only contributions so far are by Bai and Ng (2005) and Harris,

Leybourne and McCabe (2005), both of which corrected for cross-sectional dependence by

using the principal component analysis proposed by Bai and Ng (2004).

Choi and Chue (2007) utilize subsampling technique to tackle cross-sectional dependence.

Phillips and Sul (2003), Bai and Ng (2004), Moon and Perron (2004) and Pesaran (2007)

employ factor models to allow for cross-sectional correlation (cf. to de Silva, Hadri and

Tremayne (2007) for the comparison of the three last tests). Pesaran (2007) considers only

one factor and instead of estimating it, he augments the ADF regressions with the cross-

sectional averages of lagged levels and �rst-di¤erences of the individual series to account

for the cross-sectional dependence generated by this one factor. Other contributions are by

Maddala and Wu (1999) and Chang (2004) who exploited the �exibility of the bootstrap

method to deal with the pervasive problem of cross-sectional dependence of general form.

Breitung and Pesaran (2005) give an excellent survey of the �rst and second generation

panel tests.

The transfer of testing for unit root and stationarity from univariate time series to large

panel data contributed to a signi�cant increase of the power of those tests. However, this

transfer led to a number of di¢ culties besides the problem of cross-sectional dependence.

In particular, the asymptotic theory is by far more intricate due to the presence of two

indices: the time dimension and the number of cross-sections. The limit theory for this

class of panel data has been developed in a seminal paper by Phillips and Moon (1999).

In their paper they study inter alia the limit theory that allows for both sequential limits,

wherein T ! 1 followed by N ! 1; and joint limits where T;N ! 1 simultaneously.

They also mention, in the same paper, the diagonal path limit theory in which the passage

to in�nity is done along a speci�c diagonal path. The drawback of sequential limits is that

in certain cases, they can give asymptotic results which are misleading. The downside of

diagonal path limit theory is that the assumed expansion path (T (N); N) ! 1 may not

provide an appropriate approximation for a given (T;N) situation. Finally, the joint limit

theory requires, generally, a moment condition as well as a rate condition on the relative
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speed of T and N going to in�nity.

In this paper, we adapt Pesaran (2007) approach to the panel stationarity test of Hadri

(2000) due to its conceptual simplicity. Our test is basically the same as the Kwiatkowski

et al. (1992) test (KPSS test hereafter) with the regression augmented by cross-sectional

average of the observations. We show that the limiting null distribution is the same as the

test suggested by Hadri (2000), which is an Lagrange multiplier (LM) test without cross-

sectional dependence. We also extend Hadri�s test and develop the LM test allowing for

cross-sectional dependence. We compare our augmented KPSS test with the extended LM

test under the null of stationarity, under the local alternative and under the �xed alternative,

and discuss the di¤erence between these two tests. We then extend our test to the case of

the serially correlated shocks, and use Monte Carlo simulations to examine the �nite sample

properties of the augmented KPSS test.

The paper is organized as follows. Section 2 sets up the model and assumptions, and

de�ne the augmented test statistic. We also develop the LM test allowing for cross-sectional

dependence. Section 3 is devoted to the comparison of our augmented KPSS test under

restrictive assumptions with the extended LM test under the null of stationarity, under the

local alternative and under the �xed alternative. We show that the limiting null distribution

of the augmented KPSS test is the same as that of Hadri�s (2000) test. We also examine

whether our theoretical result is valid in �nite samples via simple Monte Carlo simulations.

In Section 4, we relax Assumption 1 in order to allow for serial correlation in the error

term and propose a modi�cation of the augmented KPSS test statistic to correct for the

presence of this serial correlation. Once again, we examine the �nite sample properties of

the proposed test statistic via Monte Carlo simulations. Section 5 concludes the paper. All

the proofs are presented in the Appendix.

A summary word on notation. We de�ne MA = IT � A(A0A)�1A0 for a full column

rank matrix A. The symbols
p;T�! and T

=) signify convergence in probability and weak

convergence respectively as T ! 1 with N �xed, while
p;N�! and N

=) means convergence

in probability and weak convergence respectively when N ! 1. We denote sequential
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convergence in probability and sequential weak convergence by
p;T;N�! and

T;N
=) respectively

as T !1 followed by N !1. We denote [Tr] element of T � 1 vector A by [A][Tr] where

[Tr] is the largest integer less than Tr.

2. Model and Test Statistics

2.1. Model and assumptions

Let us consider the following model:

yit = z0t�i + rit + uit; rit = rit�1 + vit; uit = ft
i + "it (1)

for i = 1; � � � ; N and t = 1; � � � ; T where zt is deterministic and ri0 = 0 for all i. The

commonly used speci�cation of zt in the literature is either zt = z�t = 1 or zt = z�t = [1; t]
0:

In this paper, we consider these two cases. Accordingly, we de�ne �i = �i when z = 1

and �i = [�i; �i]
0 when z = [1; t]0. In model (1), z0t�i is the individual e¤ect while ft is

one dimensional unobserved common factor and "it is the individual-speci�c (idiosyncratic)

error.

By stacking yit with respect to t, model (1) can be expressed as26664
yi1
yi2
...
yiT

37775 =
26664
z01
z02
...
z0T

37775 �i +
26664
ri1
ri2
...
riT

37775+
26664
f1
f2
...
fT

37775 
i +
26664
"i1
"i2
...
"iT

37775 ;
26664
ri1
ri2
...
riT

37775 =
26664
1 0
1 1
...
...
. . .

1 1 � � � 1

37775
26664
vi1
vi2
...
viT

37775
or

yi = Z�i + ri + f
i + "i (2)

= Z�i + Lvi + f
i + "i;
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where Z = [� ;d] with � = [1; 1; � � � ; 1]0 and d = [1; 2; � � � ; T ]0 being T � 1 vectors. Further,

we have26664
y1
y2
...
yN

37775 =
26664
Z

Z
. . .

Z

37775
26664
�1
�2
...
�N

37775+
26664
L

L
. . .

L

37775
26664
v1
v2
...
vN

37775+
26664
f
1
f
2
...
f
N

37775+
26664
"1
"2
...
"N

37775
or

y = (IN 
 Z)� + r+ (
 
 f) + " (3)

= (IN 
 Z)� + (IN 
 L)v + (
 
 f) + ":

In this section, we assume the following simple assumption:

Assumption 1 (i) The stochastic processes f"itg, fftg and fvitg are independent,

"it � i:i:d:N(0; �2"); ft � i:i:d:N(0; �2f ); vit � i:i:d:N(0; �2v);

and �2", �
2
f and �

2
v are known.

(ii) There exist real numbers M1, M and M such that j
ij < M1 < 1 for all i and 0 <

M < j�
j < M <1 for all N , where �
 = N�1PN
i=1 
i.

Assumption 1(i) is restrictive and not practical. The assumption of normality with ho-

moskedasticity is required to derive the LM test and to discuss the optimal property of the

tests. The variances of the innovations are assumed to be known in order to make the the-

oretical investigation as simple as possible. In fact, if the variances are unknown, we need

to estimate them and the asymptotic property of the tests depends on those estimators.

Our purpose in this section is to examine the theoretical e¤ect of �augmentation�, which

is explained below, on stationarity tests. Assumption 1(i) will be relaxed in Section 4 to a

more practical one. Assumption 1(ii) is concerned with the weights of the common factor ft.

This assumption implies that each individual is possibly a¤ected by the common factor with

the �nite weight 
i and that the absolute value of the average of 
i is bounded away from

0 and above both in �nite samples and in asymptotics. The latter property is important in
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order to eliminate the common factor e¤ect from the regression. A similar assumption is

also entertained in Pesaran (2007).

We consider a test for the null hypothesis of (trend) stationarity against the alternative

of a unit root for model (1). Since all the innovations are homoskedastic, the testing problem

is given by

H0 : � �
�2v
�2"
= 0 8i v.s. H1 : � � 0 (4)

where � = �2v=�
2
" is a signal-to-noise ratio. Under H0, rit becomes equal to zero for all i so

that yit is stationary whereas some or all of the cross-sectional units have a unit root under

the alternative.

2.2. A simple stationarity test

A panel stationarity test has already been proposed by Hadri (2000) and Shin and

Snell (2006) for cross-sectionally independent data and we extend Hadri�s test to the cross-

sectionally dependent case. Hadri (2000) showed that if there is no cross-sectional depen-

dence in a model, we can construct the LM test using the regression residuals of yit on zt

in the same way as KPSS (1992) and that the limiting distribution of the standardized LM

test statistic is standard normal under the null hypothesis. However, it can be shown that

Hadri�s (2000) test depends on nuisance parameters even asymptotically if there exits cross-

sectional dependence; we then need to develop a stationarity test that takes into account

cross-sectional dependence.

In order to eliminate the e¤ect of the common factor from the test statistic, we make use

of the simple method proposed by Pesaran (2007), which develops panel unit root tests with

cross-sectional dependence. As in Pesaran (2007), we �rst take a cross-sectional average of

the model:

�yt = z0t�� + �rt + ft�
 + �"t; (5)

where �yt = N�1PN
i=1 yit, ��t = N�1PN

i=1 �i, �rt = N�1PN
i=1 rit, �
t = N�1PN

i=1 
i and

�"t = N�1PN
i=1 "it. Since �
 6= 0 by assumption, we can solve equation (5) with respect to ft
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as follows:

ft =
1

�


�
�yt � z0t�� � �rt � �"t

�
:

By inserting this solution of ft into model (1) we obtain the following augmented regression

model:

yit = z0t~�i + ~
i�yt + �it; (6)

where ~�i = �i � ~
i��, ~
i = 
i=�
 and �it = rit � ~
i�rt + "it � ~
i�"t. Based on (6) we propose to

regress yit on zt and �yt for each i and construct the test statistic in the same way as Hadri

(2000). That is,

ZA =

p
N(ST � �)

�
(7)

where ST =
1

N

NX
i=1

STi with STi =
1

�2"T
2
y0iMwL

0LMwyi

and

8<:
� = �� =

1
6 ; �2 = �2� =

1
45 when zt = z�t = 1;

� = �� =
1
15 ; �2 = �2� =

11
6300 when zt = z�t = [1; t]

0:

Note that STi can also be expressed as

STi =
1

�2"T
2

TX
t=1

(Swit )
2 where Swit =

tX
s=1

�̂is

with �̂it obtained for each i by regressing yit on wt = [z0t; �yt]
0 for t = 1; � � � ; T .

From (7) we can see that ST is the average of the KPSS test statistic across i and ZA

is normalized so that it has the limiting distribution. We call ZA the augmented KPSS test

statistic.

2.3. An LM test for panel stationarity

Although the augmented KPSS test is easy to implement, we do not know whether it has

an optimal property. Note that if �yt were deterministic, we could see that ZA is equivalent

to the LM test statistic and, because the LM test is a locally best invariant test under the
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assumption of normality, the augmented KPSS test would also be locally optimal. One

might think that this local optimality holds because �yt converges in probability to its mean,

zt��+ft�
, as N !1 and ft is independent of "it. In order to investigate the local optimality

of the augmented KPSS test, we consider the LM test and compare the two tests.

Under the assumption of normality, the log-likelihood function of y, denoted by `, is

expressed as

` = const� 1
2
log j
j � 1

2
fy � (IN 
 Z)�g0�1fy � (IN 
 Z)�g;

where 
 � V ar(y) = �
�
�2"IN 
 LL0

�
+A
 IT with A = �2f



0 + �2"IN :

The partial derivative of ` with respect to � is given by

@`

@�
= const+

1

2
fy � (IN 
 Z)�g0�1

@


@�

�1fy � (IN 
 Z)�g: (8)

Noting that


jH0 = A
 IT ; and
@


@�

����
H0

= �2"IN 
 LL0; (9)

the maximum likelihood (ML) estimator of � under H0 is given by

�̂ =
h
(IN 
 Z 0) 
�1

��
H0
(IN 
 Z)

i�1
(IN 
 Z 0) 
�1

��
H0
y

= (A�1 
 Z 0Z)�1(A�1 
 Z 0)y

= [IN 
 (Z 0Z)�1Z 0]y: (10)

Thus, the maximum likelihood estimator of � under H0 is the same as the OLS estimator.

By evaluating (8) under the null hypothesis using (9) and (10), the LM test statistic is given

by

LM =
1

NT 2
fy � (IN 
 Z)�̂g0(A�1 
 IT )(�2"IN 
 LL0)(A�1 
 IT )fy � (IN 
 Z)�̂g

=
1

NT 2
y0(�2"A

�2 
MzLL
0Mz)y:
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By normalizing LM , the extended LM test statistic for panel stationarity is given by

ZLM =

p
N
�
LM � �

�
�

(11)

where � and � are the same as in ZA. Note that LM can also be expressed as

LM =
1

N

NX
i=1

NX
j=1

�2"a
ij
2 LMij with LMij =

1

T 2

TX
t=1

SzitS
z
jt and Szit =

tX
s=1

ûis;

where aij2 being the (i; j) element of A
�2 and ûit for each i is obtained by regressing yit on

zt.

3. Theoretical Property of the Augmented KPSS and LM Tests

3.1. The limiting distributions of the test statistics

In this section we compare the augmented KPSS test with the extended LM test. Note

that the LM test is known to be a locally best invariant test under Assumption 1. Because

there is no one-to-one transformation between ZA and ZLM , we can see that the augmented

KPSS test does not have the local optimality in �nite samples. Then, our interest moves on

to whether it is asymptotically locally optimal or not.

In order to investigate the asymptotic local optimality of the augmented KPSS test, we

compare it with the LM test statistic under the null hypothesis, under the local alternative

and under the �xed alternative. We �rst give the limiting distributions of the two test

statistics under the null hypothesis.

Theorem 1 Assume that Assumption 1 holds. Under H0, as T !1 followed by N !1,

the augmented KPSS and LM test statistics have a limiting standard normal distribution for

both cases of zt = 1 and zt = [1; t]0,

ZA; ZLM
T;N
=) N(0; 1):

Note that the rejection region of ZA and ZLM is the right hand tail as in Hadri�s (2000)

test.
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Remark 1 Although we derived only the sequential weak limit of the test statistics, it is

not di¢ cult to see that the sequential limit is the same as the joint limit where T and N go

to in�nity simultaneously if we additionally assume the rate condition N=T ! 0. This is

because all the innovations are i.i.d. normal and the variances are known (see Shin and Snell

(2006)). In particular, the assumption of known variances is helpful to establish the joint

limit because it is su¢ cient to consider the joint limit of the numerator of the test statistic in

this case. According to Phillips and Moon (1999), this rate condition indicates that the joint

limit theory holds when the cross-sectional dimension N is moderate while T is relatively

large. However, we will relax the assumption of normality and consider the dependent shocks

in a later section. In this case, it would be di¢ cult to establish the equivalence between the

sequential and joint limits, and we will rely only on the sequential limit technique. In order

to see if the sequential limit theory can successfully approximate the �nite sample behavior

of the test statistics, we will conduct Monte Carlo simulations in a later section.

Theorem 1 shows that Pesaran�s (2007) method works well in order to eliminate cross-

sectional dependence even for testing the null hypothesis of stationarity and the augmented

KPSS test is asymptotically equivalent to the LM test statistic under the null hypothesis.

We next investigate the asymptotic property of the test statistics under the local alter-

native, which is expressed as

H`
1 : � =

c2p
NT 2

where c is some constant:

Note that for a single time series analysis, the local alternative is given by � = c2=T 2. Since

the sum of STi is normalized by
p
N as in ZA, the local alternative for panel stationarity

tests becomes � = c2=(
p
NT 2).

Theorem 2 Assume that Assumption 1 holds. Under H`
1, as T !1 followed by N !1,

the augmented KPSS and LM test statistics have the same limiting distribution given by

ZA; ZLM
T;N
=) N(0; 1) +

c2

�
E

�Z 1

0
F vi (r)

2dr

�
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where F vi (r) =
R r
0 B

v
i (t)dt �

R r
0 z(t)

0dt
�R 1
0 z(t)z(t)

0dt
��1 R 1

0 z(t)B
v
i (t)dt with B

v
i (r) are in-

dependent Brownian motions, which are independent of B"i (r), z(r) = 1 when zt = 1 and

z(r) = [1; r]0 when zt = [1; t]0.

This result implies that both the augmented KPSS and extended LM test statistics have

the same asymptotic local distribution. Since the LM test is locally best invariant, we can

see that the augmented KPSS test has the same asymptotic local optimality.

We �nally investigate the asymptotic property of the test statistics under the �xed

alternative H1. The following theorem gives the di¤erence of powers between the two tests

when the alternative is not local but far away from � = 0.

Theorem 3 Assume that Assumption 1 holds. Under H1, as T !1 followed by N !1,

1p
NT 2

ZA
T;N
=) �2

�
Evi

�Z 1

0
Gvi (r)

2dr

�
1p
NT 2

ZLM
T;N
=) �2

�
E

�Z 1

0
F v�i (r)

2dr

�
;

where Gvi (r) =
R r
0 B

v
i (t)dt�

R r
0 z

0
2(t)dt(

R 1
0 z2(t)z

0
2(t))

�1 R 1
0 z2(t)B

v
i (t)dt with z2(t) = [z

0(t); Bv(t)]0

and Bv(t) is a standard Brownian motion independent of Bvi (t) and Evi denotes the expec-

tation operator with respect to Bvi (r).

Note that since Gvi (r) depends on B
v
i (r) and B

v(r) and they are independent, we can see

that Evi[
R 1
0 G

v
i (r)

2dr] still depends on Bv(�) and then it is stochastic, while E[
R 1
0 F

v�
i (r)

2dr]

is deterministic. This is an interesting result because, when the asymptotic local powers are

the same for two tests, it is often the case that they also have the same limiting distribution

under the �xed alternative. For panel stationarity tests, the two tests have the same local

asymptotic power from Theorem 2 but the powers are di¤erent under the �xed alternative

from Theorem 3. This implies that although the two tests are locally optimal, they are not

equivalent in a wide range under the alternative.

3.2. Finite sample property under restrictive assumptions

12



In this subsection we investigate how accurately does the asymptotic theory approximate

the �nite sample behavior of the augmented KPSS and LM tests. We consider the following

data generating process for �nite sample simulations:

yit = z0t�i + rit + ft
i + "it; ft � i:i:d:N(0; 1); "it � i:i:d:N(0; 1)

rit = rit�1 + vit; vit � i:i:d:N(0; �);

�
H0 : � = 0
H1 : � = 0:0001; 0:001; 0:01

where �i = �i for the constant case while �i = [�i; �i]
0 for the trend case with �i and �i being

drawn from independent U(0; 0:02), 
i are drawn from �1+U(0; 4) for strong cross-sectional

correlation case (SCC) and from U(0; 0:02) for weak cross-sectional correlation case (WCC),

and �i, �i and 
i are �xed throughout the iterations. We consider all the pairs of N = 10,

20, 30, 50, 100 and T = 10, 20, 30, 50, 100, 200. The level of signi�cance is 0.05 and the

number of replications is 10,000 in all experiments.

Table 1 shows the sizes of the tests. We can observe that the empirical size of the

augmented KPSS test is close to the nominal one when T is equal to or greater than 50 for

SCC case while it is slightly undersized for WCC case. On the other hand, the size of the

LM test is close to the nominal one irrespective of N and T but it is slightly undersized

for SCC case while it is slightly oversized for WCC case. Overall, the null distributions of

the two tests seem to be well approximated by a standard normal distribution suggested by

Theorem 1 in view of the size of the tests.

Table 2 reports the powers of the tests. For given N and T , the upper, middle and lower

entries are the powers of the tests for � = 0:0001, 0.001 and 0.01, respectively. From the

table the powers of the tests become higher for larger � and T , although the tests have low

power when T is small. We can also observe that the powers become higher for larger N .

For example, the size of the augmented KPSS test for T = 50, SCC and constant case is

relatively close to 0.05 for all the values of N while the empirical power when � = 0:001 is

0.145, 0.202, 0.254, 0.342 and 0.539 for N = 10, 20, 30, 50 and 100, respectively. Table 2

implies that the tests are consistent as proved by Theorem 3.

In order to see if the augmented KPSS test can be seen as the asymptotically locally
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best test indicated by Theorem 2, we calculated the size adjusted power of the tests. Figure

1 draws the power curves for selected cases. From the �gure we observe that the power of

the augmented KPSS test is almost the same as that of the LM test for the constant case.

When a linear trend is included, the augmented KPSS test is as powerful as the LM test

when � is small while the former is slightly less powerful than the latter for the trend case.

As a whole, the �nite sample behavior of the augmented KPSS and LM tests is well

approximated by the asymptotic theory established in the previous section when N and T

are of moderate size.

4. Extension to general case

4.1. Modi�cation of the augmented KPSS test

So far, we have investigated the theoretical property of the augmented KPSS test under

restrictive assumptions. In this section we relax Assumptions 1(i) and consider a more

practical situation. Because the LM test statistic will depend on nuisance parameters in a

complicated way under general assumptions and it would be di¢ cult to correct ZLM so that

it becomes free of nuisance parameters, we concentrate on the modi�cation of the augmented

KPSS test.

Since it is often the case that the observed process can be approximated by an autore-

gressive (AR) model, we do not consider the error component model (1) but an AR(p) model

instead in this section:

yit = z0t�i + ft
i + "it; "it = �i1"it�1 + � � �+ �ip"it�p + �it: (12)

The lag length p may change depending on the cross-sectional units but we suppress the

dependence of p on i for notational convenience.

Assumption 2 (i) The stochastic process ft is stationary with a �nite fourth moment and

the functional central limit theorem (FCLT) holds for the partial sum process of ft. (ii)

The stochastic process �it are independent of ft and i:i:d:(0; �2�i) across i and t with a �nite

fourth moments.
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This assumption allows the common factor to be stationary but still assumes that it is

independent of the idiosyncratic errors, which are �nite order AR processes with the i.i.d.

innovations. We assume Assumptions 1 (ii) and 2 in the rest of this section.

Since our interest is whether yit are (trend) stationary or unit root processes, the testing

problem is given by

H 0
0 : �i(1) 6= 0 8i v.s. H 0

1 : �i(1) = 0 for some i;

where �i(L) = 1� �i1L� � � � � �ipLp.

In this case we need to modify the original KPSS test statistic for serial correlation

as well as cross-sectional dependence. For the correction of cross-sectional dependence, we

regress yit on wt = [z0t; �yt; �yt�1; � � � ; �yt�p] because "it are AR(p) processes and construct Swit
using this regression residuals. Along the same line as (20) in the proof of Theorem 1 it is

not di¢ cult to see that the numerator of each STi weakly converges to

1

T 2

TX
t=1

(Swit )
2 T
=) �2i

Z 1

0

�
V "i (r) +Op

�
1p
N

��2
dr

where �2i = �2�i=(1��i1�� � ���ip)2 and V "i (r) = B"i (r)�
R r
0 z(t)

0dt
�R 1
0 z(t)z(t)

0dt
��1 R 1

0 z(t)dB
"
i (t)

with B"i (t) are independent standard Brownian motions. This suggests that we should di-

vide the numerator of each STi by a consistent estimator of the long-run variance �2i in

order to correct for serial correlation.

Several consistent estimators of the long-run variance for parametric model have been

proposed in the literature for a univariate time series. For example, Leybourne and McCabe

(1994) propose to correct the stationarity test for serial correlation by estimating the AR

coe¢ cients based on the ML method for the ARIMA model. Their method is also applied

to panel data with no cross-sectional dependence by Shin and Snell (2006). However, our

preliminary simulation shows that this method does not work well in �nite samples and we

do not use this method in this paper.

We next consider to make use of the new truncation rule proposed by Sul, Phillips and

Choi (2005). Their method is originally developed for the prewhitening method, but it is
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also applicable to parametric model. We �rst estimate the AR(p) model augmented by the

lags of �yt for each i by the least squares method

yit = z0t�̂i + �̂i1yit�1 + � � �+ �̂ipyit�p +  ̂i0�yt + � � �+  ̂ip�yt�p + �̂it;

and construct the estimator of the long-run variance by

�̂2iSPC =
�̂2�i

(1� �̂i)2
where �̂i = min

8<:1� 1p
T
;

pX
j=1

�̂ij :

9=; and �̂2�i =
1

T

TX
t=1

�̂2it:

We then propose to construct the test statistic (7) using

STi =
1

�̂2iSPCT
2

TX
t=1

(Swit )
2:

We denote this test statistic as ZSPCA .

The other method we consider is the lag-augmented method proposed by Choi (1993) and

Toda and Yamamoto (1995). According to these papers, we intentionally add an additional

lag of yt and estimate an AR(p+ 1) model instead of an AR(p) model:

yit = z0t~�i + ~�i1yit�1 + � � �+ ~�ipyit�p + ~�ip+1yit�p�1 + ~ i0�yt + � � �+ ~ ip�yt�p + ~�it;

and construct the test statistic using

STi =
1

�̂2iLAT
2

TX
t=1

(Swit )
2 where �̂2iLA =

�̂2�i

(1� ~�i1 � � � � � ~�ip)2
:

We denote this test statistic as ZLAA .

The consistency of �̂2iSPC and �̂
2
iLA under the null hypothesis is established in the stan-

dard way and we omit here the details. On the other hand, they are shown to diverge to

in�nity at a rate of T under the alternative, so that STi can be seen as a consistent station-

arity test for univariate time series. It is also shown by using the sequential limit that the

null distributions of ZSPCA and ZLAA are asymptotically standard normal in the same way

as Theorem 1 while they diverge to in�nity under the �xed alternative. Unfortunately, it is

tedious to derive the joint limit of ZSPCA or ZLAA under general assumptions and we do not
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pursue it. Instead, we shall conduct Monte Carlo simulations in the next section in order to

see whether or not the sequential limit theory can approximate the �nite sample behavior

of these tests.

4.2. Finite sample property under general assumptions

In this section we conduct Monte Carlo simulations to investigate the �nite sample

properties of the augmented KPSS test using the long-run variance estimated by the SPC

or the LA methods in order to correct for serial correlation in the innovations. The data

generating process in this subsection is given as follows:

yit = z0t�i + ft
i + "it; "it = �i"it�1 + �it;

where ft � i:i:d:(0; 1), �it � i:i:d:N(0; 1), ft and �it are independent of each other, �i, �i

and 
i are set as in Subsection 3.2., the �i are drawn from 0:1 + U(0; 0:8) under the null

hypothesis and they remain �xed throughout the iterations. On the other hand, the �i

are set to be equal to 1 for all i under the alternative. For the purpose of comparison, we

also calculate the test statistic proposed by Harris, Leybourne and McCabe (2005) (HLM

hereafter). According to HLM, we �rst estimate the idiosyncratic errors "it by the principal

component method proposed by Bai and Ng (2004) and next apply the stationarity test pro-

posed by Harris, McCabe and Leybourne (2003) to the estimated series of "1t; "2t; � � � ; "Nt.

HLM method requires to predetermine the order of the autocovariance and the bandwidth

parameter for the kernel estimate of the long-run variance; we set these parameters as

recommended in HLM (2005).

Table 2 reports the sizes of the tests. There are no entries for HLM test when T = 10

because the time dimension is too short to calculate their test statistic. When only a

constant is included in the model, the augmented KPSS test corrected by the SPC method

tends to be undersized for moderate size of T for SCC (strong cross-correlation) case while

it is oversized for small or large size of T , although the over-rejection is not so severe when

N = 100 and T = 200. For WCC (weak cross-correlation) case ZSPCA is undersized except
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for the case of T = 10. The augmented KPSS test corrected by the LA method has a

similar property as ZSPCA for SCC case while the size of the test is relatively well controlled

for WCC case. On the other hand, the size of HLM test seems to be better controlled for

moderate or large size of T , although the test becomes undersized for large size of N and

small or moderate size of T .

When both a constant and a linear trend are included in the model, the overall property

of ZSPCA and ZLAA is preserved while HLM test tends to be undersized for N larger than 20.

Table 4 shows the nominal powers of the tests. Because of the size distortion of the tests

it is not easy to compare the powers of these tests but we observe that all the tests are less

powerful for the moderate size of T due to the undersize property of the tests. In some

cases the augmented KPSS test apparently dominates HLM test but the reversed relation

is observed in other cases. For example, the empirical sizes of ZSPCA , ZLAA and HLM test

are 0.009, 0.022 and 0.078 when N = 10 and T = 30 for the constant case with SCC, while

the powers of these tests are 0.437, 0.262 and 0.218. On the other hand, the sizes of these

tests are 0.058, 0.076 and 0.054 when N = 10 and T = 100 for the constant case with WCC

while the powers are 0.878, 0.812 and 1.00.

Although our simulations are limited, it is di¢ cult to recommend one of these tests

because none of them dominates the others. It seems that HLM test tends to work relatively

well in the constant case because the size of the test is more or less controlled in many cases

and it has moderate power, whereas the augmented KPSS test with SPC correction seems

to perform best in many cases corresponding to the trend case (all the other tests tend to

be undersized in this case) and is most powerful in many cases.

5. Conclusion

In this paper we extended Hadri�s (2000) test to correct for cross-sectional dependence

à la Pesaran (2007). We showed that the limiting null distribution of this augmented KPSS

test is the same as the original Hadri�s test that is the LM test without cross-sectional

dependence. We also extended Hadri�s test by developing an LM test correcting for cross-
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sectional dependence. Then, we compared our augmented KPSS test with the extended LM

test. We found that the augmented KPSS test is asymptotically locally optimal but it is

not asymptotically equivalent to the LM test under the �xed alternative. The Monte Carlo

simulations indicated that we should carefully use the panel stationarity tests because they

are undersized in some cases but su¤er from over rejection in other cases.
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Appendix

In this appendix, we prove the theorems only for the case where zt = [1; t]. The proof

for the level case with zt = 1 proceeds in exactly the same way and thus we omit it.

Proof of Theorem 1

We �rst express �yt in matrix form. Since

�yt = z0t�� + �rt + ft�
 + �"t;

we have 26664
�y1
�y2
...
�yT

37775 =
26664
z01
z02
...
z0T

37775 �� +
26664
�r1
�r2
...
�rT

37775+
26664
f1
f2
...
fT

37775 �
 +
26664
�"1
�"2
...
�"T

37775
or

�y = Z�� + �r+ f�
 + �": (13)

Since �
 6= 0, we have f = (�y�Z��� �r� �")=�
. By inserting this into (2), the model becomes

yi = Z(�i � ~
i��) + ~
i�y + (ri � ~
i�r) + ("i � ~
i�") (14)

where ~
i = 
i=�
.

Let W = [� ;d; �y] = [Z; �y]. Under the null hypothesis, STi can be expressed in matrix

form as

STi =
1

�2"T
2
y0iMwL

0LMwyi

=
1

�2"T
2
("i � ~
i�")0MwL

0LMw("i � ~
i�") (15)

from (14) because (ri � ~
i�r) disappears under H0.

Let

Q =

�
I2 ���
0 1

�
; D1 = diagfD� ; 1g and D2 = diagfD� ; Tg

where D� = diagf
p
T ; T

p
Tg and de�ne W � �WQ = [Z; �y�] where �y� = �y � Z�� = f�
 + �",

so that we have the equality Mw =Mw� and thus we can replace Mw in (15) with Mw� .
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Lemma 1 Under H0 for 0 � r � 1,

(i)

�
1p
T
L("i � ~
i�")

�
[Tr]

T
=) �" ~B

"
i (r) = �"

�
B"i (r) +Op

�
1p
N

��
;

(ii)

�
1p
T
LW �D�1

1

�
[Tr]

T
=)

�Z r

0
z(t)0dt; �f �
B

f (r) + �" �B
"(r)

�
;

=

�Z r

0
z(t)0dt; �f �
B

f (r) +Op

�
1p
N

��
;

(iii) D�1
2 W �0W �D�1

1
T
=)

" R 1
0 z(t)z(t)

0dt
R 1
0 z(t)

�
�f �
dB

f (t) + �"d �B
"(t)
�

0 �
2�2f +
�2"
N

#
;

=

" R 1
0 z(t)z(t)

0dt �f �

R 1
0 z(t)dB

f (t) +Op

�
1p
N

�
0 �
2�2f +O

�
1
N

� #
;

(iv) D�1
2 W �0("i � ~
i�")

T
=)

�
�"
R 1
0 z(t)d

~B"i (r)
0

�
=

"
�"
R 1
0 z(t)dB

"
i (r) +Op

�
1p
N

�
0

#
;

where z(r) = [1; r]0, B"i (r) for i = 1 � � � ; N and Bf (r) are independent standard Brownian

motions, �B"(r) = N�1PN
i=1B

"
i (r) and ~B

"
i (r) = B"i (r)� ~
i �B"(r).

Proof of Lemma 1: Weak convergences in (i) is established by the functional central limit

theorem (FCLT) and the continuous mapping theorem (CMT). The second equality holds

because j~
ij < M1=M < 1 for all i from Assumption 1(ii) and �B"(r) = Op(1=
p
N) by the

weak low of large numbers (WLLN).

(ii) Since �y� = f�
 + �" under H0, we have, by the FCLT,�
1p
T
LW �D�1

1

�
[Tr]

=

24 1p
T

[Tr]X
t=1

z0tD
�1
� ;

1p
T

[Tr]X
t=1

 
ft�
 +

1

N

NX
i=1

"it

!35
T
=)

�Z r

0
z(t)0dt; �f �
B

f (r) + �" �B
"(r)

�
: (16)

(iii) The result of the (1; 1) block is easily obtained. For the (1; 2) block, , we can see by
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the FCLT that

1p
T
� 0�y� =

�
p
T

TX
t=1

ft +
1

N
p
T

TX
t=1

NX
i=1

"it
T
=) �f �
B

f (1) + �" �B(1); (17)

1

T
p
T
d0�y� =

�


T
p
T

TX
t=1

tft +
1

NT
p
T

TX
t=1

t
NX
i=1

"it
T
=)

Z 1

0
t
�
�f �
dB

f (t) + �"d �B(t)
�
(18)

while for the (3; 3) element,

1

T
�y�0�y� =

�
2

T

TX
t=1

f2t +
1

N2T

TX
t=1

 
NX
i=1

"it

!2
+
2�


NT

TX
t=1

ft

NX
i=1

"it

p;T�! �
2�2f +
�2"
N
;

by the WLLN.

(iv) The result of the �rst two element is obtained by the FCLT. For the last element,

we have, by the WLLN,

1

T
�y�0"i =

�


T

TX
t=1

ft"it +
1

NT

TX
t=1

"2it +
1

NT

TX
t=1

"it
X
j 6=i

"jt

p;T�! �2"
N
;

and similarly,

1

T
�y�0�"

p;T�! 1

N

NX
i=1

�2"
N
=
�2"
N
:

We then have (iv).2

Since

1p
T
LMw("i � ~
i�") =

1p
T
L("i � ~
i�")

� 1p
T
LW �D�1

1

�
D�1
2 W �0W �D�1

1

��1
D�1
2 W �0("i � ~
i�");
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we have, by Lemma 1 and the CMT,�
1p
T
LMw("i � ~
i�")

�
[Tr]

T
=) �"

(
B"i (r)�

Z r

0
z(t)0dt

�Z 1

0
z(t)z(t)0dt

��1 Z 1

0
z(t)dB"i (t) +Op

�
1p
N

�)

� �"V
"
i (r) +Op

�
1p
N

�
; (19)

so that

STi
T
=)

Z 1

0

�
V "i (r) +Op

�
1p
N

��2
dr: (20)

This implies that

ST
p;T;N�! E

�Z 1

0
V "i (r)

2dr

�
: (21)

By appropriately normalizing ST , we obtain the result for ZA.

In order to derive the limiting distribution of the LM test statistic, we �rst note that

under H0,

(IN 
Mz)y = (
 
Mzf) + (IN 
Mz)"

� N
�
0; (�2f



0 
Mz) + (�
2
"IN 
Mz)

�
= N (0; A
Mz)

= (A1=2 
Mz)�

where � = [�01; � � � ;�0N ]0 � N(0; IN 
 IT ). Then, LM can be expressed as

LM =
1

NT 2
�0(A1=2 
Mz)(�

2
"A

�2 
 LL0)(A1=2 
Mz)�

=
1

NT 2
�0(IN 
MzL)(�

2
"A

�1 
 IT )(IN 
 L0Mz)�: (22)

We �rst investigate the matrix A. Note that �2"A
�1 can be expressed as

�2"A
�1 = �2"(�

2
f



0 + �2"IN )
�1 =

0@IN � 1

1 +
�2f
�2"

0


�2f
�2"


0

1A :
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Since rk(

0) = 1 and (

0)
 = (
0
)
, the (N�1) eigenvalues of 

0 are 0 and the non-zero

eigenvalue is 
0
, for which the corresponding eigenvector is 
. Then, there exists an N �N

orthonormal matrix P such that

P 0P = PP 0 = IN and P 0

0P = diagf
0
; 0; � � � ; 0g � �
 :

This implies that

P 0�2"A
�1P = IN �

1

1 +
�2f
�2"

0


�2f
�2"
�f

=

266664
�2"

�2"+�
2
f


0


1
. . .

1

377775 � ��1A : (23)

By inserting (23) into (22), we obtain

LM =
1

NT 2
�0(IN 
MzL)(PP

0�2"A
�1PP 0 
 IT )(IN 
 L0Mz)�

=
1

NT 2
��0(IN 
MzL)(�

�1
A 
 IT )(IN 
 L0Mz)�

�

=
�2"

�2" + �
2
f

0


1

NT 2
��01MzLL

0Mz�
�
1 +

1

NT 2

NX
i=2

��0i MzLL
0Mz�

�
i ;

where �� = [��01 ; � � � ;��0N ]0 = (P 
 IT )� � N(0; IN 
 IT ). Note that the �rst term converges

to zero in probability as T !1 followed by N !1, whereas for the second term, we have,

by the FCLT and the CMT,

1

T 2
��0i MzLL

0Mz�
�
i

T
=)

Z 1

0

(
B�i (r)�

Z r

0
z(t)0dt

�Z 1

0
z(t)z(t)0dt

��1 Z 1

0
z(t)dB�i (t)

)2
dr

�
Z 1

0
V �i (r)

2dr

where B�i for i = 2; � � � ; N are independent standard Brownian motions. See also Hadri

(2000). Then, by appropriately normalizing LM , we obtain the result.�
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Proof of Theorem 2

We �rst give the following lemma.

Lemma 2 Under H`
1 for 0 � r � 1,

(i)

�
1p
T
L(ri � ~
i�r)

�
[Tr]

T
=) c�"

N1=4

Z r

0

~Bvi (t)dt

=
c�"

N1=4

�Z r

0
Bvi (t)dt+Op

�
1p
N

��
;

(ii)

�
1p
T
LW �D�1

1

�
[Tr]

T
=)

�Z r

0
z(t)0dt; �f �
B

f (r) + �" �B
"(r) +

c�"

N1=4

Z r

0

�Bv(t)dt

�
;

=

�Z r

0
z(t)0dt; �f �
B

f (r) +Op

�
1p
N

��
;

(iii) D�1
2 W �0W �D�1

1
T
=)

264 R 10 z(t)z(t)0dt
R 1
0 z(t)

�
�f �
dB

f (t) + �"d �B
"(t)
�

+ c�"
N1=4

R 1
0 z(t)

�Bv(t)dt

0 �
2�2f +
�2"
N

375 ;
=

" R 1
0 z(t)z(t)

0dt �f �

R 1
0 z(t)dB

f (t) +Op

�
1p
N

�
0 �
2�2f +O

�
1
N

� #
;

(iv) D�1
2 W �0(ri � ~
i�r)

T
=)

"
c�"
N1=4

R 1
0 z(t)

~Bvi (t)dt

0

#

=

"
c�"
N1=4

R 1
0 z(t)B

v
i (t)dt+Op

�
1p
N

�
0

#
;

(v) D�1
2 W �0("i � ~
i�")

T
=)

�
�"
R 1
0 z(t)d

~B"i (r)
0

�
=

"
�"
R 1
0 z(t)dB

"
i (r) +Op

�
1p
N

�
0

#
:

Proof of Lemma 2: (i) Since vit � i:i:d:(0; c2�2"=(
p
NT 2)), we have

p
Tri[Tr] =

p
T

[Tr]X
t=1

vit
T
=) c�"

N1=4
Bvi (r) (24)

by the FCLT. We then obtain the weak convergence in (i) by the CMT.
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(ii) The �rst element has already been obtained in Theorem 1. For the second element,

since �y�t = �rt + �
ft + �"t under H
`
1, we have

1p
T

[Tr]X
t=1

�y�t =
1

N

NX
i=1

1

T

[Tr]X
t=1

p
Trit +

�
p
T

[Tr]X
t=1

ft +
1

N

NX
i=1

1p
T

[Tr]X
t=1

"it

T
=) c�"

N1=4

Z r

0

�Bv(t)dt+ �f �
B
f (r) + �" �B

"(r):

(iii) Similarly to the proof of (ii), we can see that the (1,2) block of D�1
2 W �0WD�1

1

becomes

D�1
� Z 0�y� =

"
1p
T

PT
t=1(�rt + �
ft + �"t)

1
T
p
T

PT
t=1 t(�rt + �
ft + �"t)

#
T
=)

"
c�"
N1=4

�Bv(1) + �f �
Bf (1) + �" �B
"(1)

c�"
N1=4

R 1
0 td

�Bv(t) +
R 1
0 t(�

f �
dBf (t) + �"d �B
"(t))

#
;

while the (2,2) block is given by

1

T
�y�0�y� =

1

T

TX
t=1

�
�r2t + �


2f2t + �"
2
t + 2�
�rtft + 2�rt�"t + 2�
ft�"t

�
=

�
2

T

TX
t=1

f2t +
1

T

TX
t=1

�"2t +Op

�
1p
T

�
T
=) �
2�2f +

�2"
N
:

(iv) Since

1

T

TX
t=1

�y�t (rit � ~
i�rt) =
1

T 2

TX
t=1

(
p
T �rt)

p
T (rit � ~
i�rt) +

1

T
p
T

TX
t=1

(�
ft + �"t)
p
T (rit � ~
i�rt)

p;T�! 0;

we have

D�1
2 W �0(ri � ~
i�r) =

"
1p
T
D�1
�

PT
t=1 zt

p
T (rit � �rt)

1
T

PT
t=1 �y

�
t (rit � �rt)

#
T
=)

"
c�"
N1=4

R 1
0 z(t)

~Bvi (t)dt

0

#
:
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(v) The �rst element has already been obtained in Theorem 1. For the second element,

note that

1

T
�y�0("i � ~
i�") =

1

T
p
T

TX
t=1

p
T �rt("it � ~
i�"t) +

1

T

TX
t=1

(�
ft + �"t)("it � ~
i�"t):

The �rst term on the right hand side is Op(1=
p
T ) while the second term converges in

probability to zero as proved in Lemma 1 (iv). Then, we obtain (v).2

In order to derive the limiting distribution of ZA under H`
1, note that LMwyi =

LMw�("i � ~
i�") + LMw�(ri � ~
i�r). Then, we can see from Lemma 1 (i) and Lemma 2

that �
1p
T
LMwyi

�
[Tr]

T
=)

�
�"V

"
i (r) +Op

�
1p
N

��
+

c�"

N1=4

�
F vi (r) +Op

�
1p
N

��
where

F vi (r) =

Z r

0
Bvi (t)dt�

Z r

0
z(t)0dt

�Z 1

0
z(t)z(t)0dt

��1 Z 1

0
z(t)Bvi (t)dt:

Using this, we have

STi
T
=)

Z 1

0

��
V "i (r) +Op

�
1p
N

��
+

c

N1=4

�
F vi (r) +Op

�
1p
N

���2
dr:

Since B"i (r) and Bvi (r) are independent, we can see that the sum of the cross product

between V "i (r) and F
v
i (r) is Op(1=

p
N), so that

ZA
T
=) 1

�
p
N

NX
i=1

�Z 1

0
V "i (r)

2dr � �
�
+

c2

�N

NX
i=1

Z 1

0
F vi (r)

2dr +Op

�
1p
N

�
N
=) N(0; 1) +

c2

�
E

�Z 1

0
F vi (r)

2dr

�
:

In order to derive the limiting distribution of the LM test statistic, note that

(IN 
Mz)y = (IN 
Mz)r+ (A
1=2 
Mz)�:

Then, the denominator of the LM test statistic can be expressed as

p
N(LM � �) =

1p
NT 2

�
�0(�2"A

�2 
MzLL
0Mz)� � �

	
(25)

+
1p
NT 2

r0(�2"A
�2 
MzLL

0Mz)r+
2p
NT 2

�0(�2"A
�2 
MzLL

0Mz)":
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The �rst term on the right hand side of (25) converges in distribution to a standard normal

distribution as T !1 followed by N !1 as proved in Theorem 1.

Since A�2 = P��2A P 0, the second term on the right hand side of (25) is expressed as

1p
NT 2

r0(�2"A
�2 
MzLL

0Mz)r =
1p
NT 2

r0(P 
 IT )(�2"��2A 
MzLL
0Mz)(P 
 IT )r:

Note that

(P 
 IT )r = (P 
 IT )(IN 
 L)v = (IN 
 L)v� = r�

where v� � (P 
 IT )v � N(0; ��2"(IN 
 IT )) and r� � (IN 
 L)v�. Since v� has the same

distribution as v, we can see that r� has the same distributional property as r, so that

we can apply the limit theorem used for the derivation of the limiting distribution of the

augmented KPSS test statistic. That is,

1p
NT 2

r0(�2"A
�2 
MzLL

0Mz)r

=
1p
NT 2

r�0(�2"�
�2
A 
MzLL

0Mz)r
�

=
�4"

(�2" + �
2
f

02

1p
NT 2

r�01MzLL
0Mzr

�
1 +

1p
NT 2

NX
i=2

r�0i MzLL
0Mzr

�
i

T;N
=) c2E

�Z 1

0
F v�i (r)

2dr

�
;

where F v�i is de�ned as F vi with B
v
i replaced by B

v�
i , which are standard Brownian motions

induced by v�it. Since v
�
it is independent of "it, the third term of (25) can be shown to

converge in probability to 0 as T !1 followed by N !1. We then obtain the theorem.�

Proof of Theorem 3

We �rst give the following lemma, which can be proved by the FCLT and the CMT and

then we omit the proof.
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Lemma 3 Under Hf
1 for 0 � r � 1,

(i)

�
1

T
p
T
L(ri � ~
i�r)

�
[Tr]

T
=) ��"

Z r

0

~Bvi (t)dt;

(ii)

�
1p
T
LW �D�1

2

�
[Tr]

T
=)

�Z r

0
z(t)0dt; ��"

Z r

0

�Bv(t)dt

�
;

(iii) D�1
2 W �0W �D�1

2
T
=)

" R 1
0 z(t)z(t)

0dt ��"
R 1
0 z(t)

�Bv(t)dt

��"
R 1
0 z(t)

0 �Bv(t)dt �2�2"
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�Bv(t)2dt

#
;

(iv)
1

T
D�1
2 W �0(ri � ~
i�r)

T
=)

"
��"

R 1
0 z(t)

~Bvi (t)dt

�2�2"
R 1
0
�Bv(t) ~Bvi (t)dt

#
:

It is not di¢ cult to see that [LMw�(ri � ~
i�r)][Tr] dominates [LMw�("i � ~
i�")][Tr] and

then,
1

T 2
STi =

1

�2"T
4
(ri � ~
i�r)Mw�L

0LMw�(ri � ~
i�r) + op(1):

Since LMw�(ri � ~
i�r) = L(ri � ~
i�r) �W �D�1
2 (D

�1
2 W �0W �D�1

2 )
�1D�1

2 (ri � ~
i�r), we have,

using Lemma 3,
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0
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Z r

0
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v
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�
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where Z2N (r) = [z(t)0;
p
N �Bv(r)]0. Hence, we have

1p
NT 2
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i=1

1

T 2
(STi � �)
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Z2N (t)B
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i (t)dt
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dr

�2�
2
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Z 1

0

Z r

0
Z2N (t)

0dt

�Z 1
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��1 Z 1
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�
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The �rst term of (26) converges in probability to (�2=�)E[
R 1
0 (
R r
0 B

v
i (t)dt)

2dr] by the

WLLN.

For the second term, we note that

1

N

NX
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0
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v
i (t)�min(s; t))Z2N (s)Z2N (t)0dsdt
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 1N
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E
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v
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N

where C is some constant. Since
p
N �Bv(t)

N
=) Bv(t), which is a standard Brownian motion

independent of Bvi (t), we have

Z2N (r)
N
=) [z(r)0; Bv2(r)]

0 � z2(r): (28)

Hence, we observe from (27) and (28) that the second term of (26) weakly converges to

�2

�
H1 � �2

�
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0
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0dt
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��1
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as N !1.

In exactly the same manner, we can see that as N ! 1 the third term of (26) weakly

converges to

�2

�
H2 �

�2

�

Z 1

0

(Z r

0
z2(t)

0dt

�Z 1

0
z2(t)z2(t)

0dt

��1 Z 1

0

Z r

0
min(s; t)z2(t)dsdt

)
dr: (30)

From (26), (29) and (30), we conclude that

1p
NT 2

ZA
T;N
=) �2

�

(
E

"Z 1

0

�Z r

0
Bvi (t)dt

�2
dr

#
+H1 � 2H2

)
:

Since the term in braces is the same as Ev[
R 1
0 G

v
i (r)

2dr], we have the result for ZA.

The limiting distribution of the LM test statistic can be derived in the same way using

the FCLT and the CMT. �
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Table 1. Size of the tests: base case

constant case trend case
SCC WCC SCC WCC

N T ZA ZLM ZA ZLM ZA ZLM ZA ZLM
10 0.023 0.038 0.019 0.066 0.002 0.022 0.007 0.055
20 0.046 0.035 0.026 0.064 0.026 0.026 0.014 0.061
30 0.035 0.034 0.028 0.065 0.032 0.025 0.017 0.063

10 50 0.049 0.033 0.026 0.061 0.040 0.022 0.018 0.062
100 0.053 0.034 0.033 0.067 0.045 0.026 0.024 0.063
200 0.057 0.036 0.036 0.066 0.048 0.026 0.026 0.063
10 0.012 0.038 0.014 0.057 0.000 0.026 0.005 0.045
20 0.040 0.037 0.022 0.060 0.016 0.031 0.013 0.058
30 0.027 0.042 0.031 0.065 0.026 0.030 0.017 0.059

20 50 0.052 0.041 0.032 0.065 0.040 0.029 0.023 0.060
100 0.057 0.042 0.040 0.067 0.043 0.030 0.023 0.058
200 0.058 0.045 0.041 0.067 0.047 0.031 0.029 0.060
10 0.007 0.037 0.010 0.054 0.000 0.024 0.002 0.040
20 0.042 0.042 0.024 0.063 0.015 0.032 0.012 0.054
30 0.023 0.040 0.027 0.059 0.027 0.033 0.017 0.059

30 50 0.053 0.041 0.034 0.060 0.041 0.031 0.021 0.056
100 0.056 0.043 0.037 0.060 0.047 0.032 0.027 0.057
200 0.054 0.040 0.037 0.059 0.046 0.032 0.029 0.057
10 0.004 0.042 0.011 0.057 0.000 0.020 0.001 0.032
20 0.037 0.042 0.021 0.055 0.009 0.030 0.010 0.046
30 0.015 0.042 0.024 0.057 0.018 0.033 0.015 0.052

50 50 0.051 0.046 0.034 0.060 0.041 0.036 0.022 0.058
100 0.055 0.044 0.036 0.058 0.049 0.039 0.032 0.061
200 0.056 0.046 0.042 0.063 0.048 0.036 0.033 0.055
10 0.001 0.040 0.006 0.051 0.000 0.014 0.000 0.019
20 0.037 0.045 0.015 0.055 0.006 0.031 0.006 0.043
30 0.013 0.046 0.026 0.058 0.020 0.037 0.012 0.050

100 50 0.061 0.047 0.030 0.058 0.046 0.038 0.019 0.052
100 0.064 0.046 0.036 0.056 0.060 0.040 0.029 0.056
200 0.060 0.040 0.038 0.052 0.064 0.040 0.033 0.055



Table 2. Power of the tests: base case

constant case trend case
SCC WCC SCC WCC

N T ZA ZLM ZA ZLM ZA ZLM ZA ZLM
0.022 0.034 0.019 0.067 0.002 0.020 0.006 0.052

10 0.022 0.038 0.019 0.070 0.002 0.020 0.007 0.054
0.038 0.062 0.032 0.108 0.002 0.025 0.008 0.063
0.042 0.035 0.024 0.062 0.027 0.026 0.014 0.063

20 0.051 0.041 0.029 0.075 0.029 0.030 0.016 0.067
0.196 0.176 0.126 0.265 0.048 0.050 0.029 0.107
0.036 0.034 0.027 0.065 0.034 0.026 0.017 0.063

30 0.055 0.057 0.044 0.100 0.038 0.029 0.018 0.071
0.357 0.421 0.344 0.546 0.103 0.088 0.058 0.179
0.055 0.038 0.034 0.069 0.045 0.025 0.019 0.066

10 50 0.145 0.109 0.092 0.181 0.061 0.037 0.030 0.088
0.882 0.862 0.796 0.923 0.356 0.297 0.243 0.453
0.087 0.059 0.055 0.106 0.049 0.028 0.025 0.070

100 0.520 0.462 0.434 0.588 0.143 0.097 0.086 0.193
1.000 1.000 0.997 1.000 0.948 0.929 0.904 0.973
0.224 0.178 0.171 0.270 0.073 0.044 0.043 0.103

200 0.970 0.962 0.955 0.985 0.582 0.506 0.488 0.670
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.011 0.039 0.015 0.059 0.000 0.024 0.005 0.045

10 0.012 0.042 0.016 0.062 0.000 0.024 0.005 0.045
0.023 0.077 0.034 0.115 0.001 0.030 0.007 0.057
0.042 0.038 0.023 0.060 0.020 0.033 0.015 0.061

20 0.053 0.050 0.029 0.079 0.022 0.037 0.016 0.065
0.296 0.289 0.194 0.368 0.044 0.073 0.035 0.127
0.025 0.044 0.031 0.067 0.030 0.032 0.018 0.060

30 0.048 0.079 0.055 0.117 0.034 0.039 0.023 0.072
0.549 0.684 0.555 0.759 0.130 0.150 0.097 0.230
0.062 0.049 0.039 0.077 0.042 0.032 0.025 0.063

20 50 0.202 0.178 0.148 0.238 0.066 0.053 0.039 0.096
0.989 0.988 0.963 0.994 0.559 0.526 0.447 0.646
0.102 0.081 0.072 0.118 0.053 0.037 0.032 0.069

100 0.759 0.729 0.695 0.800 0.204 0.164 0.145 0.255
1.000 1.000 1.000 1.000 0.999 0.999 0.996 1.000
0.341 0.303 0.291 0.388 0.097 0.071 0.063 0.122

200 1.000 0.999 0.999 1.000 0.834 0.801 0.781 0.876
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000



Table 2. Power of the tests: base case (continued)

constant case trend case
SCC WCC SCC WCC

N T ZA ZLM ZA ZLM ZA ZLM ZA ZLM
0.009 0.039 0.011 0.057 0.000 0.022 0.003 0.038

10 0.010 0.043 0.013 0.063 0.000 0.023 0.003 0.039
0.025 0.096 0.033 0.128 0.000 0.030 0.005 0.050
0.039 0.038 0.020 0.058 0.015 0.032 0.010 0.053

20 0.054 0.054 0.027 0.079 0.017 0.036 0.011 0.058
0.385 0.391 0.251 0.465 0.041 0.080 0.033 0.126
0.023 0.044 0.029 0.064 0.025 0.030 0.014 0.054

30 0.047 0.086 0.061 0.119 0.031 0.039 0.019 0.068
0.701 0.827 0.706 0.870 0.164 0.195 0.119 0.277
0.067 0.054 0.041 0.076 0.041 0.033 0.021 0.057

30 50 0.254 0.226 0.181 0.287 0.071 0.059 0.039 0.099
0.999 0.999 0.988 0.999 0.713 0.692 0.589 0.779
0.126 0.099 0.088 0.135 0.062 0.045 0.038 0.075

100 0.888 0.870 0.841 0.908 0.276 0.231 0.201 0.321
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.434 0.392 0.376 0.462 0.122 0.087 0.079 0.140

200 1.000 1.000 1.000 1.000 0.943 0.926 0.912 0.957
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.004 0.045 0.011 0.058 0.000 0.020 0.002 0.029

10 0.005 0.049 0.012 0.066 0.000 0.020 0.002 0.030
0.015 0.118 0.033 0.149 0.000 0.027 0.002 0.043
0.039 0.046 0.022 0.062 0.010 0.030 0.010 0.049

20 0.063 0.071 0.033 0.088 0.012 0.036 0.011 0.054
0.512 0.540 0.342 0.598 0.037 0.106 0.038 0.146
0.017 0.044 0.026 0.061 0.022 0.033 0.013 0.050

30 0.043 0.108 0.069 0.142 0.028 0.044 0.019 0.064
0.859 0.951 0.849 0.963 0.203 0.292 0.170 0.362
0.066 0.056 0.044 0.075 0.044 0.041 0.026 0.063

50 50 0.342 0.318 0.253 0.373 0.084 0.081 0.051 0.114
1.000 1.000 0.998 1.000 0.878 0.877 0.787 0.913
0.141 0.121 0.105 0.151 0.066 0.054 0.044 0.081

100 0.975 0.971 0.958 0.980 0.373 0.343 0.292 0.419
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.582 0.554 0.530 0.609 0.143 0.118 0.108 0.164

200 1.000 1.000 1.000 1.000 0.992 0.991 0.989 0.994
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000



Table 2. Power of the tests: base case (continued)

constant case trend case
SCC WCC SCC WCC

N T ZA ZLM ZA ZLM ZA ZLM ZA ZLM
0.001 0.038 0.006 0.048 0.000 0.014 0.000 0.020

10 0.001 0.043 0.007 0.054 0.000 0.015 0.000 0.022
0.010 0.151 0.032 0.174 0.000 0.025 0.001 0.035
0.042 0.049 0.017 0.061 0.005 0.032 0.007 0.042

20 0.076 0.087 0.033 0.103 0.006 0.036 0.008 0.049
0.773 0.804 0.532 0.831 0.037 0.151 0.039 0.188
0.013 0.052 0.027 0.064 0.021 0.038 0.012 0.052

30 0.048 0.151 0.088 0.179 0.031 0.055 0.019 0.074
0.983 0.998 0.956 0.999 0.366 0.498 0.279 0.554
0.085 0.066 0.044 0.080 0.054 0.042 0.023 0.057

100 50 0.539 0.499 0.391 0.541 0.124 0.108 0.061 0.138
1.000 1.000 1.000 1.000 0.991 0.991 0.960 0.994
0.218 0.174 0.146 0.200 0.090 0.066 0.050 0.085

100 1.000 1.000 0.999 1.000 0.629 0.573 0.501 0.626
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.832 0.803 0.780 0.827 0.237 0.179 0.158 0.223

200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000



Table 3. Size of the tests: serially correlated case

constant case trend case
SCC WCC SCC WCC

N T ZSPCA ZLAA HLM ZSPCA ZLAA HLM ZSPCA ZLAA HLM ZSPCA ZLAA HLM
10 0.075 0.338 - 0.062 0.262 - 0.289 0.650 - 0.535 0.800 -
20 0.004 0.068 0.033 0.004 0.069 0.038 0.001 0.029 0.027 0.003 0.039 0.034
30 0.009 0.022 0.078 0.009 0.036 0.086 0.006 0.021 0.059 0.011 0.029 0.068

10 50 0.040 0.062 0.086 0.018 0.046 0.079 0.030 0.050 0.056 0.014 0.034 0.056
100 0.061 0.101 0.064 0.024 0.070 0.064 0.045 0.085 0.033 0.014 0.060 0.033
200 0.109 0.124 0.058 0.058 0.076 0.054 0.120 0.135 0.051 0.053 0.073 0.053
10 0.081 0.425 - 0.080 0.338 - 0.437 0.859 - 0.759 0.922 -
20 0.002 0.059 0.011 0.002 0.067 0.015 0.001 0.021 0.010 0.001 0.036 0.013
30 0.002 0.008 0.043 0.004 0.033 0.058 0.001 0.008 0.023 0.006 0.022 0.031

20 50 0.025 0.048 0.088 0.009 0.042 0.075 0.013 0.026 0.037 0.006 0.025 0.031
100 0.041 0.087 0.074 0.013 0.072 0.072 0.026 0.059 0.024 0.006 0.044 0.022
200 0.122 0.150 0.055 0.040 0.071 0.055 0.121 0.154 0.036 0.029 0.063 0.038
10 0.088 0.499 - 0.085 0.386 - 0.488 0.930 - 0.832 0.948 -
20 0.001 0.068 0.003 0.001 0.063 0.006 0.001 0.020 0.003 0.002 0.039 0.007
30 0.001 0.005 0.026 0.003 0.029 0.040 0.001 0.006 0.009 0.004 0.016 0.016

30 50 0.020 0.045 0.076 0.007 0.041 0.064 0.010 0.027 0.019 0.006 0.023 0.014
100 0.034 0.078 0.062 0.013 0.063 0.063 0.017 0.050 0.014 0.004 0.036 0.014
200 0.131 0.176 0.058 0.027 0.071 0.059 0.145 0.187 0.028 0.020 0.059 0.031
10 0.089 0.635 - 0.103 0.444 - 0.603 0.984 - 0.917 0.980 -
20 0.001 0.045 0.000 0.002 0.057 0.002 0.000 0.017 0.001 0.004 0.042 0.003
30 0.000 0.001 0.013 0.001 0.029 0.020 0.000 0.002 0.003 0.002 0.012 0.005

50 50 0.009 0.032 0.050 0.002 0.041 0.042 0.002 0.013 0.005 0.002 0.016 0.004
100 0.030 0.076 0.059 0.006 0.049 0.060 0.017 0.040 0.010 0.004 0.029 0.009
200 0.089 0.122 0.056 0.023 0.061 0.058 0.082 0.118 0.025 0.016 0.045 0.026
10 0.097 0.752 - 0.163 0.529 - 0.877 1.000 - 0.986 0.996 -
20 0.000 0.040 0.000 0.001 0.054 0.000 0.000 0.014 0.000 0.007 0.059 0.000
30 0.000 0.001 0.001 0.001 0.035 0.002 0.000 0.001 0.000 0.001 0.008 0.000

100 50 0.003 0.018 0.018 0.001 0.032 0.013 0.001 0.003 0.000 0.001 0.007 0.000
100 0.028 0.067 0.045 0.005 0.050 0.049 0.015 0.030 0.002 0.001 0.019 0.002
200 0.084 0.124 0.049 0.016 0.049 0.056 0.078 0.114 0.013 0.009 0.032 0.014



Table 4. Power of the tests: serially correlated case

constant case trend case
SCC WCC SCC WCC

N T ZSPCA ZLAA HLM ZSPCA ZLAA HLM ZSPCA ZLAA HLM ZSPCA ZLAA HLM
10 0.229 0.564 - 0.092 0.315 - 0.186 0.537 - 0.373 0.726 -
20 0.323 0.282 0.033 0.162 0.269 0.040 0.000 0.044 0.004 0.000 0.070 0.006
30 0.437 0.262 0.218 0.267 0.324 0.231 0.003 0.041 0.001 0.002 0.079 0.001

10 50 0.695 0.373 0.740 0.454 0.461 0.739 0.039 0.086 0.000 0.023 0.155 0.001
100 0.843 0.521 0.985 0.669 0.631 0.984 0.374 0.207 0.113 0.260 0.357 0.113
200 0.944 0.672 1.000 0.878 0.812 1.000 0.831 0.413 0.890 0.700 0.636 0.894
10 0.312 0.748 - 0.123 0.392 - 0.222 0.705 - 0.508 0.857 -
20 0.511 0.445 0.004 0.205 0.336 0.008 0.000 0.035 0.000 0.000 0.068 0.001
30 0.609 0.407 0.194 0.336 0.413 0.200 0.000 0.036 0.000 0.001 0.085 0.000

20 50 0.862 0.587 0.894 0.503 0.541 0.890 0.042 0.100 0.000 0.021 0.187 0.000
100 0.944 0.748 1.000 0.714 0.722 1.000 0.606 0.297 0.083 0.344 0.464 0.084
200 0.993 0.861 1.000 0.930 0.903 1.000 0.965 0.606 0.987 0.790 0.777 0.986
10 0.367 0.814 - 0.146 0.420 - 0.251 0.817 - 0.586 0.899 -
20 0.608 0.574 0.001 0.231 0.376 0.002 0.000 0.030 0.000 0.000 0.064 0.000
30 0.659 0.512 0.151 0.369 0.450 0.160 0.000 0.029 0.000 0.000 0.080 0.000

30 50 0.898 0.716 0.949 0.525 0.578 0.950 0.046 0.114 0.000 0.019 0.195 0.000
100 0.962 0.844 1.000 0.728 0.762 1.000 0.710 0.390 0.063 0.394 0.518 0.060
200 0.996 0.921 1.000 0.947 0.930 1.000 0.981 0.765 0.998 0.831 0.844 0.999
10 0.449 0.928 - 0.167 0.452 - 0.288 0.919 - 0.703 0.945 -
20 0.807 0.739 0.000 0.267 0.410 0.000 0.000 0.020 0.000 0.000 0.072 0.000
30 0.762 0.612 0.114 0.399 0.490 0.126 0.000 0.018 0.000 0.000 0.088 0.000

50 50 0.977 0.872 0.989 0.546 0.610 0.989 0.051 0.107 0.000 0.019 0.222 0.000
100 0.995 0.943 1.000 0.752 0.788 1.000 0.895 0.469 0.028 0.456 0.582 0.028
200 1.000 0.980 1.000 0.967 0.962 1.000 0.999 0.874 1.000 0.858 0.893 1.000
10 0.556 0.980 - 0.197 0.490 - 0.393 0.987 - 0.837 0.978 -
20 0.872 0.870 0.000 0.294 0.440 0.000 0.000 0.010 0.000 0.000 0.074 0.000
30 0.816 0.739 0.055 0.423 0.526 0.065 0.000 0.012 0.000 0.000 0.092 0.000

100 50 0.986 0.947 1.000 0.575 0.646 1.000 0.050 0.118 0.000 0.019 0.254 0.000
100 0.999 0.977 1.000 0.775 0.825 1.000 0.953 0.659 0.008 0.514 0.650 0.007
200 1.000 0.993 1.000 0.981 0.979 1.000 1.000 0.973 1.000 0.887 0.938 1.000
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